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An induced bremsstrahlung process is found to originate from electrons resonating with the ion-wave turbulence.
The growth rate due to this process gives the same order of magnitude as those of decay and nonlinear scattering.

1. INTRODUCTION

According to the conventional weak turbulence
theory,1 the lowest-order mode couplings are
composed of two parts. The first one is the well
known three-wave decay interaction, and the
other one is the nonlinear scattering. These
processes are responsible for the generation of
Langmuir waves in the presence of ion-density
fluctuations and drifting electrons.? Owing to the
growth of long-wavelength plasma oscillations or
electromagnetic mode, the idea of a plasma laser
was considered.

In this paper, we discuss a new possibility of
Langmuir-wave excitation in a turbulent plasma
consisting of ion-wave turbulence. This process
arises from those electrons which resonate with
the ion waves in a plasma. Specifically, in the
presence of the ion-wave turbulence, the resonant
electrons feel a strong acceleration.? Conse-
quently, the free energy of the electrons is lib-
erated in form of the induced bremsstrahlung
radiation. The resonant electrons can emit and
absorb the Langmuir waves. The difference of
the emission and the absorption processes gives
rise to the growth (or damping) of the Langmuir
waves. Correspondingly, it turns out that the
increment rate crucially depends on the slope of
the electron distribution function computed at the
resonant velocity between electrons and the ion
waves. Here we shall emphasize the importance
of this third process which, to the author’s best
knowledge, was not considered earlier.!

The organization of our paper is as follows. In
Sec. II, the unperturbed steady-ion-wave turbu-
lent state is determined. The effective dielectric
constant of the Langmuir waves in the presence
of the ion-wave turbulence is obtained in Sec. III. ,
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Induced bremsstrahlung of Langmuir waves by
electrons scattered on ion waves is investigated
in Sec. IV. The fully developed turbulent state
is proposed in Sec. V. The three mode couplings
are discussed in Sec. VI. Discussions and con-
clusions are contained in Sec. VII.

II. BASIC EQUATIONS

A relative drift between the electrons and the
ions causes ion waves to become unstable.’ Non-
linear interaction between the fields and particles
leads to a steady turbulent state. Expanding the
electron distribution function (f) in powers of the
ion-wave amplitude, we have

f=f08+€f1e+€2f29+'." (1)

where f,,= (m/21T )"/ * expl-m(v - v))*/2T,] is the
initial distribution function, € is a small new
parameter which can be associated with the am-
plitude of the ion-wave turbulence, and v,[v, < v,
=(27T,/m)"’*] is the electron drift velocity. The
other notation is standard.
To order in €, the Vlasov equation becomes
9 e 9

<9_t+vv>f1e+;,;Eta_vf()e=o’ (2)
where E, is the electrostatic field of the ion
waves. Introducing Fourier transforms in space
and time for various quantities according to

Alx, t) = E A(k, w) exp(ikx — iwt), (3)

Ry @

we obtain the following equation for f,,:
_ (e/m)E(k, w)(8/30) foe

fie(ky w) - i(w —k’U) ’ (4)
where k, w are the wave number and the frequency
of the ion-wave fields.

In a straightforward manner, we also obtain the

higher-order contributions from the turbulent fields:

/i(w-— ko),

(5)
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We note that all of the contributions (f ,, fa, - - - )
show the change of the electron distribution func-
tion from the initial value f,. To obtain the
quasilinear plateau solution, we should sum up
all the contributions (fy, +f, + /e t /3T * ¢ ).
However, within a weak-turbulence model, the
dominant change of the distribution comes from
fie- Hence, we shall retain only f,, in the follow-
ing.

III. FORMULATION

To investigate the problem of induced brems-
strahlung, we apply an external high-frequency
small perturbation field (LOE,, € > u) to the sys-
tem. Then the coupling between the perturbation
field (ubE,) and the quasisteady finite-amplitude
turbulent field (¢E,) would occur through the
mode-coupling processes.

Following the notion of a weak-turbulence
theory, we represent the perturbed electric field
a.ngl the perturbed number density of the electrons
as

O0E= ubE,+ uedE,, (6)

and
J

8f = WOf, + LEDS, ™

where 8E,, is the mixed-mode perturbation field
and 0f;, is the mixed-mode number-density per-
turbation.

By means of the standard formulation, to order
in uez, the Vlasov equation can be written as

(;t + w) of, = ( e ><E, 8—{; 5f,,,> - (\’%)wh 3% Foo
- () 6Bzt ®

where the angular brackets indicate the time aver-
age corresponding to the low-frequency wave.

To order in u€, we obtain from the Vlasov equa-
tion

(e (e

"(ﬁ)aEma_ifoe- (9

Using the representation (3) and Eq. (2), we have

OFnlly 0) = 70 kv)<m 20K, )5 2 fe =K, 0= ) +E 0B (b @) o

+e
m

From Eq. (8), we also obtain

TEk-K -2 > 0K, 9)) (10)

(=i82+ K0, O) = = £ 6B, (K, @) - o, = <25E,h(K-k,ﬂ-w)8—z)fle(k, w)>
R

e )
_;<;E1(k, “’)a_véth(K"k’n"*’)>- ' (11)

Making use of the above equations and the Poisson equation we obtain, after a lengthy but straightforward
calculation, the effective dielectric constant of the Langmuir wave [e,,(K, )] in the presence of the ion-

wave turbulence. The result is

1 L) 1

(K, 9) =1+(—“;—;z>2 S L3 oK oo +( ) ( ”) f Z - CEPETEr o B fool 8,08, )| a0
- (i)%%ffﬁdv Ly ol &k, w)|2k£—) o= w_l(K_ | ka—vL}g’nK;%foB
+[(_”) ( ) fz L"'“(Kk k) (0(1;51(12, uf)z) |2w) a%(w lkv Tas w—l(K—k)v)—é%foedv]
[ @-w- w%( £)v] Ka_i(kvl—w * Q—'le) a_ifwd”]’ (12)
where
Ly,o=R~-Kv (13)
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and |®,(k, w) [2 is the turbulent potential fluctuation of the ion waves.

tric function of the electrostatic waves.

€)(K - k, 2 — w) is the linear dielec-

IV. TURBULENT BREMSSTRAHLUNG OF LANGMUIR WAVES

The third and fourth terms in Eq. (12) are summarized as

2
(ﬁ)z(“‘%)zf 2dv v b T o ]

Bearing in mind the fact that Langmuir-wave
resonances are not important for our problem,

we can neglect the last term in Eq. (14), and re-
place (w = k)™ by —7i6(w— kv) in order to find

the imaginary part of Eq. (14). Partial integration
of Eq. (14) then leads to

| ®, |2
< )()fdz kK)w kv 8vf°"
‘ (15)
In deriving Eq. (15), we have replaced (8 — Ky)™

by wys.
Equation (15) can be written as

) (o) T

13 pe

m w=kvy ,(w=Fkvy
Zh+ —z(=—==
XT[I kv ( kv, >] (16)

e

where Z(z) is the plasma dispersion function.”
Under the small argument limit [(w - kvy)/%v,
<« 1], the imaginary part of Eq. (16) becomes

-2 m2 VK /R) 3 ~ (k/K)(w = kve) /R0, 1 U,
k

1)

where U, =%*|® (k, w)|*/47NT,. To the lowest
order, the real part of Eq. (12) is

1= 0w, /(2 = Kvg) + K*lwk /(R = Kuy)* . (18)

Accordingly, the growth rate of the Langmuir
wave (yy) is given by

N
YN==% zwpgx e e ey

Yy =F w;ez m2732(K /R)[3 -
%

(19)
(=/K)][(w = kvo)/Pv,1U,,

where the ellipsis stands for Eq. (17). This

result is basically obtained in Ref. 8.
However, the dominant imaginary part of the

last term of Eq. (12) comes from the following:

AB , (20)

9 1 9 9 1
(Kav.(w—kv)kav _kav (Q K’U) )fog (14)
[
where
4= ( )( )fZQ Kv( )eo(I(—k,Q—w)'l
o 1 ]
E;w—kv %foelq)z(k;w)lzdv
(21)
and
— (2 1 i 1 _6_
B—-wﬂe f Q~_w_(K_k)vKav Pv —w k al)foedv .
(22)

Partial integration of Eq. (21) leads to

<w°e>< )fzd(x k)?{z;%k == foa 5

(23)

where we replaced (R - Kv)™2 by Q2.
(23) may be rewritten in the form

2 2 ~ K -
(%) (5) S e lal

l w=—FkV w—ko I
X + (4] 0
1 . Z( ? ) . (24)

e

Equation

Under the small argument limit, the plasma dis-
persion function is expanded as

Z(“’k;v’zv—“) » i(-;f)llz . 25)
Thus, we obtain

A=A_+iA; , (26)
where

Ar=—(9£3—>2<_e_)22’_@£_5_1 ln_ (27)

K

and
2 2 e 2
a=(2) (%)
Id)lz K 1m(m\"2/w—Fkv
X - -—0 8
z Q@ K-keT a(z) (kve)' @8)

Furthermore, Eq. (22) reduces to



23 INDUCED BREMSSTRAHLUNG OF LANGMUIR WAVES FROM... 3275

(%) " B ;n_e [1 +( wk;ekvo) Z(wk;okvo )]

- e 2o 5]

e

Thus, (29)
B=B,+iB, , (30)
with
2
B,=(“’5‘> KK -#) 7, (31)
’ ‘e
e

B,=(%)2 KK -F) %";—(-})“Y“’k—;‘@&) . (32)

Hence, the imaginary part of Eq. (20) becomes

A, B, +AzB,="£:: (%)2(1% )2£{S%£ (—Trﬂ)z

e
x (€e)® @pprpf@=Fra) L
Q kv, [

33)

Next, we estimate €,(K — 2,2 — w). By definition,
we have

w'Q—(k"K)vQ

K-k, Q-w)=1 +¢ke )2[1+w—ﬂ—(k-x)voz

-K (= -K)v,

* (k_ﬁ?) 2 [1 oo Aw=rom

where k, and k, are the Debye wave numbers of
the electrons and protons, respectively. For the
large argument limit, Eq. (34) is simplified to
yield

" __(R-KPRE  of
[2- &=k " [2-E -k [~ 2"

Assuming K~k <k,, Eq. (35) is reduced to
1_(&)2 wpi\?, __whe
Q Q) T (Q-Kv,)?

o Whe _
OBV O

35)

Kviwp, Wi
@ -Kv,F ~ Q2

(36)

On substituting Eq. (36) into Eq. (33), we obtain

W, 4
AB;+AB, = 23(27;4/2(—55)

Q-Ky, )"’(w-—kv )
X 0 (1] U .
;( kv, kv, 4
@37

Thus, the nonlinear growth rate of the Langmuir
wave is found to be

Yw=% %wpe X (AVB‘ +A1Br)

=% @m2(w,,/@)* 2L - Kv,) ko, P

k

X[(w = kve)/Rv,lw,,U,
1/2 k : v
=y @t Zk: (f) (;:)w,,eu, . (38)

(-K)v, )]

)] , (34)

In deriving Eq. (38), we have replaced Q ~ Ky,
by +w,,. The contribution of Eq. (38) is larger
than that of Eq. (19).

As we have mentioned earlier, in the presence
of ionwave turbulence, the resonant electrons?®
can emit and absorb the Langmuir waves through
induced bremsstrahlung interaction. The differ-
ence of the emission and the absorption processes
gives the growth of the Langmuir waves. This
essence is visualized if we follow the structure
of the growth rate |Eq. (38)] of the Langmuir
waves which is simply - Le, (K,)/[(3/2Q)R ¢,
(K,Q)]. The sign of I¢,(K,Q) depends on the
slope of the electron distribution function com-
puted at the resonance velocity between the elec-
trons and the ion waves. R eeh(K , ) is determined
from the dispersion relation of the Langmuir
waves. Therefore, the test Langmuir wave with
a particular propagation direction is amplified.
The other wave with different propagation is
damed. Accordingly, the induced bremsstrahlung
interaction between electrons and ion waves gives
rise to the enhanced Langmuir waves for any
type of electron distribution except the plateau
one.

As we are considering only the lowest-order
contribution (f,,), the growth rate depends only
on the first derivative of the electron distribution.
However, if we take into account the higher-order
contributions (f,,, fs, - - . ), the growth rate also
depends on the higher-order derivatives of the
electron distribution function.
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V. FULLY DEVELOPED TURBULENCE

The linear damping rate of the Langmuir waves
arises from the Landau resonance. The linear
part of Eq. (12) yields

G s o

e

For the large argument limit of the Z function,
Eq. (39) yields

-ty o6) (R6)
X exp (- (—92;{2—1(0292) —0. (40)

Thus, the linear Landau damping (y,) is given by

o) ") o[ 3]

It is instructive to compute the ratio (R) of Egs.

(38) and (41) which can be written as

= lya/ 7l

=|Eq. (38)/Eq. (41)]

Gl =]

It emerges that one can have the turbulent plasma
with enhanced both the Lagmuir and ion-wave fre-
quency fluctuation under the condition R>1:

2 3 2

B ) =] w
In deriving at this result, we have assumed that
the ion-waves energy is mainly contained in mode
ko, and v, > (m/M)*/%p,. Figure 1 is a plot of the
critical turbulent energy (U,) vs (K/k,). Note
that the region of a fully developed turbulent state
lies above the solid line, and such a state is ob-
served in Ref. 9.

VI. THREE MODE COUPLINGS

Here we discuss the relation between our results and existing weak-turbulence theory. In the following,
we estimate the growth rate in the limit of zero drift (v,=0). Inderiving the growth rate from Eq. (12),

we have three possibilities.'®

The first one is the induced radiation discussed in this paper. From Eq. (33), we obtain the imaginary

contribution in the limit of zero drift as

AB +AB-—Z< )2< )Z@LS%M(T>( )(211’)1/2<k )Ree (K -F,Q -w)?, (44)

-20 N
10

01 02 03 04 05 06 k/ke
FIG. 1. The critical ion-wave turbulent energy [Eq.
(43)] versus ko/k, for vg= G Jv,, and K=kg; here ko, K,
and v, show the characteristic wave numbers of the ion
sound and Langmuir waves, and the drift velocity of the
electrons, respectively.

where Re stands for the real part of the relevant
term. From Eq. (35),
wz (k _K)Zkzvtl

eo(K—k,Q-w)=1-(Q_w)2- Qoo

_Yh
“E—o) (45)
for w<< Q, we expand €,(K -k, — w) and find

2w 2(k% - 2EK
EO(K—k,Q—w)z—h——y—e-(-—a-z——). (46)
For k,> k> k,(m/M)/?, Eq. (46) reduces to
vi(k? —ZkK)
€K =k, —w)= = (47)

92
Thus, Eq. (44) reduces to
kzl<I> {2(k >4 m 1/2 1
T 7L =k _—
~ TiNT \% (M) KR =1 (48)
We obtain the growth rate () of the Langmuir
wave,
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kzl(I) |2 Pe 4/ m\/2 1

- z; 8TNT (?) (112) k-1 49
In order to obtain a qualitatively correct result,
we further reduce the wave spectrum to a single
unstable wave number k=%,< k,. Thus, Langmuir
wave with wave number K> k,/2 grows even in the
limit of zero drift (v,=0). This does not mean that
thermal equilibrium Maxwell distribution drives
the unstable Langmuir wave. As is shown by Eq.
(1), the unperturbed-state electron distribution
function is far from Maxwell distribution because
of the presence of enhanced ion-wave fluctuations.
Electrons feel a strong nonlinear ponderomotive
force through resonant electrons. Thus, the vnp-
conversion of ion-wave energy to Langmuir waves
occurs.

The second one is the nonlinear scattering of
waves. In a drift-free plasma, it is known that
an enhanced level of ion acoustic fluctuations in-
creases the damping of Langmuir waves. This is
the so-called anomalous absorption effect of Daw-
son and Oberman.!! Here, we show that Eq. (12)
reduces to their results under the conditions

"K=0, k~k,, v,=0. From Eq. (12), we get

eV 1 /m\2
1 Q)= —w? —
im e, o=~ (2] 5 (F)

|d> (—k 0)'2 foed’l) 2
z: l(k Q) ( Q—kv)’

R

(50)

where
m )1/2 mo?
f°‘*=(2nT exP(" ZT)'

For (R/k)m/2T)/2= 1, the imaginary part of Eq.
(50) reduces to

2 Eo\* 1
Ime(0, =7r'1/2 (_9) k2 & 2 51
m ( ’ ) = A I xI EO(O,Q)’ ( )

where Im shows the imaginary part of the rele-
vant term. In obtaining Eq. (51), we have used
the following realtion for Q/kv,> 1:

foedv 2 _ m _21 1/2
Im( Q=-kv) ~ETQ \mr - (52)

Thus, we obtain the damping rate ¥(0,$) of the
Langmuir waves!?

y(0,Q) 7t/z 1 AN L
Q 2 so(o,mz,,:(k) ant - 5%

The third process is the decay interaction. For
zero drift (v,=0), Eqgs. (27) and (31) reduces to,
respectively,
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(Wye |<I>|2 K m
A= 0)=-(22 )( Y T
r\“o K & 92 K k T
—1
€K =F,Q = w)
(54)
and
Wpe\2 m
B,(v0=0)=(—ﬂ’—3) K(K-k)(?>. (55)

Accordingly, the imaginary part of Eq. (12) arises
from possible resonances of €, (K —%,Q — w)™ and
the result is

Ime (K, Q)= (“’) ( )ZM"z(T)

1
X ImEO(K-k, Q=-w)’
(56)
From Eq. (47),
2
T ok ). (57)

€K -k, =w) kv 2
Substituting Eqs. (56) and (57) into Eq. (19), we get

1— _k_e_>4 kz‘q, |2
I Zh:(k i kO(k = 2K). (58)

In contrast to the induced radiation [Eq. (49)], the
decay interaction is effective between the particu-
lar modes due to the 6 function. Thus, the growth
rate is usually smaller than that of the induced
radiation.!s

VII. DISCUSSION

The effective dielectric constant of the Lang-
muir wave in the presence of the ion-wave turbu-
lence is obtained within the framework of the
linear response theory of a turbulent plasma. The
analysis predicts that the turbulent energy is
shared between the Langmuir and ion wave even
when the electron drift velocity is less than the
electron thermal velocity. A critical condition
for the fully developed turbulence is Eq. (43).

The physical mechanism of our theory is the tur-
bulent bremsstrahlung of Langmuir waves by
electrons scattered on ion waves.

As is shown in Eq. (49), the growth of the Lang-
muir wave occurs even in the limit of zero drift
(v,=0). This result is markedly different from the
so-called plasma laser. For an enhanced level
of ion fluctuations, the plasma laser theory is ef-
fective for a drifted Maxwellian electron distribu-
tion function. Moreover, for a drifted Maxwellian
electron distribution function and an equilibrium
level of ion fluctuations, the amplification of Lang-
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muir waves occurs for a sufficiently strong drift.'s
The free energy of these theories comes from the
electron drift velocity (v,# 0). On the other hand,
the free energy of induced radiation exists in the
enhanced ion-wave fluctuations in addition to the
drift velocity. Thus, the finite drift velocity
(v,# 0) is not necessary for the growth of the Lang-
muir waves through the induced radiation pro-
cess.!? ’
We note that our mode coupling is effective for
a general dispersion relation, because our effect
does not require the matching conditions for reso-
nant decay interaction. We may conclude that
mode coupling in a turbulent plasma is much en-
hanced. This result significantly differs from
what is generally believed to be true within the
framework of the conventional weak~turbulence
theory.! We emphasize again that in addition to
the conventional three-wave decay'® [(a) in Fig. 2:
the matching conditions are K —K’'=zxk, § -’
=1w] and nonlinear scattering’ [(b) in Fig. 2: the
condition is + w= (K +k], the third mechanism
as discussed here originates from the induced
bremsstrahlung of Langmuir waves and is caused

(c)

FIG. 2. Mode coupling in a turbulent plasma. (a), (b),
and (c) show decay, nonlinear scattering, and induced
bremsstrahlung, respectively.

by electrons which resonate with the ion waves
[(c) in Fig. 2: the condition is w=kp].
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