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Exact solution of the initial eigenvalue problem for coherent pulse propagation
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The inverse scattering method is used to investigate the resonant propagation of an optical pulse assumed to be
initially unchirped and to have a hyperbolic-secant shape. An exact solution is found for the two-component initial
eigenvalue problem. The discrete spectrum consists of a finite set of purely imaginary, equidistant values. The
number of discrete eigenvalues (number of solitons) is determined by the initial pulse area A. The scattering
amplitudes are expressed in terms of Euler gamma functions and hyperbohc functions. In addition to poles in the
upper half-plane, the function b/a has a pole on the real axis for A = (2n + 1)m.

I. INTRODUCTION

The one soliton solutionof the equations for coher-
ent resonantpropagation had been found by Mc Call
and Hahn" before the optical equations were
recognized to be completely integrable. This
solution has the form of a hyperbolic secant and
describes satisfactorily the main features of self-
induced transparency.

With the development of soliton theory, the
BN.cklund transformations and the inverse scatter-
ing method IBM have been applied to optical equa-
tions by Lamb. ' ' He found the one-, two- and
three-soliton solutions and derived a set of con-
servation laws corresponding to these equations.
The use of the two-component eigenvalue problem'
allowed the inclusion of chirping. The formulas
for Ã-soliton solutions have also been given. '
Ablowitz, Kaup and Newell' solved the general
initial value problem for optical propagation, i.e. ,
they showed how to construct the solution from a
given initial pulse profile. The complete solution
contains solitons and a decaying part of the field
referred by the authors as radiation. Their ap-
proach can be used to study transient effects as
well as the steady-state pulse propagation.
Kaup" applied the ISM to a detailed analytical and
numerical study of optical propagation and com-
pared the results with earlier methods. ' "

The first difficulty which is encountered when
applying the IBM to a specific propagation problem
is how to determine the initial scattering data (sd).
In the early papers by Lamb the discrete eigen-
values were not calculated, but introduced as
arbitr™yparameters in the solution. Later a
method of evaluation of soliton parameters from
conservation laws has been proposed. "'" Some
information on the sd can be obtained directly from
the structure of the equations. ""The %KB
method can also be used' "to find approximate
solutions of the eigenvalue problem. For the
square profile the eigenvalue equations can be

solved exactly, "but discrete eigenvalues are
determined in an implicit way through a trans-
cendental equation.

The aim of the present paper is to study the
initial eigenvalue problem for an entering pulse
of hyperbolic secant profile and arbitrarily large
amplitude. The scattering data obtained in this
paper can be used to investigate particular propa-
gation problems, to find the explicit form of
purely soliton solutions, and to determine the
evolution of pulse spectral moments. ""'"

In Sec. II the equations of motion are derived
in a form which is particularly suitable for treat-
ment by the inverse scattering method. The scat-
tering data for these equations are defined. The
initial eigenvalue problem is solved in Sec. III.
The solution is modeled on an analogous problem
for the Schrodinger equation, Explicit analytic
expressions for the discrete spectrum and the
scattering amplitudes are found. A detailed analy-
sis of the asymptotic properties of solutions is
given in Appendix B.

In Sec. IV the evolution of the scattering data
on and off resonance is determined. The scatter-
ing data are used to find the precise form of one-
and two-soliton solutions. Further optical applica-
tions will be the subject of a forthcoming paper. "

II. RESONANT PROPAGATION AS AN INVERSE
SCATTERING PROB LEM

H =Ho —d ~ E, (2. 1)

To fix the notation and make clear the under-
lying assumptions I give a short derivation of the
equations of motion. Assuming that the optical
pulses are short and the interaction of atoms with
the field is purely coherent the Schrodinger equa-
tion can be used to describe the state of atoms.
Relaxation effects can be treated as perturbations
to the solutions of purely coherent equations. "

The Hamiltonian for two-level atoms in the plane-
wave optical field E(t, z) is"
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where Hp is the Hamiltonian for a free two-level
system and d is the dipole operator. In the Pauli
matrix representation

v = (t —z/c)A, x = zQ/c,

h =h/0, F =f/0, 0'=2mn, tP'(d, /5,

1
Hp ——2A(do'3 y . d —P~ 0'g + Pg 0'2 ) (2.2)

one can write the Maxwell equations for slowly
varying envelope'4- in the form

and the Schrodinger equation reads

NtC, = —28'mC, —E ~ P*C, , (2.8a)
a„g =(2v,v,*),

while the equations for the medium change to

(2.7)

iSB,C2 = 2k wC2 —E ~ PC» (2.3b)

where C, and C, are the amplitudes, respectively,
of the ground state (energy equal to ——,'5(()} and the
excited state (energy equal to —,h~), P = P„+iP,.
Assuming that the pulse is quasimonochromatic and
circularly polar ized,

E =Re(ehe '")

1
B~v) +zfvg —2h v2,

B,V2-cgv2--, g v, .
(2.5'a)

(2.5'b)

In the sequel we shall write for simplicity $ and f
instead of g and f. It should be remembered that
quantities, such as 5, f are dimensionless.

Equations for X =2v, v, and the population in-
version N = lv2 I

—lv| I
follow from Eqs. (2.5):

where

y =(d, t —k,z+y(t, z), e =-,'(x+tg),
x =2i fx+ gpf,

s,x =--.'(8*~+&*).
(2.8)

(2.9)
one has

p ——(pg g

C ~-&(xp-~)r2
1 1

v —C z~xp/2
2 2

where Xp (a)pt Ppg, one finds

B tvl zgvl 2 gv2 p

B,v, —ifv2 =--,g*v, ,

(2.4a)

(2.4b)

(2.5a)

(2.5b)

where the complex envelope of the pulse |T) =(P be'~/g,
f = —,'(vo —(d). Equations (2.5) are identical up to
sign with Eqs. (8) in Lamb's paper' derived on a
different way. Equations (2.5) are more suitable
for treatment by the IBM than similar equations
derived by Haus" where the field 5 is not real
in the absence of phase modulation.

The component of macroscopic polarization
which resonates with the field is

e ~ 0 „=2in,6'(v, v,*e'"'), (2.6)

where np is the density of atoms. , angular brackets
denote averaging over the inhomogeneously broad-
ened atomic line,

where 6'=e ~ d» and d» denotes the dipole transi-
tion matrix element in the two-level system. 6' is
assumed to be real. Equations (2.3) can be given
the form"'" of the Zakharov-Shabat' two-component
eigenvalue problem. Defining

D, =[Res($/a)], ,
The scattering amplitudes 5 and a are determined
by the asymptotic properties of the solutions. "
I,et

(2.10)

The general initial value problem consists in
solving the system of equations (2.5 ) and (2.7) for
a given envelope of the entering pulse h(v, 0) and
given initial state of the medium [v,(-~, x}= 1,
v, (-~, x) =0, for the absorbing medium]. This
problem is exactly solvable by the ISM as shown
by Ablowitz, Kaup and Newell. .'

There are three main steps in the procedure.
In the first step, the initial eigenvalue problem
is solved, and the asymptotic form of the eigen-
functions is determined, leading to the set of scat-
tering data (sd). The evolution of the sd in x is
then studied, and, in the last step, the inversion
problem is solved, i.e. , the field g as a function
of x and y is constructed from the sd.

The specific feature of the optical problem is
that the eigenvalue equations (2.5) form a part of
the evolution equations. Once the form of g is
known, the equations for X and & reduce to a sys-
tem of linear equations. The primordial scatter-
ing data of the ISM are the reflection coefficients
t)/a), the discrete set of eigenvalues g~, j = 1, . . . ,
&, for which bound-state solutions exist, and the
normalization constants for bound states

(f) ff(~)).(~-~)=(~,

and g is a Gaussian distribution with characteristic
width (T*) '. Introducing the retarded time and

dimensionless notation
(2.11)

denote the solution of (2.5) which for y- -~ ap-
proaches (,') e 't' for real f, then

I

a(g) = lim (e'~'4, ),
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b(f) = lim(e 'C, ). (2.12) w (u) = (1 —u) u P(u) (3.6)

a(f) = lim (-e' '4, ),
OO

(2.13)

Similarly if 4 is the solution which for v- -~
approaches (',) e' ", then, for real g

leads to the hypergeometric equation" for w,

u(l —u)B'„1v +[y —(n + p+1)u]B„(v —np1v. =0,

where

(3 'I)

b(g) = Iim (e'"4,) . (2.14)
n + p =2(p+ p),

n P =2pP+ 2(p+p) —kgovo —zg g o, (3.8)

For real g(r, 0), as it is in our case, one can
show" that a(f) = a( r) -and b(f) =b( r) —M.oreover
in that case the zeros of a in the upper half-plane
are either purely imaginary or occur as conjugate
pairs f& and -g,*. .

m. THE INITIAL EIGENVALUE PROBLEM

In this section, I consider the two-component
eigenvalue problem (2.5) with initial envelope
g(7. , 0) in the form of a hyperbolic secant,

y =2p+2.

The values of p and p, as calculated in Appendix
A, are

1 1 ~

P, —,+,Z«O9

1 1 ~

Pa =
2

—~2«O9

P2
= 2Z~To 9

~2«o
(3.9)

The asymptotic behavior of $ for large ). and the
convergence of the hypergeometric series so both
depend on the choice of the values for p and p.
Various types of solutions are discussed in Appen-
dix B.

g(T, 0) = g, sech7. /r, , (3.1)

where go and To are real; To ensure coherence
the pulse duration yo must be small compared to
the relaxation time in the medium, vo«T, . The
pulse initial area A =m$o7o and energy flux ~
= $2g o may be arbitrarily large. Real &~o excludes
chirping.

.p —2zkv o, p ——2zkTo. (3.10)

Then, from (3.8)

B. Continuous spectrum

In the case of a continuous spectrum, ( =k is
real and according to Appendix B, one can choose

A. Reduction to the hypergeometric equation
1 1e = 2~ox'o = ~9 y = 2 —ikTo. (3.ii)

Expressing v, in terms of v, by means of Eq.
(2.5'a),

Since Re(n+p —y) =-—,
' the hypergeometric series

is convergent in the interval 0 &u ~1. The solution

v (&) y(u) u(1/~)l r (k1 0— )-(1/&) ikrp

v2 = 2g (8~ v1 +'Egvk), (3.2)
&& F( ,'g,T„,'g,T„—-—,

'——ik~„u) (3.12)
Eq. (2.5b) can be written in the form of a second-
order equation for g=v,

B', 0 —' '( ,Bg(),BP+ &i4) +(-' 'g+e 4)= 0 (3 3)

By analogy with the solution of the Schrodinger
problem for the hyperbolic secant potential' "one
introduces the new variable

satisfies the required "boundary" condition at
OO

9

e-1k'

It follows from (3.12) that the scattering amplitude
1s

u = —,'(I+tanhr/70), 0&u& l. (3.4)
a(j'g) = lim e'k'g

(3.13)

g(r 0) =2u"'(1 —u)"'

and Eq. (3.3} takes the form

u(l —u)B'„g —(2u —l)B„$+-,' g',T', P

+u '(u —1) '[4g'~', +(2u —l)ir~, )])=0. (3.5)

This equation is of the Fuchs class" with singular
points at u =0, 1 and u =~. Let p and p be the roots
of the indicial equations corresponding to (3.5) at
the singular points n =0 and u = 1, respectively.
The transformation

Making use of the properties of the hypergeometric
functions (see Appendix C) one finds

(3.i4)

The second eigenfunction v, can be found from
(3.2) by differentiation of (3.12). A similar, if
somewhat more complicated, computation leads
to

cosh'wkT o
(3.iS)

( )
I'(-,' —iver, )

r(-,' —iver, —,'g,~,)I(,' iI, +-,'g,T,)'—--
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s'" —,~~p~p
a cosh w~p s in 2' PpYp

(3.16)

is useful in the construction of conserved quan-
tities which will be studied in a subsequent paper. "

A basic property of a(k) is that it can be analy-
tically continued to the upper half of the complex
f plane. The zeros of a which determine the dis-
crete eigenvalues are the poles of the function
I'(2 iver—o ——,'horo). They occur for

r.„= n„= [,'g, , -(+n-,'-)]r, pl„O.
Since a(f) = a(—g) one has

(3.17)

For a real g, the amplitudes a and b are related
to aand bby

a(k) = a(-k), b(k) = b(-k) .
Combining (3.14) and (3.15) one gets the reflection
coefficient b/a It. follows from (3.15) that b van-
ishes for initial pulse areas A =2~m which are
known to describe purely soliton solutions.

In the presence of radiation the nonvanishing
b/a is the nonlinear analog" of the Fourier trans-
form of the field. The simple formula

tant role in the analytical description of p pulse
solutions. '4

r., =i7i, =i[ ,'goro —-(j +-,')]r, '.
In a similar way one finds

(3.17')

C. Discrete spectrum

Discrete eigenvalues f„j=1, . . . ,Pf, are de-
fined as those values of g for which bound-state
solutions of Eqs. (2.5) exists. From Table I of
Appendix B one sees that bound-state solutions
in the upper half-plane are possible for p =-—,'ifyp
and p = —,

' —,iver—o, (Imp&0). Similarly, in the lower
half plane bound-state solutions may appear for
p = —,'+ —2if7, and p = —2if7„ Imp&0.

In the first case, one finds from Eqs. (3.8)

n = —,
' —i(7 p

—gpzp,

P =p —i«o+&oro
—3

y =
q

—ZgV'p.

Since Re(n + p —y) &0, a regular solution exists
only when the hypergeometric series is a poly-
nomial, i.e. , when it breaks off with the term of
degree j = -n, j = 0, 1, 2, . . . . This leads to

r„=i'„=-~'[-,' g,r, —(rp +-,')]r, ', &„&0. (3.18)
gj gj ~ (3.18')

An interesting property of a(k) given by (3.14) is
that it has a zero on the real axis at k =0 for pulse
areas which are odd multiples of w, i.e. , for
goro =2pp+1. Singularities of b/a on the real axis
can occur in the two-component eigenvalue prob-
lem. " The residue of b/a at k=0 plays an impor-

In agreement with the general theory, the eigen-
values (3.17 ) and (3, 18') are identical with the
zeros of a (f) and a(f) We s.ee that the discrete
spectrum consists of an equidistant set of eigen-
values separated by 7, '. The number of eigen-
values fi is the maximum integer of (2gorp+ —,').

TABLE I. Asymptotic behavior of P.

limp
A: Real 0, 0=k

limp Re(n+P —y)
= Re(2 p-~2) Type of solution

—
2 ik70

—
2 ikTp

~2+~2 z»0

~2+~2 zk~p

2 ik~p

~p $ikrp-
~2zkTp

2
—

2 ikT0

e-47'

-ik7

e7'/T 0 iy7'

7/T p
iy7'

—iA7

-7 /Tp iy7'

-7/T p iy7

2

~+zkT0

$+ikrp
—

2
—zkT'0

—
2

—zkTp

divergent

divergent

Rep

ro

Rep limg
00

7'/Tp —7) V'

Complex &, Imp=g
limp Re(2P -$)

Qrp rirp

Type of solution

4 g&{)
discrete. eigenvalue

y+ harp

7/Tp —gV -7/Tp —g7
2 2 0 2 2 0

'gr r/rp orp-- -+2+ g Tp unbounded

e q&0
discrete eigenvalue

2 ~+0 2~ 0 g Tp 2
—g Tp unbounded
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For even m pulses (A=2nv) the number of non-
vanishing eigenvalues is pf =n. For odd m pulses,
A. = (2n+ I)](, there is one zero eigenvalue and n
nonvanishing eigenvalues. The linear dependence
of q on the area (3.17) is similar to the numerical
results of Kaup' for the v'e ' profile and the
Gaussian profile.

From the above derivation of the scattering
data it is straightforward to see that the g~, a(k),
and b(k) are uniquely determined by the initial
pulse profile. They cannot be changed by a shift
of g which in the eigenvalue problem is treated as
a parameter. Its relation to the pulse carrier fre-
quency becomes important only when the evolution
equation (2.7) is used. In my opinion the eigen-
values cannot be shifted due to off-resonance ef-
fects, contrary to the interpretation of Kaup. " On
the other hand, initial chirping [(t)(g, 0) C0] could
change the spectrum and possibly allow for 0 —m

solutions4"" (breathers) which are not possible
for real g(q. , 0) because in that case the eigen-
values are purely imaginary.

To complete our set of scattering data we cal-
culate the coefficients D& defined by Eq. (2. 10).
Making use of (3.14), (3.15) and (3.17) one finds
(see Appendix C)

(4) =f 4( —p)X[-,'( —,)]de

=2 g2n —5A. nde, (4.3)

where g denotes a symmetric distribution function,
e.g. , a Gaussian.

Following the method of Ablowitz ef gl. ' and
using (4.3) one finds

6 1-(k, ~) =-(k, O) exp --g(2k-5)x
a ' a 2

i g2m —5

and

(4.4)

P, (x)=D, (0)exp ——x dx). (4.0)
i "

g(2n —5)
(,. —a

For a given distribution g the above formulas
determine the effects of detuning.

As a simple illustration of the method consider
the one-soliton case, pf 1 $070 2 $ 0 Accord-
ing to (3.17) and (3.19) the scattering data are

-1.
00 ~TO

(0)
1 r(@~,—j)

i] I (~2horo)
(3.19)

Expressions (3.14), (3.15), (3.17), and (3.19) con-
stitute the complete set of the scattering data for
the initial profile (3.1).

D,(0) =1', D,(x) =e' ()"

ng(n —5)
K, =v', 1+ eT, '

"
g(n —5)

](() =To
1 ( )2

dn .

(4.6)

(4.7)

(4.8)

IV. EVOLUTION OF THE SCATTERING DATA

The evolution of the initial scattering data has
been determined" from the asymptotic form of
Eqs. (2.5) and (2.7) for large 7. The result can
be written

Introducing qp and D, into the general form of the
one soliton solution' and transforming back to the
laboratory coordinates z and t one finds

g(t, z) =(2h/(Pt, ) sech[t, '(t+t z/U)]e( o"', — (4.9)

where t, =q-, /0 is the pulse duration in seconds,
—(4, x) =—(4, 0) exp ——xd(X)x — xp de—)

1 i "
g(n)

a ' a 2

(4.1)
t =t ln(t 0),

g A

„1+(at,)' (4.10)

(4.11)

D, (x) =D, (0) exp ——x dn,
"

g(n)
f,. —a (4.2)

w'here P denotes the principal value of the integral,
j=1, . . . ,+. The eigenvalues P& are constants of
the motion. Equations (4. 1) and (4.2) are valid at
exact resonance. To include the effect of detuning
these formulas have to be slightly modified. I.et
the detuning parameter 6 denote the difference
between the carrier frequency of the pulse cop

and the central frequency of the atomic line (d,
6 =&@, —&u. By definition Ref =k = —,'((d, —(()). Out of
resonance the right side of Eq. (2.7) becomes

"ng(n —5)
K0 —t0Q I ( )2

(fn . (4. 12)

D,(0) =6, D,(0)=-2. (4. iS)

The only effect of the resonant medium on an
initially hyperbolic secant pulse is to change its
velocity (4. 10), induce a time delay t (4.11), and
produce a dispersion effect. The latter effect,
due to K„ is identical with the corresponding one
in the linear theory. " In the absence of detuning
K, =0. For a two-soliton solution (N =2, h, v, =4)
the scattering data are

-1 1
lp 270 ~ 01 2~0



EXACT SOLUTION OF THE INITIAL EIGENVALUE. . .

At exact resonance the solution is unchirped.
Introducing the data (4. 13) into the special solu-
tion given by Lamb' one finds that asymptotically
the pulse breaks into two hyperbolic secant pulses
whose heights are in the relation 1:3 and their
widths in the relation 3:1. Their relative phase
shift" is P =ln2. Out of resonance the 4w pulse is
chirped and the products of decay have different
carrier frequencies. ' The solution can be com-
puted in a closed form from the scattering data
(4.13) '4

V. CONCLUDING REMARKS

A, =A2 =~2,

J3] 2
= 4( 70 7 4i(701 2 2

1 2 2 1 2 2
Cl —C2 2~ 0 4~0 0 '

The indicial equations" read

p(p I) +&ip +Bi =0

c(P-I)+A.P+B2 =o

and their roots are
1

p1 —2+ 2t570& p2 ~2~70 ~

(A4)

(A5)

The main results of the paper are contained in
Sec. III where explicit analytic expression for the
scattering data are given. - From these data various
physical solutions can be constructed by the use
of Marchenko equations or some other inverse
procedure. The physical character of a particular
solution depends on the initial area A, the de-
tuning 5 and the relation of the pulse width 70' to
the width of the atomic line (T*) '. In the case of
even w pulses only discrete eigenvalues contribute
to the solution and the inverse problem reduces to
solving a system of algebraic equations. A more
difficult problem arises when radiation is present.
A partial information on the propagating pulse can
be obtained from the conservation laws. In this
way, in a subsequent paper, "I compute the energy
attenuation and the shift of the pulse average fre-
quency out of resonance. Finally, it is worth
noticing, that the solution for the scattering data
(3.14)-(3.19) can be used to study not only optical
problems but any problem which deals with the
two-component eigenvalue equations, e.g. , the
sine-Gordon equation.
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P1= Z
—~Z'070

1 ~

p2 = 2t)70.

APPENDIX B: ASYMPTOTIC PROPERTIES
OF SOLUTIONS

The solution of Eq. (3.5) has the form

P =u~(1 —u) E(a, ti, y;u),

u' ~E(a+I —y, P +I —y, 2 —y;u)

either vanishes or is divergent at u =0 and cannot
be used to construct solutions (see Table I). Con-
vergence of the hypergeometric series E depends
on the sign of Re(a+ti —y)." The series is con-
vergent in the interval 0 & u & 1 (-~ & r & ~) when
Re (a + P —y) & 0.

Note that, according to Eq. (3.4) the asymptotic
form of u and 1-u for large 7 is

8 0, fO1 7
u =-,'(I+tanhr j~,)

-1, for 7
1 - u = -,'(1 —tanhr /r, ) -e '"'o for 7-~.

where I' is the hypergeometric series with param-
eters a, P, and y determined by p and p through
Eqs. (3.8). The second linearly independent solu-
tion of the hypergeometric equation

APPENDIX A: THE INDICIAL EQUATIONS

Equation (3.5) can be written in the form

s2 g+p(u)a„y+q(u)y =0,

where

P(u) =A,u '+A, (u —1) ',

q(u) =B,u '+B,(u —1) '

+C,u '+C, (u- 1)-',

(A1)

(A2)

(A3)

Asymptotic properties of g for different choices of
p and p are listed in Table I. The first part of the
table deals with the solutions for the continuous
spectrum (real f), while in the second part bound
states (complex g) are considered. In the second
case only real parts of p and p are listed. We
see that one should choose p =-—,'imp and p =wkrp
to construct the 4, solution, and p = —,'+ —,'iver„p
= 2ikrp to get 4,. The bound-state solutions occur
for P = —,

' —~270 and P =2+~&70 when g lies in the
upper half-plane (q & 0).
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APPENDIX C: EVALUATION OF THE AMPLITUDES
a AND b

To find F(n, P, y;1) one makes use of the following relation for the hypergeometric series"

F(n, P, y;u) = F(n, P, n+P —y+1;1 —u)r(y -n - p)r(y)
I'y-n I' y —P

+
r(n p y)-r(y)

r(n)r(p) (1 —u)» F(y —n, y —p, y —n —p+1; 1 —u),

where I denotes the Euler gamma function. In the limit u-1 the second term vanishes and one gets

r(y - n p)r—(y)
r(y- n}r(y-p)

Inserting n, p, and y given by (3.11) one finds for a(k) expression (3.14).
The eigenfunction v, is determined by v, through Eq. (3.2). Making use of (3.4) and (3.12), one finds

(Cl)

(C2)

v, =(g» ) [2pu 2(l —u) + 2 —2pu +i' (I —u)P

+jkr uP ii2(] u)P &/2] F ~2(g 7 )
&

uP+ &/2(I u) P +v 2s F

where o = ,ikr,—=——p and F is the solution of the hypergeometric equation with n, P, and y given by (3.11).
It is easy to check that, for. u- 0 (»- —~), v, tends to zero, as required for a 4-type solution.

To calculate b(k) one corisiders the limit

lim e '"v, (r) =b(k). (C4)

In the limit » —~(u- 1) expressions proportional to F on the right side of (C3) tend to zero. The only con-
tribution to b comes from the derivative of the hypergeometric function"

s„F(n, p, y, u) =+np/y)F(n+1, p+l, y+1;u).
Introducing (C5) to (C3) and making use of (C2) one finds

(C 5)

2ikr, —1 r(1 ——,'g, T,)1 (1+-',g,To}

Qy appl. ying the identities

I (1+x) =xr(x),

I'(x) I'(1 —x) = w/sinvx,

I'(-,' —ix) I'(-,' + ix) = w/coshvx,

the expression (C6) can be simplified to

b(k) = -sin-,'vg, r, /coshwk», .

(G6)

(C7)

(G8)

The amplitude b(k) can also be found directly from the equations. Choosing p = —,'+ ,'ikT, and —p = ,'iver, one-
can construct the C, solution of Eqs. (2.5) defined in Sec. I:

C, =Mu'""""""(1 u)"""F—(,'ik, +-', ,g„»~k,»—,'g,»„', +i—k,;u)-. (C9)

Here ~ is a normal. ization constant determined
from

4,- -e'", for 7-
From Eq. (3.2) and the limiting value of 4, at r- -~ it follows that

M= —r, g, (1+2ik», ) '. (C10)

Inserting M into (C9) and making use of (Cl} one
finds for b

b(k) = lim (e'"'4, ) =-sin-,'vg, »,/coshvk», , (C8 )

in agreement with (C8}.
Evaluation of b(&&) requires some care because

for f approaching r, the denom. inator of (C8 ) tends
to zero for @or, =2n. Considering this case sep-
arately, one finds, for $,7, =2n,

b(i»},) = —lim sin(nv + e)/cos(n + e —j——,')w
E~o

(C 11)
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a,nd for Pppp42&,

b(iq~) = —sin —,'g, r', /cosm( j+ —,
' ——,'g, vo) = (-1)~".

(C 11')
From (3.14) and (3.16) it follows that.

(Resa ')t
&

= I'(h, r, j—)l '( ,'S—,r, —j)[Resl'(&)]t

(C12)

where

[Res I'(5)](,= (-I)'/j! . (C13)

From (Cll), (C12), and (C13) the expression for
D& follows. .
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