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Blankenbecler-Goldberger ayproximation in inelastic e-H and e-He scattering
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The Blankenbecler-Goldberger approximation to the scattering amplitude is applied to the inelastic e-H {1s~2s}
and e-He [(Is) ~(ls)(2s)] scattering. The results for the differential cross section indicate a very good agreement
with the Glauber approximation, but the Blankenbecler-Goldberger method is more difficult to evaluate than the
Glauber approximation,

I. INTRODUCTION

The application of the Glauber approximation'
to atomic problems is well documented. ' In ad-
dition we list the following papers individually:
Tai.et al. ,' Thomas and Gerjuoy, ' Franco, ' and
Thomas and Chan. ' In an earlier work' one of us
had applied an alternate technique-, the Blanken-
becler-Goldberger (BG) approximation, s to the
elastic scattering of electrons on H and He. The
BG amplitude and the sequence of approximations
needed to obtain it are discussed in Ref. 9. The
experience' gathered from the e-H and e-He elas-
tic scattering was that the BG amplitude fares
very well when compared to the Glauber ampli-
tude.

In the use of the Glauber approximation one does
not need to evaluate the eikonal ){(b). The evalua-
tion of the scattering amplitude employs the most
expedient sequence of integrations which bypasses
the evaluation of X(b) [or the overlap function I'(b)
= 1 —e'"'"] In contrast to this the eikonal is an
input in the BG approximation and must first be
extracted. In Sec. II we follow the technique used
earlier for the elastic problem to extract the eik-
onal for the e-H inelastic scattering in which the
hydrogen atom is excited to the 2s state. As a
check on our calculation we substituted this eikon-
al in the Glauber amplitude and carried out the
last remaining b integration to reproduce the
known inelastic amplitude. This eikonal is fin-
ally substituted in the BG form and the final b

integration done to generate the inelastic scatter-
ing amplitude from which the differential cross
section is calculated. In Sec. III we do a similar
calculation for inelastic e-He scattering in which
one of the electrons is excited from the 1s ground
state to 2s excited state without spin flip, i.e.,
the final state is 1s2s'$. The differential cross
section is calculated at 100 eV. A brief discussion
of results is given in Sec. IV.

The Glauber amplitude for two-body scattering
is written as, '

F(&I) ~I eis b(1 e&x&b&)dsb

where k is the incident momentum, q is the mo-
mentum transfer, b is the impact parameter, and
X(b) is the eikonal which for a potential V(b, z) is
defined as'

(1.2)

v is the incident velocity. The BG amplitude' is,
in contrast,

(1.3)

To order ){'(b) the two amplitudes are identical.

II. EIKONAL FOR e-8 INELASTIC SCATTERING

If the target (H or He) is treated as infinitely
heavy the reduced mass in the problem is the
electron mass. . The Glauber amplitude for the
scattering of an electron by a neutral atom such
that the initial atom, in state i, is left finally
in state f, is

F«(q)= * uz(r)u, .(r)I'(5, r)e &bgdbd rs, (2.1)

I (b r) —I e &x&1.r) (2.2)

where r again stands for the coordinate set
(r„r„.;., re j and )&(b, r). is defined in terms of
the potential through

where u,.(r) and uf(r) are the initial and final wave
functions of the atom. r stands for {r„r„.. . , rs j
the positions of Z electrons in the atom and d'y
stands for II, , d~r&. b is the impact parameter,
q=k,. -kf is the three-momentum transfer, and
k; and kf are the initial and final momenta of the
electron. The relation between the mass and mo-
mentum is Sr. =rnv. Let us define a function
I (b, r) in terms of a phase )((b, r) as
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x(b, ~) =z f )'(b, r; z')us'.
Ip ~

(2.3)
lap function for the 1s -ns excitation of hydrogen
atom is

Using the Coulomb potential one obtains'

y(b, r) = 2qin(~b —s ~/f)), (2 4)

where I|= -e'/hv, . for electron scattering by a neu-
tral atom. The inelastic scattering amplitude can
be written as

n-y
g ]+1

1 z"(b) = 2))A„Q o!&(n)(-1)"~

"e-'" ()'
I b —s Ix 1-( d'r,

(2 7)

((1)
) elf ~ ))1 gael (b)d 2b

2m H (2.8)
where X= [(1+1/n)/a, ], ao is the first Bohr radius
for H,

where

r,- (b) = f.;(;).(-,)r(b, -.)u". (2.8)

a &4nn —1t a 4

Note that due to the orthogonality of state i and f,
if i,& f, the unit factor in the definition of T'(b, r) in

Eq. (2.2) does not contribute to I's"(b).
Thomas and Gerjuoy4 have shown that the over-

( )
(1-n)I . I' 2 &'

(2)~ ),Izao)
'

(a}~ is the Pochhammer symbol'0 with (a), = 1 for
all a. We obtain

211/2
1 g" (b) = -P, [(1+iq), E2 (1;1+zq, 1+zq; y'/4) —(Kq), E2(1;i Il, 1+i)i; y'/4)

+ (iq —1),F,(1;iq —1, i@+ 1;y'/4) ]

+ 2", '2,.„[(2iq)(1+i')oF,(1;y'/4) —(4iq)(y/2)~DE, (2; y'/4)+ (y/2)()F, (3;y'/4)].
3 y 2

(2.8)

Fs, (Il) k (./2) (&)tip((fb)b db
x(b) (2.9)

This integral had to be done numerically. The ex-
pansion of the hypergeometric functions in powers
of y' in (2.8) was convenient for b-12ao. For in-
tegration beyond this value we used the asymptotic
form' for the modified Lommel functions,

Z„„(iy)=S, „(I'y)

This is the final form for the inelastic 1s -2s
overlap function for. hydrogen atom. Having de-
rived the overlap function we can do the b integra-
tion indicated in (2.5) to check our result with the
known result4 for F(q} for ls -2s excitation in the
Glauber approximation. The final result agrees
with that of Thomas and Gerjuoy. 4 This provides
us with the check that our eikonal (overlap func-
tion) is correctly evaluated. The real and imagin-
ary parts of the overlap function &„"(b)foi ls-2s
are plotted in Fig. 1 as a function of b.

With the eikonal X(b) extracted from (2.8) through
I'(b}= 1-e'"'"we can evaluate the inelastic ampli-
tude in the BG approximation,

I

where the asymptotic form of S„„(iy)is known. "
The exponential fall of Z„(y) asymptotically allows
us to ignore this term for b &12a,.
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The differential cross section for inelastic scat-
tering 1s —2s is then generated in the usual way.
In Fig. 2 we have plotted do&,./dA (in if a20) versus
q' (in a0') for incident electron energy of 100 eV
and 1s -2s excitation of hydrogen. We find that the
BG approximation works just as well as the Glau-
ber approximation. As the differential cross
sections are so very close there will be no dis-

cernable difference in the total cross section eith-
er.

III. EIKONAL FOR e-He INELASTIC SCATTERING

In order to be able to use the BG form for He
excitation we have to extract the corresponding
eikonal Z(b). The analog of Eq. (2.1) for e-He in-
elastic scattering is

E "(q) = ' e "4' d'b u.(r„r,)u*(r„r,)(1 —ef"' "1"2')d'2 d'2 =- e" I'g'4f(b) d2b, (3.1)

where r = (s, s) and
2

~ ~ ~I'„,"(b)= — u& (r„r,)u, (r„.r, )~
d' gd'r, .

j=l
(3.2)

(3.3)

for an electron in 2s state:

For the purposes of comparison of the BG approximation with the Glauber approximation we use the wave
functions given by Morse ef; al."for an electron in the 1s state:

1 n
y(~) =

W~,a.

where

5 )I/2

( r, r r „„., 84 „,„,.
)I3mKap ) ap p

(3 4)

n = 1.69,

p, = 0.61,

p, P =1.57,

t (~+I p)'
(~+ u)'

48A 3A'

( (I + f) P'

(3.5)

A and N are so chosen that P and g are orthogonal and both are unit normalized. One obtains in a straight-
forward ways

16gf ofgb' a.'ig' " 2 (2iri)'(2+ 2igl) ~ . i(2igl)'(2igi —2) ~
HO a3 3 gf 2+a0 y3 y(iy)2+2 frl 2 frl 1t0 y (gy)2+2 frl 2 irl 2,1-

bf' 6 -(2igl)2(2+ 2igl)(3+ 2igl) g . i(2igl)'(2igl - 2)(4igl+ 3) g4 2/ ~.. 52+2&@ 2 irr-l, 0 yl F2+2 fgao (yg yg(gyg)

(2igl)'(2iri —2) (2igl —4) g12+2 in 2 frl 3r 2 yl-
Sp y/

3A ( 2 (2gq)'(2+2gn) 2 i(2gn)'(2in-2)
3 i ~ %2+2irr 210-1 0 y2 I ~ %2+2 irl 2 f0 2, 1 y2- (3.6)

and

y1 = Xgbr Xf = (cf + ig)/a0 r

y, = X,b, g = (n+ ig p)/a, ,

y= xb, X=2cf/a,

(3.7)

The eikonal y(b) defined through I"(b) = 1 —ef"'f" is

I

then extracted from (3.6). The remaining proced-
ure is a repeat of what we did for the hydrogen

problem. In Fig. 3 we have plotted the real and
the imaginary parts of the overlap function for
e-He inelastic scattering 1s'-1s2s. In Fig. 4 we
compare the two cross sections (dgr&,./dQ) (in ff a0)
versus q' (in a,') for the inelastic 1s'» ls2s e-He
scattering of a 100-eV electron. We notice that
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there is a discernable difference in the backward
direction. However, as the differential cross
section has also dropped by more than an order of
magnitude, we do not anticipate any significant
difference in the calculated total cross section in
the two approximations. In the numerical integra-
tion of (2.9) to generate the BG amplitude the pow-
er-series expansion for hypergeometric functions
up to b= 6.5a, and the asymptotic form for the mod-
ified Lommel functions for b & 6.5g,.

arately as against the Glauber form where an an-
alytic result' can be obtained for excitation to any
state. The BG approximation, however, compares
very well with the Glauber approximation for s - s
excitation.
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IV. CONCLUSION

We have extended a previous calculation' which
used the BG approximation for the elastic e-He
and e-He scattering to the inelastic e-H and e-He
scattering. We find that as in the elastic case the
BG approximation works well for the inelastic
scattering also when compared to the Glauber ap-
proximation. We suspect that this has to do more
with the fact that the electromagnetic coupling is
involved than any other subtle effect.

The advantage of using the Glauber form is that
the amplitude can be evaluated with some effort
in a closed form. The disadvantage of the BG
form is that the eikonal has first to be evaluated
and the last integral has to be done numerically.
The excitation to each state has to be handled sep-
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FIG. 4. dp/dQ for ls —1s2s transition in helium. In-
cident electron energy = 100 eV.
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