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The S-matrix formulation of quantum statistics, due to Dashen, Ma, and Bernstein, is extended to a
multicomponent system and is then applied to a two-component nonrelativistic system of charged particles. A
summation of terms corresponding to ring diagrams leads, in the high-temperature low-density limit, to the Debye-
Huckel equation of state. Finally, the second virial coeAicients for a system of reacting charged particles are derived,
the reactions being described by multichanriel scattering theory. The application of these results to deuterium
plasma undergoing fusion is discussed.

I. INTRODUCTION

The thermodynamic properties of plasma under-
going fusion are of considerable Practical value
and theoretical interest. In the traditional ap-
proach to understand these properties, one uses
the interparticle interactions and perturbation
theory to calculate the approximate equation of
state. One form of the equation of state is in
terms of the virial expansion. ' In the case that
the existence of the interparticle potential is ques-
tionable (for instance, a system undergoing nu-
clear reactions), the usual approach is not appli-
cable. In order to determine the thermodynamic
behavior of this system, some new approach is
necessary. Such an approach has been worked out
by Dashen, Ma, and Bernstein. ''

Dashen, Ma, and Bernstein' have formulated
quantum statistical mechanics in terms of the
many-particle on-shell S matrix which describes
the scattering processes of the particles in the
system. They treat the virial coefficients system-
atically to all orders, and their final mathematical
forms for the virial coefficients are very compact
and elegant. Only the S matrix is needed in this
formalism; thus, when the interaction potential is
unknown, but the S matrix can somehow be deter-
mined, one can use the S-matrix approach to treat
such problems. The Dashen, Ma, and Bernstein
(DMB) theory for a single-component system
obeying Boltzmann statistics is reviewed in the
Appendix of this paper.

'The motivation for the work described in this
paper was the study of the thermodynamic prop-
erties of deuterium plasma undergoing fusion.
Hence, our discussion will focus on a deuterium
plasma. The results of this paper can be applied
or extended readily to many other problems —for
example, systems undergoing chemical reactions.
In order to simplify the notation and discussion,
we restrict our discussion to the system which we

describe next.
We are interested in a nonrelativistic deuterium

plasma which is slightly exothermic'; the plasma
is assumed to be fully ionized, electrically neu-
tral, and in thermal equilibrium. The system is
assumed to possess a high temperature and low
density and can, therefore, be described by Boltz-
mann statistics. The constitutents of the system
are e, D, P, n, T, and 'He (electrons, deuterons,
protons, neutrons, tritons, and 'He nuclei}. The
electron, proton, and neutron are considered to be
stable point particles with no internal degrees of
freedom (we refer to these particles as elementary
particles), while D, T, and 'He are treated as
stable point particles with internal degrees of
freedom (these are composite particles). The
plasma is assumed to be in its early stages of
formation so that the densities of e and D are
many orders of magnitude larger than those of P,
n, T, and 'He; to be specific, we assume that the
densities of e and D are in the range 10"-10"p3r-
ticles per cm', while the densities of p, n, T, and
'He are smaller than these by a factor of 10 ', and
that the temperature range is 10'-5 x10' eV. '

Because of their charge, the charged elementary
particles scatter elastically via the Coulomb force
(in this paper, we do not include radiation pro-
cesses); contrast this with the D-D collisions
which produce the following reactions'.

D+D,

D+D- P+T+Q, ,

n '+He+„q

where Q, =4.00 MeV and Q, =3.25 MeV. The re-
action rates in the inelastic channels in Eq. (1.1}
are extremely small compared to those in the
elastic channel; thus, we can assume that the sys-
tem is in- thermal equilibrium, provided the energy
Q, +Q, is removed continually.

In the early stages of the plasma development,
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the only important exoergic reactions are those in
Eq. (1.1). In the later stages of plasma develop-
ment, other exothermic reactions can occur; the
most prominent of these are
I

D+ T —n+4He+ Q3,

D+'He-P+4He+ Q4.
(1.2)

In the newly formed plasma, because of the low
densities of T and 'He compared to D, the reac-
tions in Eq. (1.2) will contribute negligibly to the
equation of state (this is discussed further at the
end of Sec. II); hence, we can treat this as a two-
component system and need to concentrate only on
the e-e, the e-D, and the D-D interactions, which
we describe qualitatively below. More general
problems can be treated by suitable generaliza-
tions of the methods we develop here.

The electron is an elementary particle with
charge e and spin 2. The deuteron consists of one
proton and one neutron bound by 2.22 MeV; it has
spin 1 and possesses no excited bound states.
(Throughout, we shall neglect spin interactions. )
We assume that the e-e and e-D interactions are
described by the Coulomb potential. Because of
the low thermal energies considered in this paper,
the elastic D-D scattering takes place, on the
average, well below the Coulomb barrier, which
has a height of about 1 MeV; thus, it will be as-
sumed that the nuclear force contributes negligibly
to the elastic D-D scattering and that the elastic
D-D scattering can be described by the Coulomb
potential. A description of the inelastic processes
in Eq. (1.1) which is tractable can be based on the
simple model in which the deuterons penetrate the
Coulomb barrier to be captured in a potential well
(corresponding to the mutual attraction of the deu-
terons via the nuclear force). This will be the
subject of the next paper in this series.

The problem is now well defined: We must adapt
the DMB formalism so that it applies to a multi-
component system of particles which interact
elastically via Coulomb forces and inelastically
via nuclear forces which are unknown but whose
8-matrix elements are known. In Sec. II of this
paper, we develop the notation for a multicompo-
nent system; then, in Sec. III, we demonstrate
that the long-range Coulomb force can be treated
within the framework of the DMB theory to obtain
the Debye-Hueckel equation of state for a two-com-
ponent system. Section IV is concerned with the
theory of the equation of state for systems in which
the occurrence of inelastic reactions requires a
multichannel description of the scattering process-
es. Finally, in Sec. V, we summarize, discuss
the limitations of, and suggest extensioris of the
results in this paper.

H. THE EQUATION OF STATE
FOR A MULTICOMPONENT SYSTEM

In this section, we extend the DMB formalism to
a multicomponent system of particles. We will be
concerned primarily with the development of the
notation.

We use letters s, t, ... to indicate the particle
species; the particle densities are denoted by n„
33„.. . , where E~, =n is the total particle density
(s as a free index runs over all species). Let z,
denote the fugacity for particles of species s and

b&„) represent the cluster coefficient for the set
of particles fN,) with QjV, =N. The equation of
state for a multicomponent system can then be ex-
pressed in the following parametric forms:

(2.2)

11a10 1y a01 1y a11
01 10

—b20 —b02
20 b2 & 02 b210 01

—2b33 4b||b33 b33 ia21= 2 + 3 + 2 2b lob ol blobol blobol j

2bi3 /4bub33 b,'I
+I +2 2bolblo I bolblo blob01)

30 b3 I b4 t 03 b3 +I b410 ( 10 01 ( 01 )

(2.4)

(2.5)

Above, the first subscript refers to the species 8
and the second to the species t. In particular, for
the problem under consideration,

1 1
b =— b10 y3 y 01 y3 y

s t

where X, = (2vPi33/m3)' 3 is the thermal wavelength

(2.6)

p+=Z + (2.1)

b( )N z,¹1~NS) s

pe= Q Q ai„ i, , n+. , (2.2)

where I' is the pressure, n, is the number density
of particles of species s, p = (vT) ', v is the Boltz-
mann constant, T is the temperature, Q,N, =N in
the internal sums in Eqs. (2.1)-(2.2), and N, is any
number of the set 0, 1, . . . , N with++, =N. The
cluster coefficient b&

&

is given now by Eq. (A15).
S

Next, we wish to establish the connections be-
tween the virial coefficients a&» and the cluster
coefficients b&„). Because the relations become

S
unwieldy for the general case, we give the results
only for a two-component case of species s and t.
Thus, we find for the first three sets of virial co-
efficients
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III. SUMMATION OF RING DIAGRAMS
AND THE DEBYE-HUCKEL EQUATION OF STATE

In this section, we study the application of the
DMB formalism to a high-temperature, low-den-
sity system of spinless charged particles with
overall charge neutrality. Because of the high
temperature and low density of the system, it can
be described by Boltzmann statistics. Straight-
forward perturbation theory based on the Coulomb
potential leads to a divergent expansion for the S
matrix. Our approach is to develop an expansion
for the T matrix which allows us to obtain expres-
sions in such a form that the analysis by Dewitt"
can be adopted. As a result of this analysis we can
use the ring-sum technique of Mayer' to obtain
finite results.

By using various relations in DMB, one can de-
rive the expression

Tr~ S-'—S =2 Tr[G,'r —(G',)'T'],i'a- = (3.1)

where 8, T, and G, are many-body operators, as
discussed in DMB. This identity can be used in
Eq. (A15) to obtain a form for the cluster coeffi-
cient which is suitable for the analysis of this
section (we do not consider bound states in this
section):

of particles of species s (m, is the mass of a par-
ticle of species s).

'The equation of state of a two-component system
in terms of the virial coefficients is therefore

pP a»n +aGTnd+a22n nd+a2Gnd+2
2

+a,gs, +a„n,n, +a,~,n, +aG3n, + ~ ~ ~ . (2.7}S 2 2 S

With the relations in Eqs. (A15), (2.4), and (2.5),
we have a method for evaluating explicitly the co-
efficients in Eq. (2.7).

Note in Eq. (2.7) that if n, »n, and if all the
virial coefficients for each order (in the density)
are of the same order of magnitude, then the
equation of state for a two-component system re-
duces to that for a one-component system. By an
analogous argument based on Eq. (2.3), we can
substantiate the claim made in the Introduction
[see below Eq. (1.2)] t'hat the newly formed deu-
terium plasma can be treated as a two-component
system. Thus, in the following sections, we dis-
cuss the calculation of cluster coefficients for the
two-component fully ionized gas.

right in the lower-half plane. ' It is desirable to
express Eq. (3.2) in terms of the potential by
means of the relation'

T = V+ VG0T . (3.3)

Throughout this section, V refers to the Coulomb
potential; the nuclear interactions will be rein-
stated in the following section.

If the iterated form of Eq. (3.3) is substituted
into Eq. (3.2}, we obtain

G! N&2i--dree" Tri tg[G (G,V)'(),
tt Z

[&s&

—g~[ Q bI) )

l =1
(3.4)

%'e concentrate on the first two terms in the trace
in Eq. (3.4) and write

Zd)Z ts Zs8 Z j(G

tf & ~ 0
ff

(3.7)

where Z, is the charge number of species s and e
is the charge of the electron. It is straightfor-
ward, but tedious, to show that b["'& in Eq. (3.6)

S
does not contribute to the equation of state, Eq.
(2.7), in the ease of a fully ionized gas (assumed
to be electrically neutral). To see this, substitute
Eqs. (2.4) and (2.5) into Eq. (2.7); then, one must
observe that b,",', b,',",. . . , b,',"produce appropriate
factors of X,

' and X', which combine with b» =1/X,'
and bG, =1/X', in such a way that various terms in
Eq. (2.7) form groups. Each group of terms is
proportional fo sums of powers of Z„Z„e2, n„
and n, . In every instance, one can identify the
factor (Z,en, +Z,en, ) which is zero by charge neu-
trality. Finally, we note that when b&"

~
in Eq.

(3.6) is substituted into Eq. (2.5), the terms in
parentheses are of higher order in e' than the first
terms. Thus, we can use the approximations

—2b21 —2b
21 b2 b & 12 b210 01 01 10

(3.8a)

bi (2ie„!GN!)'f dee e [Tri i(G VG )
S S

+ Tr[„[(G()VG,VG,)], ,

(3.5)

-=b['~, t+br'~, [

where, in an obvious notation, V can be any of the
following:

&N! b[„[=2 . [fue ~"[Tr[„[(G(')T)]G)
S 'll Z S

(3.2) 2bso —2bosaso= s y aos= s
b1o bo1

(3.8b)

where ~ is the volume of the system and the con-
tour goes fro'm right to left in the upper-half
plane, through the origin, and then from left to

when we study the effects of the Coulomb interac-
tion on a fully ionized gas. From Eqs. (2.4)-(2.7)
and (3.8), we see that the equation of state is now
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simply related to the cluster coefficients. For
notational convenience we continue to restrict our
discussion to two-component systems.

The perturbation expansion of b&z ~
for the two-

&+sl
particle case can be easily developed; thus, we
discuss this case next. Expanding the two-body
T operator in powers of the two-body potential and
the resolvent G, gives, according to Eq. (3.4),

2 5(2] dQ e Tr&2~G0 G0V 3 9
2m I=1

where the subscript {2}indicates ff)}',}for 2jV, = 2.
I

We next define a function b&'2&' as follows:

2rz
(s.lo)

If we set u=y+E,
~s 2 ' ~t 2

2m, 2m, '

where p' and p' are the momenta of the particles
of species s and t, respectively, then we can write
for Eq. (3.10)

02 dy""'t"*}=(~)0
"')""'"'*~. ~y'" 6'6'(y (H 3)" "').

The operator product in Eq. (3.11) can be written out in momentum space to give

(s.ll)

g2 t b 0) d3psd~p&e-&E d3psd3pt. . . d3ps d3pt}2} (2 @)6) 1 1 g-1 l-l

where

z (p';)' (pJ
''2. 2

x . —,e 22 II[y —(EJ —E)] ',1 dy

j=l
(3.12)

(3.13)

(3.14)

fI =p3- pl ~

The contour integral in Eq. (3.12) can be evaluated and the result represented as

dy
27t'Z

"IIb —(~ E)]'-
8 g) (82=(-1)' de, dp, , " e, exp[-(}3,-}3, ,)(E, , -&)+ "+(~.-~,)(E, -E)].

0 0 0

(s.15)

(s.16)

In the classical limit (high-temperature, low-density limit), the above integral was shown by Dewitt' to
reduce to

~-I

—'. ."II[y-(E -E)] '=y''
Therefore, in the classical limit, Eq. (3.10) becomes

l 1 p l

2711J

For the three-particle case, the sum over I will lead to (connected) terms of the following form:

(V12GO 23 ) + (V12GOV23 OV12+ ) + ( 12 0 23 0 31+

Hence, the three-particle cluster coefficient becomes

(3.17)

(s.ls)

&3.5&3}=2 . due Tr&»[G0(G0V»G0V»+ ~ ~ ~ )+G0(G0V„G0V»G,V„+~ ~ ~ )+G0(G0V»G0V23G0V»+ ~ ~ ~ )+ ~ ~ ~ ].1
27rz
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We observe that Eq. (3.19) is of the same form as Eq. (3.9) except V in Eq. (3.9) is replaced by V»,
V», . . . in Eq. (3.19). Following the analysis used for the two-particle cluster coefficient in the classical
limit, we find

(-P)' 1As! b(",)'-, ,„,—,Tr(2}(V'),
a 5 c

(3.20)

where a, b, and c will run over the species labels s and t. Clearly, the above analysis holds for any b&"'»
(in the classical limit).

Next, we observe that the charge neutrality condition can be used to eliminate all terms in b&'„''» fors
1&+,N, . TheargumentisidenticaltothatoutlinesbelowEq. (3.7). Theresultisthattheonlynonzeroterms
are connected in such a manner that they can be represented graphically as a ring. The cluster coefficient for
the lowest order (in terms of powers of e') will be denoted by b(„}(ring) and, as mentioned above, can be repre-
order (in terms of powers of e') will be denoted by b(„) (ring) and, as mentioned above, can be repre-
sented by a ring diagram. According to the preceding discussion, we note that bb, ) (ring) is the lowest-
order term in b('„''), where l =Z,N, . Higher-order terms in b('„'') have been analyzed by Mayer' and~as»'
Abe.""Also, quantum-mechanical corrections to the cluster coefficients for a fully ionized gas have
been calculated; a critical analysis of this problem is given by Ebeling et a/. ,

' where additional refer-
ences to the literature can also be found. We summarize here the results of the ring-sum analysis of
Mayer. '

The Eth cluster coefficient for the ring diagram in configuration space is, up to factors,

(«). «). ~ ~ ~ «)„-')
&

d'2;d'r, d'r, v(r„)v(2„)" v(r„), (s.al)

where l =Q,N„a, b, . . . , 2 range over s and f, and

there are l factors in the product («).,'«(2' &„').
For V, Mayer uses

(s i
—

(Ã )( '"g)

we obtain

(3.26)

—(24&(X2~ &)
',

where the Debye length A. ~ &
is defined by

~„,= [4vPe'(Z;n, +Z',n, )]-'~'.

(3.22)

(3.23)

V ( ) Z2Z&e e ~"ii

yig

where r, , = lr,. —r,.l. After summing all ring dia-
grams, he sets &-0, and obtains for the contribu-
tion from all b(» «(ring) to the equation of state the

s
result

pP= (n, +n, ) —~ (V-1)b(~ )(ring)
xt

~Ns}
K=2

&& (n, /«). ',)"(n, /«). 2&)"i, (s.26)
\

where Z,N, =N Now, if.we set

A = Q b(2 )(ring) — ', (n, /)),')"~(n, /))', )"i, (3.27)

@=2

then Eq. (3.26) becomes

Now, we clarify what is being summed and what
terms are included in the equation of state.

Combining Eqs. (3.8), (2.4), (2.5), and the virial
expansion of the equation of state, Eq. (2.7), shows
that

i)P —(m +n )+A —
(n +n

BA ep
'~n, 'eg,

Mayer' showed that

A =(12&(&).'„,)-'.

(s.28)

(s.a9)

P~ = (n, +n, ) -
l
~2' n,'+ I

" n,n, +I ~2 ln',
10 k b10bol () 01) Using Eqs. (3.23), (3.28), and (3.29), we finally

obtain
I) bso 2 )( b2&-'ib "" ~

1o Ib10 01
pS'= (n, +n, ) -(24m«2„&) ', (s.so)

I

&2 2 ~bO )) 3

01 10 01)

where the b&» are to be approximated by
b(„)(ring) in Eq. (3.21) and b&o=«).,2, bo, =A.,2.

Thus, with the approximation

(s.a4)
which is the Debye-Hueckel equation of state.

In this section, we have shown how the S-matrix
formalism can be applied to a system of charged
particles. There remains then the problem of
treating a system of reacting charged particles;
this is the subject of the next section.
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IV. THE MULTICHANNEL PROBLEM FOR A SYSTEM
OF REACTING CHARGED PARTICLES

for e, s=1
for D, s=2

for p, s=3
for n, s=4

for T, s=5

for 'He, s = 6.

(4.1)

A Greek letter (a, P, p;, v) will be used to denote
a channel; we use a notation in which n = 1, 2, . . .
or 0. = n» a». . . . Taking into account all of the
assumptions made thus far, we list below the
pairs of particles which can interact and the as-
sociated channel numbers:

e+e (a, or P,),
e+D (a, or p,),
D+D (a, or P,),
p+T (a, or P),
n+'He (a, or P,).

(4.2)

Each n,. can label either an entrance channel or an
exit channel —cf., Eq. (1.1). Next, we identify the
potential v in each channel which is responsible
for binding the composite particles in that channel:

v'=0,
v'= v„=v„(p, n),

(4.8)v'=V„+V„=V (P, n)+V (P, n ),
v'=V„=v„(n,, D) =V~(n, n, P),
v'= V» ——V„(P, D) =V„(P,n, P).

Here, V„(p,n) represents the nuclear potential'

So far, we have neglected the internal states of
the composite particles (D, T, and 'He). In order
to take into account the reactions in deuterium
plasma, it is necessary to reformulate the prob-
lem so that the S matrix includes inelastic scat-
tering processes. As inferred in the Introduction,
we shall neglect exchange effects and spin inter-
actions and use Boltzmann statistics. Also, we
have noted that the system can be treated as a two-
component system consisting of electrons and deu-
terons. Before the deuterons undergo nuclear re-
actions, they are all in their ground state; more-
over, we make the assumption that there are no

bound states for pairs of these scattering parti-
cles.

At this point, we must develop the notation and
define the reaction channels for this problem. The
species label s is assigned values as follows:

F' = V„=F (e, e),
V'= V„=V, (e, D),
v'= v„=v, (D, D),

v'=v„=v, (p, T),
V' = V~, = V„(n, 'He),

(4 4)

where Vc represents the Coulomb potential (in
elastic scattering, it is assumed that Fe» V ).
(Actually, the scattering potential V is an effec-
tive potential; for example, the more correct
form for V' is F»= V,„+V,~.) Let &0 be the ki-
netic energy operator for the two freely moving
particles in channel a; then, the channel-n Ham-
iltonian is defined by

H~ =H~+ v~ .0
I

In channel a, the total Hamiltonian H(a) is given
by

(4.5)

&(a) =& + V =&, +v + V .
We shall need also the operators'

G (u) =(u-H ) ',
T& (u)=V +V'G'(u)T"(u),

(4.8)

(4.7)

where T is the T operator for scattering from
channel a to channel P. Note also that state vec-
tors must be characterized by a channel number.

We apply the notation and explain the new fea-
tures of the multichannel problem, using the
second-order cluster coefficients as a basis for
our discussion. The multicomponent form of Eq.
(A2) is

Q2! b„,= (Tr„,e e") =Tr, (e e" —e ~"o) (4 8)

In the preceding section, the total Hamiltonian H
did not include the internal potentials of composite
particles. If one includes the internal potentials
of the composite particles in the total Hamiltonian
H, then the form of Eq. (4.8) does not change.
However, the free particle Hamiltonian H, must be
replaced by the channel-n Hamiltonian H, where
II is the total Hamiltonian for both the free ele-
mentary particles and the free composite parti-
cles, as defined in Eq. (4.5). Next, we must ex-
press the trace of the cluster coefficient in Eq.
(4.8) for two deuterons s and t in terms of the 8
matrix. If we introduce the operators H, V, and
v", defined above, then the trace in Eg. (4.8) for
the two deuterons can be expressed as follows' ":

which binds one deuteron, V (p', n') that of another
deuteron, and so forth; recall that bound states of
the scattering particles (for example, D+ D) are
not considered. The scattering potentials V in
channel a are defined as follows:
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!!S!b„,()=, fd " Z (p' '(PP', ( — 2) pp'(PP', ),
P 39

(4.9)

02ib( )(n, ) = . g due+" g (p'p'tpy'n3~[&(p, n3)] '~ p) S (P I(~(P, n3) ~p'p 0'0 n3)rz Q 2E ~u
t

where S(p, n) =S',
~
p) is a state in channel p, (all other labels are suppressed) and the sum over p, runs

over all channels and over all state labels, and E is the ground-state energy of the deuteron (E = —2.22
MeV).

Consider the contribution of the elastic exit channel P, to bi2~(n3) in Eq. (4.10). Let this contribution be
denoted by b»(n, -P,); then, we have

r

pb!b (~-„P), b.f=sue~ Z &P P'
'P'P~, [)S &P~ )I '~)P& ,„&P )S—(P. ~))P'P(,PP'~ )

tQ

(4.10)

(4.11)

where the contour C runs just above the real axis from +~ to the left of the smallest pole of (u -. H )
' and

returns to + ~ just below the real axis. In Eq. (4.9), p' and p' are the center-of-mass momenta of the
deuterons s and f, respectively, and ~g') and ~g') represent their internal state vectors. Now, Eq. (4.9)
can be transformed into the form'

where a sum over the intermediate states of chan-
nel P, is implied. We assume that the interaction
between two deuterons can be resolved into a Cou-
lomb interaction plus a nuclear interaction. In our
simple model the potential will be approximated by
an effective potential which consists of a potential
well with a tail given by the Coulomb potential.
From Eqs. (3.2), (4.9), and (4.11), we can write,
dropping temporarily the channel numbers,

fi2t bDD(n3 p, ) =2 . due 3"Tr[G32(u)T(u)] .1

C

(4.i2)

We approximate T by T = T~+T, where T~ is the
Coulomb T matrix and T„ is the nuclear T matrix,
and set y =u —2E to obtain

A2!bDD(n3 p3)

~ -2Eg

dy e 3"Tr/G3(y)[TD(y) + T~(y)]}.

(4.12)

Thus, as one would expect, b»(n, -P,) can be
separated approximately into two terms: the first
term has been analyzed in Sec. III and the second
is a new one. The contribution of b»(n, -P,) to
the second virial coefficient is given by

-Ng

~lD 3
XD

(4.16)

where XD is the thermal wavelength of the deute-
ron. Therefore, we obtain

p6
aDD(n, -p, ) =

2
. dy e 3'Tr[G,'(y)TD(y)]

2wz c

dy e 3"Tr[G', (y)T„(y)].

(4.17)

As mentioned above, the first term of Eq. (4.1V) is
exactly the second virial coefficient due to the pure
Coulomb interaction which was dealt with in Sec.
III. As discussed previously, the second term of
Eq. (4.1V) is negligible in the deuterium plasma.
The main point to note here is that the factor e '~~

in Eq. (4.13) does not appear in Eq. (4.1V).
Finally, we come to the most interesting part of

the multichannel problem. For the contributions
of the inelastic channels to the second virial coef-
ficient, we write [cf., Eq. (4.14)]

(4.15)

and Tr» means that the trace is to be taken in the
one-particle space of the deuteron. Thus,

( )
—bDD(n, -p, )

DD 3 3 b2 (4.14) DD( 3 Pt) 2 i 4
bDD(n. - pt)

~» (4.18)

where We use Eqs. (A.10), (4.10), and (4.16) to obtain

PI@ 6 PO

aDD(n3- p, ) = . D
dy e 3p Z (p'ptg'(I)'n3~[2vi6(y —H 3)Tt(n» p3)] ~p~p3&3p4}

4+~ 2@ ~a «g «S «5
P PP 3P PP

&&

S
(pp'g'p, ~[2vi6(y H' )T(p„n3)—1 ~p'pent'n. &, (4.19)
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2NE 6

~»(n'. - P,) =—— . ' 4 e '" + &5'pent'~.
~[2«~(X &")T'(~., P.)] ~

p'p'O'P, &

47t'Z
&&

~s g 4 6
p sp sp ~p

&& —, &PPt'0, ~[2«~(X &—")T(P„~.)] ~Pp'P4'&. ) . (4.20)

—= [(n, +nD) -(24m&'~)) ']

[son (~s &4) +No (ns &5)]"n ~ (4.21)

where X~& is the Debye wavelength defined in Eq.
(3.23).

It is not at all clear how the second term in
braces in Eq. (4.21) compares in magnitude to the

last two. Indeed, it would be of considerable in-
terest to understand the qualitative behavior of
these new terms to identify conditions under which
they become important. From Eqs. (4.18)-(4.20),
it is clear that we need to evaluate the multichan-
nel T matrices. This problem is currently under
investigation.

V. SUMMARY AND OUTLOOK

In this paper, we have been concerned with a
nonrelativistic deuterium plasma which is exo-
thermic, fully ionized, electrically neutral, and

in thermal equilibrium. In order to treat this sys-
tem, it was necessary to make certain extensions
of the DMB formalism to allow for the long-range
Coulomb force and the multichannel aspect of the
reactions of charged particles. First, we pre-
sented the virial equation of state for a multicom-
ponent system, treated the problem of notation,
and derived relations between cluster and virial
coefficients for the two-component case. Then,
we cast the DMB formalism into a new form such
that the analysis by Dewitt" could be used. As a
result of this analysis, the ring sum was per-
formed in a conventional manner. Finally, we

derived expressions to describe the contributions
of nuclear reactions to the equation of state for a
two-component plasma undergoing fusion. These
prel. iminary results are subject to some limita-
tions and are in need of specific extensions which
we. discuss next.

The second virial coefficient is related to the

In Eq. (4.19), p' is the proton momentum, and p'
is the center-of-mass momentum of T; ~g') is the
internal (ground) state of T. In Eq. (4.20), p' is
the neutron momentum, and p' is the center-of-
mass momentum of 'He;

~

g') represents the
ground state of ~He. The T matrices in Eqs. (4.19)
and (4.20) correspond to the nuclear forces re-
sponsible for the nuclear reactions (actually, both
are stripping reactions). With these results, we

have for the equation of state

I

two-body on-shell T matrix; the third virial co-
efficient involves three-particle S-matrix ele-
ments. The state-of-the-art analysis of the three-
body problem proceeds by means of the Faddeev
equations" "and this is completely appropriate
for this problem. However, a price is exacted for
using the Faddeev equations, namely off-shell (or
haif-off-shell) two b-ody T matrices are intro-
duced. This is a problem because there is no gen-
eral method for converting cross-section data into
off-shell T-matrix elements. The multichannel
effective-range theory of Ross and Shaw'8 and the
K-matrix formalism of de Swart et al."can be
used as a starting point in this problem. Alterna-
tively, one can develop a model potential and fit it
to the experimental data. For example, the D-D
scattering can be described, for present purposes,
by means of square-well potentials with Coulomb
tails; such barrier-penetration problems are dis-
cussed in detail by Blatt and Vfeisskopf, ' but there
remain difficulties with the low-energy case (which
is of interest here). Another problem with three-
particle scattering amplitudes is discussed and
solved by Dashen and Ma.2'

The neglect of spin interactions and particle
statistics is of little consequence in the present
case. However, we have ignored photons in a sys-
tem of charged particles at high temperature; this
represents an undesirable deficiency of the for-
malism in this paper, and work is in progress to
eliminate this deficiency. Next, we discuss briefly
how one can take into account the transverse elec-
tromagnetic interactions between the charged par-
ticles (the radiative corrections to the nuclear
reactions are more subtle and difficult, but are
probably unimportant in the problem under study).

The Ãth cluster coefficient involves the T opera-
tor, T(u) [cf., Eq. (A15) and the first line of Eq.
(A10)]. One then resolves T(u) into two parts:
T(~) =T„(u) + T'(u); here, T„(u) represents the
contribution from photons, while T'(u) describes
the Coulomb and nuclear interactions (in the pres-
ence of radiation). Next, one assumes that the

T„(M) and T '(u) are approximately independent, so
that the representation of T„(u) in terms of the
iterations of the I,ippmann-Schwinger equation

T„(u) =V„+V„GO(u)T„(u)

allows us to include the effects of photons in terms
of the electromagnetic interaction potentials V, .
As usual, the electromagnetic interactions will
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lead to various divergences which must be elimi-
nated by renormalization procedures.

In order to describe thermonuclear plasmas,
many other extensions of the DMB theory will be
necessary. In particular, the formalism must be
generalized so that it can be applied to aniso-
tropic, inhomogeneous, finite, and nonequilibrium
systems in the presence of external fields. Such
extensions as suggested here will require a great
deal of work. Techniques for treating the non-
equilibrium aspect of the problem are reviewed by
Grandy, PP and scattering in external fields is the
subject of two papers by Prugovecki and Tip."

Vfe have made no mention of the work of others
on the equation of state of reacting plasmas. De-
velopment of a physical-cluster theory for a mul-
tispecies reactive gas was undertaken earlier by
I.awson and Dahler; they applied their results to
a model of interest in physical chemistry. ' A

multispecies virial expansion based on the time-
delay operator has been given and its relation to
the work of DMB has been established by Qs-
born. ' Qur results could have been derived on
the basis of Qsborn's virial expansion. There have
been other related investigations reported in the
literature. ' ' 7 Qur approach here differs from
the earlier work in two respects.

(1) We have used the S-matrix formalism of
DMB as the basis for the computations of the equa-
tion of state (see Sec. I for a discussion of the
desirability of using the S-matrix theory}.

(2) We focus our attention on developing methods
for including the nuclear contributions to the equa-
tion of state for a plasma.

This paper is the first of two. In the next paper,
we estimate the nuclear contributions to the equa-
tion of state on the basis of model potentials with
repulsive Coulomb tails and on the basis of the
effective-range and K-matrix theories. ' '~9
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Qf= Qfp + fl Q & bg,
N 2

where fp is the free-particle grand potential,

(A1)

flbN ~ f
(TrÃe

-e

is the Nth cluster coefficient, and the subscript c
indicates that only the connected terms in the

. trace are to be used. 2'
Next, we express the second and third cluster

coefficients in terms of S instead of H. The ex-
plicit forms of these coefficients are

f12 Ib (Tr g 8H) Tr (e 8H ~ 8Hp) (A2)

03(b, =(Trpe "),
—Tr e pH e &Hp (e &(Hp+vu) e-S-Hp

) '

(A3)

where V, &
is the interaction potential between the

ith and jth particles, H, is the free-particle Ham-
iltonian, and

H =Hp+ V];.

If we define the resolvents

the scattering operator S. We discuss only the
case of Boltzmann statistics (the cases of Bose-
Einstein and Fermi-Dirac statistics treated in
DMB are not of interest in this paper).

The grand potential f for a single-component
system of N particles is given, in statistical me-
chanics, by

fl f(p, g, 0)= ln Tr (exp [p(G -H)] ],
where G is the Gibbs potential, with G =gN and
z =exp(pg), g is the chemical potential, and H is
the complete Hamiltonian of the system —our no-
tation differs slightly from that of DMB. This can
be transformed into

The authors are grateful to Professor I,ee H.
Schick for reading an earlier version of the manu-
script and for several enlightening discussions.

G(u) =(u -H) i, Gp(u) =(u -Hp) i,
G ()(u) = (u —H

p
—P( )) ', (A4)

APPENDIX: S-MATRIX FORMULATION
OF QUANTUM STATISTICS

then we can express the second and third cluster
coefficients in the form

In this appendix we summarize the basic rela-
tions which relate the Nth cluster coefficient b~ to

I

02.'b& — . due "Tr2 [G(u) -Gp(u)],2ii (A5)

&Q~b, = . due "Tr, G u -G u — G,&u -Gp Q
1

3 2ii (A6}

where the contour integral is taken along a counterclockwise path. Note in Eq. (A6) that in G,&(u), Hp is
the Hamiltonian for three free particles. We see that G(u} may have poles along both the positive and neg-
ative real axes. The poles along the negative real axis correspond to bound states. For the case when
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there are no bound states, Eqs. (A5) and (A6) can be written in the form

qi2(b2 ——-- due "Im Tr2 [G(u) -G()(u)],
0 I

b3 ———— due "Im Tr3 u o u C&s u
1
W. 0

(A7)

(AS)

where Im stands for the imaginary part, and now in G(u), Go(u), and G&&(u) it is understood that u stands
for u+iq (q-0 as a final step).

In order to express Eqs. (A5) and (A6) in terms of the scattering operator, we define the operators T,
Q„and S as follows '~:

T(u) = V+ VG(u) V, gs(u) =G(u)Gp(u), S(u) = Q, '(u*) Q,(u),

where V =II -Ho. These operators satisfy the relations

S(u) = 1+ (GD -Gt)T(u) = 1 —2@i6(u -HD)T(u),

S ' = 1 —(G ()
—Gt(,)Tt = 1 + 27ji6{u —Ho) T

T —Tt =T~(GO -G~())T =T(G() -Gto)T .

Utilizing the above identities, one can show that

tm Trg(G —Gg) = ——.Tg'gl(S S, tm TrgT (Ggg Gg) . Tg'g( T Sj) Sgg)

(AQ)

(A10)

(All)

where

s-' —s=s-' — s, s-~ —s =s-~ — '&sa as as-~ a as as -. ~

au au au ' "au " "au au
(A12)

Hence,

1
&q2ty

4mi

1
ge tb, =

4m'

l dee "Tr, S '(e) —S(e)),

f dgge Tg'g S (gg) S(gg) g Sj) (gg) Sgg(gg))au

(A13) .

(A14)

Above, S„corresponds to the scattering of par-
ticles i and j, while the third particle moves free-
ly.

In Eq. (A13) only connected terms appear. In

Eq. (A14) both connected and disconnected terms
occur; however, Eq. (A14) involves the difference
of two quantities, the second of which consists
entirely of disconnected terms which cancel all
disconnected terms in the first quantity. This
means that only connected T-matrix elements con-
tribute to 53. This rul. e can be generalized to
more complicated cases when more than three
particles are considered. Therefore, the Nth
cluster coefficient becomes

GNtbe= dee " TreS '(e)S S(e)), ,
4mi au

(A15)

M ~ 5» =g (Qi)f ~ b„)e ~e» x„s,

where

b„= due "i Tr» S i —S(u) (A17)

(A18)

The quantity 8» in (A16) is the total binding en-
ergy in channel a. The trace Tr„„in Eq. (A17) is
restricted to the channel W~ in the center-of-mass
frame.

t
where the subscript c denotes connected part. For
the case when there are bound states, this expres-
sion is to be replaced by
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