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Passage-time statistics for the decay of unstable equilibrium states
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The decay of unstable equilibrium states is accompanied by large-scale fluctuations. The statistical properties of
such processes can be characterized by using the time at which a representative observable first passes through a
fixed threshold value. We present an asymptotic probability distribution for that passage time which is valid when
the threshold is set sufficiently far from the initial state. For the simplest example of linear isotropic amplification of
an n-component vector we calculate both the exact first-passage time distribution and our asymptotic distribution.
We verify that the asymptotic distribution coincides with the exact one in the appropriate limit. We then evaluate
our asymptotic distribution for a number of more complicated systems including one in which an n-component
vector field in d spatial dimensions departs from an unstable equilibrium state. The resulting expression has a
considerable degree of universality. Its form is independent of d and of details of the field dynamics. It is insensitive,
in particular, to whether the underlying field considered is conserved or not. Our procedure- is applicable to a wide
variety of problems in which an order parameter departs spontaneously from an unstable initial value.

I. INTRODUCTION

Under normal circumstances macroscopic ob-
servables fluctuate within extremely narrow
ranges. In considering the decay of unstable
equilibrium states, on the other hand, we must
expect large fluctuations. Such states would,
once prepared, be infinitely long lived were their
decay not initiated by ever-present random forces
of microscopic origin.

We can see that large fluctuations must develop
in the course of the decay by considering the. ex-
ample of .a particle sitting initially at the locally
horizontal top of a hill. Owing to microscopic
random forces the particle will begin moving ran-
domly. Once it has left the top the particle will
experience a systematic force and begin to ac-
celerate downhill. Eventually, the microscopic
random force will be dominated completely by the
systematic one. After it has traveled a certain
distance from the top the particle will tend to
follow a deterministic trajectory characteristic
of the shape of the hill. The "microscopic" size
of the neighborhood of the top within which the
particle moves randomly is determined by the
strength of the random forces. Each time the
particle is released from the top of the hill it will
eventually follow a different deterministic tra-
jectory because of the randomness of its early
stage motion. In effect, the microscopic random
force provides the deterministic trajectory with
a random initial condition.

When the particle is observed a macroscopic
distance away from the top at a time t after its
release, it is likely to have spent an appreciable

fraction'of that time while still in random motion
close to the top,' that is true because the particle
tends to move most slowly there. Different tra-
jectories will tend, therefore, to arrive at a
fixed distance from the top at rather different
times. Alternatively, the particle will be found
in broadly distributed locations if repeatedly
looked for at a fixed time t after its release. Ob-
viously, we can interpret such fluctuations within
an ensemble of deterministic trajectories as
large-scale manifestations of the microscopic
random force which triggers the decay process.

The decay of unstable equilibrium states has
been studied in various specific contexts such as
the switch on of lasers, superfluorescence, ' '
hydrodynamic instabilities, ' "and spinodal de-
composition. "" The statistical properties of
such processes have thus far been studied experi-
mentally only in the field of quantum optics, how-
ever, where the relevant microscopic fluctuations
are quantum mechanical in nature. ' We hope
that the present paper may serve to stimulate
corresponding experiments in other fields.

In our present statistical analysis of the decay
of unstable-equilibrium states we shall charac-
terize each trajectory by a first-passage time,
i.e. , the time at which the variable considered
first reaches a certain fixed distance from the
point of unstable equilibrium. It may be of in-
terest to note that first-passage-time distributions
have already found applications in fields as diverse
as anthropo1, ogyi4 and biology i5, i6 as well as quan-
tum optics and electronics. ' Nonetheless, to
a theorist the passage time may at first appear
as a somewhat forbidding concept since the classic
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first-passage-time problem' ' has thus far
proved solvable only for the very simplest of ran-
dom processes.

We shall show, however, that an asymptotic
approximation to the first-passage-time distribu-
tion can be found. The approximation is an ex-
cellent one whenever the rando~ forces initiating
the decay process are sufficiently weak and as
long as the passage is defined for a threshold
sufficiently far from the point of unstable equilib-
rium. Under those conditions the departure of
the system from its initial state can be described
by using deterministic trajectories and random
initial conditions, as we have just seen for the
single-particle model (Sec. II). Further simpli-
fications -result from the fact that these determin-
istic trajectories are ordinarily quite unlikely to
cross a macroscopic threshold more than once
(Sec. III), We find that our asymptotic distribu-
tion can often be evaluated in closed form even
when there is little hope of evaluating the exact
first-passage-time distribution.

We apply our method, in Sec. IV, to the motion
of an n-component vector S, subject to a linear
and isotropic amplifying force together with a
rapidly changing random force. That system de-
serves special attention because we can also
evaluate its exact first-passage-time distribution
(Sec. IX) and verify explicitly that our asymptotic
distribution approaches it in the appropriate limit.
In Sec. V we investigate saturation effects by in-
cluding a nonlinear restoring force in the equation
of motion for S. We show that the nonlinearity
changes the asymptotic distribution of the passage
time in effect 'only by replacing threshold by a
higher one. We then add an inertial term -& 8/
dt' to the equation of motion in Sec. VI and again
find a change of the threshold and, additionally,
a change of the time scale to be the only conse-
quences for the passage-time distribution.

In Sec. VII we study a linear Ginzburg-I andau
model for an n-component vector field in d spatial
dimensions. Even though the asymptotic passage-
time distribution is then defined by a functional
integral over the space- and time-dependent noise
field, we can construct it in closed form. In the
special case n = 2 our result reduces to one we
had previously obtained for the distribution of
delay times of superfluorescent pulses. The
structure of the result turns out to be remarkably
universal. It is independent of the dimensionality
of the position space and of the details of the dy-
namics including the presence or absence of a
conservation law for the underlying field.

Finally, in Sec. VIII, we include a cubic satura-
tion term in the Ginzburg-I andau field equation.
By using the approximation of Kawasaki, Yalabik,

and Gunton' for the deterministic trajectories
we find the same asymptotic passage-time dis-
tribution as for the linear model, but altered once
more by a change of the threshold.

As a byproduct of our rigorous treatment of
the random n-component vector in Sec. IX we
find the exact first-passage-time distribution for
the Ornstein-Uhlenbeck process in n dimensions.
We discuss that result and its asymptotic simpli-
fication in Appendix B.

II.. ASYMPTOTIC DYNAMICS

(f(t)f(f')) = NV(f-f'), (f(f))=0. (2. 2)

Our principal interest is in positive values of the
parameter y, i.e. , cases in which S=o would be
a point of unstable equilibrium, were the noise
force neglected. The linear equation of motion
(2. 1) has the exact solution~a

t

S(f) = e"'S(0) + dt'e"" "y(t') .
0

(2.3)

By considering the moments (S(t)") obtained by
averaging the nth power S(t)" over the Gaussian
noise force we find that the motion of S(t) is ap-
preciably stochastic in nature only if the squared
initial value S(0) is smaller than or, at most,
equal in order of magnitude to the noise strength
2/N. The noise force is most important, of
course, if the initial state is the unstable equilib-
rium state, S(0) =0, since in that case it is only
the noise force f(t) which induces change. We
shall always be concerned in the present paper
with the stochastic limit

S(0}'~ 2/N, (2.4)

The way in which many systems depart from
states of unstable equilibrium can be described
in terms of a single time-dependent variable S(t).
Typical examples of these variables are the am-
plitudes of convection rolls in the Benard and
Taylor instabilities and the electric-field strength
in a single-mode laser. We shall in the present
section treat the dynamics of such processes
without specializing the description to any particu-
lar one of them.

We let S(t) be a real variable subject to both a
force yS proportional to S itself and a random
force f (f) which we describe as a Gaussian sto-
chastic process with a white spectrum. The cor-
responding Langevin equation reads

S(&) =rS(&)+f(&) . (2. 1)

The noise strength is defined by
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in which the trajectories are most random. For
larger values of S(0) the noise force becomes
small compared with the systematic force at all
times t &0 and the trajectories are considerably
less random.

The expression (2. 3) for the time-dependent
variable S(t) admits for large times the asymptotic
simplification, for- t &1/y,

9 8 1 8
P(s, t) = ——ys+ ———P(s, t) .eS BSN eS (2. 9)

dependent probability density P(S, t) for the am-
plitude S. Instead of the Langevin equation (2. 1}
with the Gaussian white-noise source charac-
terized by Eq. (2. 2) we then have to solve the
stochastically equivalent Fokker- Planck equation"

S (t)=e".'.(S(0)+I dt' e"'f(t')) =. e"'e, (2. 5)
0

This result lends itself to a reinterpretation of
S(t) as having a random initial value s but deter-
ministic dynamics for t &0.

The discussion just given is easily generalized
to include an eventual saturation of the amplifica-
tion process (2.3). As a simple example, we

shall employ the van der Pol equation

P(S, O) =6(s) . (2. 10)

The solution of the Fokker-Planck equation (2. 9)
obeying the initial condition (2. 10) is well known

and reads, if S is a simple real variable, then

We can take as an initial distribution P(s, 0), ac-
cording to Eq. (2.4), any probability density
which is sufficiently localized near S=O. We

must require then that the initial values of both
the squared mean and the mean square of S do
not exceed 1/N in order of magnitude; if, for in-
stance, the initial state is certain to be the un-
stable-equilibrium state S=O, we have

S(t) = rS(t) [1—S(t)'] +f(t) . (2.6) P(S, t) exp [ -S'Ny/-2(e'"' —1)] . (2. iS)

In this ca'se the amplitude S(t) eventually ap-
proaches and settles in the neighborhood of the
stable equilibrium states ~S~= 1. Since we want
these states to be macroscopically distinguishable
from the unstable equilibrium state S=O we re-
quire the diffusion constant to be small,

1/N«1. (2.7)

The nonlinear damping force -yS3 in Eq. (2.6)
begins to compete with the linear amplification
force ys, according to Eqs. (2.2), (2.4), and

(2.5), at times of the order (1/2y) lnN. Since we
study the limit (2. 7), this happens long after the
time of order 1/2y at which the fluctuating force
f(t) is overwhelmed by the systematic amplifica-
tion force. Consequently, the amplitude S(t)
keeps on moving deterministically as the nonlinear
regime is entered. An approximate solution of
the van der Pol Eq. (2. 6), which reduces to (2. 5)
in the linear amplification regime, reads

S~(t, s) =e"'s[1+(e "'-1)s ] ' . (2. 8)

The approximation (2. 8) breaks down when the
amplitude finally reaches the immediate neighbor-
hood of the stable states ~S

~

= 1 since there the
net systematic force again becomes small and

comparable in magnitude with the random force
f(t). The solution (2. 8) is acceptable as long as
we confine our attention to the departure from
unstable equilibrium and do not attempt to describe
the final approach to stable equilibrium.

It is instructive to reformulate the arguments
given up to this point by discussing the time-

As long as y is positive the random process de-
scribed by the Fokker-Planck equation (2. 9) can
be associated with another process, the dynamics
of which is purely deterministic. To introduce
this process we note that the convolution of P(S, t)
with a Gaussian function of width (Ny) ',

t)(S, t) =Stf dS e 'S(S t), ',

(2. 12)

obeys the first-order differential equation

j(s, t) = ,srsq(s, —t-) . (2. 13)

The factor & in the transformation (2. 11}serves
to normalize Q(s, t) to unity,

-1 ~e -S (X~)S /2 (2. 14)

The absence of second-order derivatives in Eq.
(2. 13}implies that the probability Q moves de-
terministically along the characteristic curves
S-exp(yt). The diffusive effects on P(S, t) de-
scribed by the second-derivative term in Eq. (2. 9)
are therefore completely represented by the
broadening of Q relative to P inherent in the
transformation (2. 12). The unstable equilibrium
state (2. 10), in particular, is now represented by
the Gaussian distribution
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Q(s 0) x, (2.15)

The solution of Eq. . (2. 13) obeying the initial con-
dition (2.15),

Q(S, f) ex-p(- ', Ny-e '"'S') (2. 16)

is also somewhat broader than the corresponding
P function (2. 11). By comparing the solutions
(2. 11) and (2. 16) we find that the two distributions
P and Q become asymptotically equal for large
times, a,s e2"'»1. ' It is thus evident once more
that the decay of an unstable state takes place,
for large times, along deterministic trajectories
and that the initial points of these trajectories
may be regarded as having the Gaussian distribu-
tion (2.15).

If we include a saturation force as in the non-
linear Langevin equation (2. 6), we must consider
the corresponding Fokker- Planck equation

P(S, f) =
~

——yS(1 —S ) +———P(S, t) .8 1g$8S N BS

Q(S, f) =- —yS(1 —S )Q(S, t), (2. 18)

is then arrived at only after dropping higher-or-
der-derivative terms from the combination of
Eqs. (2. 12) and (2. 17). The time development
of Q(S, t) is in fact, described by Eq. (2. 18) to
an excellent degree of accuracy in the limit (2.7).
Indeed, it is easy to verify that the terms which
are dropped from the exact equation of motion for
Q(S, t) do not affect low-order moments of Q by
more than corrections of relative magnitude 1/N
(provided again that the system is not yet close
to stable equilibrium, ~S~=1). Since in the limit
(2.7) the saturation effects set in only after the
distributions P(S, t) and Q(S, f) have become nearly
equal, that equality continues to hold for all times
of interest to our present investigation.

In order to demonstrate explicitly the equiva-
lence of the two pictures of the asymptotic dynam-
ics 3ust presented we now evaluate the Incan nth

power {S(t)"). In the Langevin picture we must,
in general, perform two averaging processes.
The first of these is a functional average over the
random force f(t) with the Gaussian weight

W({f(t)))-exp (-—', f dtf(t)Nf (t)) .
0

(2. 18)

The second average is one over the initial value

(2.17)

The deterministic equation of motion for the as-
sociated distribution Q(S, f),

S(0) with a weight P{S{0),0) describing the initial
state of the system. If we recall the definitions
(2. 5) and (2. 8) of the asymptotic trajectories,

S (t, s) =S (t, ( S)0+f dt e f(t"')),
0

(2. 20)

( le

W(ss) = f d{f(l))W({t'(t)))ll~ ss f dec f—(t))
0

(2.22)

Because of its linear relation to the random force
the variable so likewise has Gaussian statistics
and zero mean. In Appendix A we calculate the
functional integral in Eq. (2. 22) and find

W(sp) = %exp(- —', s,Nyso) . (2.23)

The mean value defined in Eq. (2. 21) then takes
the form

(S(t)")=f"W( )fds(0)P(s(0)0)s (td(0)+, ss),
(2.24)

By using S= S(0) + so as an integration variable we
obtain

(s(t) ) fdsq(0, 0)s„(t,s), {2.25)

where Q(S, 0) is related to P(S, 0) by the transfor-
mation (2. 12). An alternative way of presenting
this result is reached by letting S'=S (t, S) and
solving for S. Then, since the function S (f, S)
is a characteristic of Eq. (2.18), we find the
asymptotic result

(S(t)")=f dss "t)(s, t), (2.26)

where Q(S, t) satisfies Eq. (2.18). The equiva-
lence of the two pictures presented is thereby
fully established.

we may write the mean value in question as

(S(t) ) fd{f=(t)) W({t(t)))fds(0)P(s(0), 0)s (t, s),

(2. 21)

where d(f(t)) is the differential measure in the
space of random functions f.

Since the random force enters the asymptotic
trajectory S only through the integral f,"dr
xe «'f(7), the functional integral over f(t) in Eq.
(2. 21) can be reduced to a single integral over a
new variable so with the weight
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III. ASYMPTOTIC PASSAGE-TIME DISTRIBUTIONS

We assume here, as in the last section, that
the random variable S is initially released from
some point S(0) within the microscopic neighbor-
hood (2.4) of the point of unstable equilibrium
S=O. We shift our interest, however, from the
full time development of the trajectory S(f) to the
particular time or times at which the trajectory
passes through some given "surface, " e.g. ,

S(f) =M, (3.1)

where M is a positive number. In principle, the
variable S(t) can, since it is driven by the random
force f(f), pass through the surface (3.1) any
number of times. Because the motion is contin-
uous, passages out of the region enclosed by the
surface and into it must alternate. It is there-
fore necessary, in general, to further specify the
definition of the passage time by asking, for ex-
ample, for the time of the first passage
through the surface (3.1). The first-passage
time depends, of course, on the initial value S(0)
and on the Langevin force f(f) and thus is a ran-
dom variable itself.

The first-passage time is an interesting quantity
to study, especially if it is defined with respect
to a threshold M well outside the microscopic
neighborhood (2.4) of the unstable equilibrium
state S=O,

S (t, s) =M (3.3)

For almost all initial values s of S the Eq. (3.3)
should have just one solution T,(s, M ).

We now use the identity

f(t). It is notoriously difficult to evaluate exactly,
though, except in some problems involving a sin-
gle degree of freedom. ' ' We shall show, how-
ever, that it is often possible to define and evalu-
ate an asymptotic approximation to the first-pas-
sage-time distribution which can, for most prac-
tical purposes, be used in place of it in studying
instability problems.

In order to define the asymptotic passage-time
distribution we imagine the threshold ~ to be
set in a domain in which the systematic force on
S(f) greatly exceeds the strength 1/WN of the ran-
dom force. The condition (3.2) is thus obeyed
as well as analogous ones, requiring that M not
be close to any other equilibrium states. We can
then be sure that the overwhelming majority of
trajectories starting in the neighborhood of S=0
will pass through the surface (3.1) once and never
return to it. Moreover, the passage will take
place while S(t) obeys the asymptotic deterministic
dynamics discussed in Sec. II. We can therefore
replace the definition (3.1) by

1/N«M (3.2) (3.4)

This large a threshold is, of course, more easily
accessible to laboratory- scale measurements
than one near the noise level. We must expect
the passage time to display large fluctuations
from one trajectory to the next. A simple argu- .

ment suffices to indicate the reason. Because
the variable S(t) experience only a small force in
the microscopic neighborhood S & I/N of the un-

stable equilibrium, the greater part of its first-
passage time tends to elapse before it escapes
from that region. Once S(t) has attained macro-
scopic values, however small compared to the
threshold M, the motion is accelerated rapidly
by the systematic force and S(t) rushes up to M
in a comparatively brief interval of time. The
time actually spent in the noi.se-dominated regime
around S=O, however, fluctuates greatly since
the random force f(f) may as easily accelerate
the variable S(t) out of that regime hastily as
keep it wandering around inside for more extended
periods.

The probability distribution of the first-passage
time is determined uniquely by the initial state of
the system, i.e. , the probability density P(S, 0)
and the statistical properties of the noise force

where the sum on the right is a sum over all suc-
cessive passage times 1'~, P = 1, 2, . . . , should
there be more than one. We also recall that the
initial value s of S (t, s) is a random number with
a probability distribution Q(s, 0) related to the
initial distribution P(S, 0) of the observable S by
Eq. (2.12). Let us imagine averaging both sides
of Eq. (3.4) over the initial value s with the
weight Q(s, 0). The right-hand side of Eq. (3.4)
would then yield a sum of distribution functions.
The /th term of that sum would be the distribution
function for the time of the pth passage and have
a time integral given by the measure in function
space of trajectories with at least P passages
through the surface (3.3). Inasmuch as our as-
sumptions provide that the terms beyond the first
have negligible weight we could use the average
mentioned as an asymptotic approximation to the
first-passage-time distribution.

In evaluating the average over s in Eq. (3.4) it
is convenient to represent the modulus of (d/
dt)S (f, s) by using the identity

~

x
~

=x[9(x)
—8(-x)], where e(x) is the unit step function.
We can thereby separate the average in Eq. (3.4)
into two sums, one referring to passages with
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positive values of (d/dt)S (t, 8)', the other with
negative ones. For all trajectories which begin
with s &M, that is the overwhelming majority
of trajectories according to our assumptions, it
is the odd-order passages which have (d/
dt)S~(t, s) &0. Actually, by dropping entirely the
contributions of the even-order passages we can
secure an even better approximation to the first-
passage-time distribution. We shall therefore
use, instead of Eq. (3.4), the identity

We assume the random force vector f(t) to have
independent components with the autocorrelation
function

(f,(t)ft(t ')) = 6,t(2/N) 6(t —t') . (4. 2)

We shall now evaluate the asymptotic distribution
(3.5) of the times at which the vector 8(t) passes
through the hypersphere S'(t) =M'. As we shall
see presently the condition (3.2) on the value of

must be strengthened to NM» n
The asymptotic trajectory (2.5) of the vector 8

now reads

= g 6(t- TP (3.5)
p odd

and define our asymptotic distribution as the
average of the left-hand side of Eq. (3.5),

8 (t, s)=se'

with the effective initial value

t= s(0) +f dt ((t)e.
0

(4 3)

(4.4)

W(t) =(6(S (t, s)'-M')e(—„S (f, s)' —„S„(t,s)').

(3.6}

It is clear that the asymptotic distribution (3.6)
is not normalized to unity. For problems with a
single degree of freedom the quantity (d/dt)s (t, s)~

will always increase monotonically in time until
the next equilibrium state is reached. In such
cases no more than a single passage through the
surface (3.3) ean take place and the normalization
integral cannot exceed unity. It will, in fact, be
smaller than unity, since the distribution Q(s, 0)
will, according to Eqs. (2.4) and (2. 12), have a
fraction of the order exp(- —,'NM ) of initial values
s with s &M . Obviously, that fraction is asymp-
totically negligible in the limit N» 1.

Multiple passages and thus values of the nor-
malization integral larger than unity do become
possible, however, for systems with more than
one degree of freedom. ' We shall encounter such
effects when dealing with field problems in Sec.
VII. Whenever the normalization integral 10"dt
x W(t) deviates from unity only insignificantly our
a,symptotic distribution (3.6) can be expected to
be a good approximation to the first-passage-time
distribution.

IV. LINEAR ISOTROPIC AMPLIFICATION
OF A VECTOR VARIABLE

2 OO

W(f) — (N/2) l
I ds s exp(-&Ns )I'(n/2)

x 6(s„(t,s) -M')

yields the result
x —[S„(f,s)'], (4. 6)

W(f) ( NM e- t) / exp( LNM e- t)2
I'(n/2)

the maximum of which occurs when NM2 exp( —2t)
=n. A plot of W(t) is shown in Fig. 1.

It will be useful for the futher discussion of W(t)
to evaluate its moments

If the observable S starts out precisely at the
point of unstable equilibrium, 8(0)=0, the effec-
tive initial vector s has the distribution (2. 15),
x.e. ,

Q(s, 0) = [—,
' 0„(2/Ny)" I'(n/2) ] ' exp(-Nys /2),

(4.5)
where y=1 and 0 =2 ~t)'/I'( /n2) is the surface
of the unit sphere in n dimensions. The distribu-
tion (3.6) then takes the form of an n-fold integral
which is most easily evaluated in spherical co-
ordinates. The n —1 angular integrals cancel the
factor I/O„ form the normalization factor of
Q(s, 0). The remaining integral over the modulus

As the simplest possible application of our
asymptotic approximations we here consider an
n-component vector S which obeys the linear
Langevin equation

hatt"W

t

or, equivalently, the characteristic function

w(x)= f ate"w(t) .
0

(4.8)

(4.9)
—(t) =s(f)+f(t) . (4.1) The latter function has the moments (4.8) as its
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VI. INERTIA EFFECTS

We here generalize the analysis of Sec. IV by
including an inertial term in the equation of mo-
tion of the vector variable,

m +—-S=f(t) .d~S dS
d dt

(6.1)

We shall discuss the decay of the unstable-equili-
brium state initiated by the random force f (t}
alone, i.e. , we pose theinitial condition24

dSs(o)=o, —(o)=o .
dt

(6.2)

The qualitatively new feature of the problem so
defined is that the two eigenvalues of the homo-
geneous part of Eq. (6.1),

rise less steeply with time than their linear coun-
terparts. We show in Fig. 1 plots of W(t) for
both the linear and the nonlinear theory.

The evaluation of the asymptotic passage-time
distribution (3.6) proceeds as in Sec. IV and

yields

gT(t) — ' [&Ny M'(1 +4m)e- ~, t]~»2y.
1 (n/2) '

(6.6)

1
t = (in[+~—Ny, M'(1 + 4m)] —g(n/2)} (6.9)

x exp[—~~Ny, M~(1+4m)e "'] .
This result differs from Eq. (4.V) only by a
change of the time scale by a factor y. and a
change of the effective threshold, M' to M'(1
+4m). With these scale changes we obtain the
moments of the distribution (6.V) from the pre-
vious results (4.13) and (4.14). The mean and
the squared relative variance of the passage time
are

y, = [+ (1 +4m)' ' —1]/2 m, (6.3)
(t' —t') /t~ = g'(n/2)/{in[~2 Ny, M'(1 +4m)] —g(n/2))

(6.10)
differ in sign. The state S=0 is thus an unstable-
equilibrium state for one eigenvector of the sys-
tem but a stable one for the other.

The solution of the equation of motion (6.1)
obeying the initial condition (6.2) reads

respectively. Since the time-scale factor y.
cancels from the relative variance the latter
quantity depends much less sensitively on the
mass parameter nz than the mean passage time
does.

S(t) = dt'(e" "" e" "")f(t'-} ~-
(1 + 4m)'~'

(6.4)

In order to find the relative weight of the two
modes contributing in Eq. (6.4) we must con-
sider, e.g. , the expectation value

s (t, s) = s e"' (6.6)

with the effective initial vector

(1+4m)
(6.V)

The derivation of the probability distribution (4.5}
for s may now be repeated. The scale change by
the factor 1/(1+4m)'~2 in Eq. (6.V) than leads to
the distribution (1 + 4m)" ~' Q[s(l + 4m)' ~', 0] with

Q(s, o) as in Eq. (4.5).

(S,(t)S,(t)& = —e„dt (e".~'- e"-')' .
1 +4m N 0 ( )

Obviously, for large times, when e"'»1, all
expectation values and thus the random vector
5(t) itself, too, are dominated by the growing
mode. As an asymptotic approximation to the exact
solution (6.4) we therefore have

VII. LINEAR GINZBURG-LANDAU MODEL

Macroscopic systems must often be described
by means of position-dependent fields rather than
a discrete set of coordinates. As a simple
example' "we consider an n-component vector
field S(x, t) defined in d spatial dimensions. Such
fields are generally encountered in the Ginzburg-
Landau theory of order-parameter relaxation.
The field S could, for example, be the magnetiza-
tion of a ferromagnet below the Curie tempera-
ture. An initial state of zero magnetization is
then unstable and relaxes towards a state of finite
magnetization. In the linear approximation the
relaxation is described by equations such as2'

—s(x, t) = (- v2) [s(x, t)+ v's(x, t)]+ f (x, t)

(V. 1)

with a=0 or 1. The decay of the unstable-equili-
brium state S=0, is for these equations, initiated
by the microscopic random force f . We assume
the latter to be Gaussian in nature with zero mean
and an autocorrelation function

(f, (x, t)f, (x, t ))=„—5„( ~') 5'(x-x )6(t-t') .
(V. 2)
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In the case a=0 the field equation (7.1) gener-
alizes Eq. (4.1) only by the inclusion of spatial
diffusion through the term —O'S. By letting
a=1, on the other hand, we impose the conser-
vation law

dt
dsxS(x, t) =0 for a= 1 . (7.&)

y„ = (k') (I -k') . (7.4)

The parameter ys is a growth rate for k' & 1 (ex-
cept for the case a=1, where 0 =0 labels the
conserved mode) and a damping rate for larger
wave numbers. For each growing mode there is
a time domain y~t »1, in which the exact solution

The equation of motion (7.1) is most easily
solved after spatial Fourier transformation since
the Fourier components 5(k, t) move independently
of one another. The homogeneous equation for
S(k, f) is satisfied by exponential functions
exp(y, t) with

different Fourier components the asymptotic
distribution of that passage time is given by Eq.
(4.7) (with y~' as the unit of time).

We may also imagine the local growth of the
field S(x, f) in the neighborhood of some point x
to be observed experimentally. An appropriate
passage time would then be determined by 5(x, t)'
=M'»n/N In. fact, if we insist on such a
strictly local definition, the presence of decaying
as mell as growing Fourier components in
5(x, t) precludes the applicability of our asymptotic
approximation (7.6) for the trajectories. How-
ever, 5(x, t) will, be dominated, for sufficiently
large times, by its growing Fourier components.
As we shall see, it is possible to approximate the
passage-time distribution as well. as S(x, f) by
omitting the Fourier components for which the
asymptotic approximation breaks down. What
we shall. do, in other words, is to use a cutoff
sum over Fourier components instead of the
strictly local field 5(x, .t). In the case of a non-
conserved field a=0, an ultraviolet cutoff A,

S(k, t)=8(k OleV+ I dt e '' "f('k,"t )(7.5)'
0

a=0, (7.9)

of Eq. (7.1) can be accurately replaced by the
asymptotic approximation

suffices to secure the validity of Eq. (7.6) for
times f & 1/y~, while an infrared cutoff A. must
be included as mell if the field is conserved

S (k, t)=sqe"5', (7.6) for a=1. (7.10)

where the effective initial vector is given by

ii.=S(k, p)+ f dte Vf(k, tl .
0

(7.7)

If the initial state of the system is the unstable-
equilibrium state, S(x, 0) = 0, Eq. (2.15) or (4.5)
shows that the probability density for the random
vectors X, with ~k~& 1 is given by

With the above arguments in mind we understand
al.l wave-vector integrals encountered below to
be cut off in the sense of (7.9) or (7.10). We take,
in particular, as an asymptotic approximation to
the local field Sl, t) the cutoff Fourier integral

8 (x, t(e))=J, , ), 8 (li, tp;)e'", i ),
C~ogg

x exp(--', tt(f -5')Is;I'(Xk)']I, (7 5)

and define our passage time by

S (x, f,(s))'=M'»n/N . (7.12)

If, more generally, the initial. state is specified
by a probability density P((S$,0), we obtain the
distribution for s~ as the convolution of P((S$,0)
with the density given by Eq. (7.8) by anal. ogy with
Eq. (2.12).

There are now various mays in which passage
times may be defined. We may, for instance,
think of systems where scattering experiments
are carried out to observe the growth of single
Fourier components S(k, t). It would then be
natural to define a passage time for the Fourier
component under observation, i.e. , by ~S(k, t)~'
=M'»n/N. Because of the independence of

For our asymptotic approximation to be self-
consistent the probability distribution of the pas-
sage time just defined must concentrate almost all
of its weight on times large compared to all char-
acteristic times I/y associated with the Fourier
components me have retained. Moreover, the
moments of the passage-time distribution must
not depend strongly on the cutoff wave number(s).
As always, the normalization integral of the'
asymptotic distribution must be close to unity.

In order to find the asymptotic passage-time
distribution we have to perform a functional aver-
age over all configurations of the effective initial
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vector field s(x) in

tx(t)=(tt(I~S
I

—M )
&IIG, I'e(allG. .II*))

(7.13) by superposing G and its time derivative

(7.17)

For the sake of simplicity we shall suppose that
the field S is certain to vanish initially so that the
average in Eq. (7.13) is one with the function

Q(s„0) given by Eq. (7.8) as the weight for s, .
The unit step function in Eq. (7.13) now plays

an essential role. In fact, we can easily verify
that not all trajectories of 5 (x, t, (s))' always
increase with time. To do that we express the
linear relation of S (x, t, (s]) with its effective
initial value by means of an appropriate integral
kernel G(x, t) as

tt (x, t, ( ))tt= f tt'x'G(x —x', t)i(x') . (v. 14)

The time derivative of $' is then a quadratic form
in s(x),

„—IS„(x, t, (ii) )]*= J( d'x' I d'x"tt(x', x")tt(x')tt(x"),

(7.18)

V(x') =nG(x —x', t)+ PG(x —x.', t) . (v. 18)

()(()—
2m

'
'" dQ e '"'

6(g) = lim
2m —iQ+e

(v. Ie)

and write our passage-time distribution in the
form

Inserting the ansatz (7.18) into (7.17) reduces the
eigenvalue problem for the kernel K to that of a
two-by-two matrix. An elementary calculation
then shows that one eigenvalue of K is always
negative and hence that (d/dt)S, ', is not positive
definite.

- The further evaluation of the functional integral
slightly generalizes a previous calculation of the
delay-time statistics of superfluorescent pulses. '
We represent the delta function and the step func-
tion in Eq. (7.13) by Fourier integrals

with the kernel

K(x', x")=—[G(x —x', t)G(x —x", t)] .

We can find eigenvectors V(x) of the kernel
K(x', x"),

(v. i8) Wt = d '" dn e
2v (-iO+~) 8(-in)

where

(v. 20)

(v. 2i)

(7.22)

D(it, G) = («)tl + ttt
I
(t„(x, t, (x))

I

' - iG —„"
I tt„(x, t, (x))

I '))
is a Gaussian functional integral. We can express the latter, after using Eq. (7.8), as the nth power of
a similar integral over one vector component of the field s,

px t?

D((d, 0) = R d(s(x)) exp — d&~t d x"M((t), ti, x', x")s(x')s(x")
~i

Here, the normalization constant o( is determined by the requirement D(0, 0) =1 and the kernel M

is given by

M(~, Q, x', x")=—(1+g")5~(x' —x")+ i(0G(x -x', t)G(x -x",t) + iQ —[G(x —x', t)G(x —x",t)] . ('7. 23)

1 - 1 d'k e'")'
(2.) 1 k

='"
its time derivative Z(t), and the mean-squared
time derivative of the field,

1 dS~ '2 1 d'k /pe")'
n dt & (2)T)~ 1 —k

(v. 24)

(7.28)

We defer the further evaluation of D((d, 0) to
Appendix A. The result can be expressed in terms
of the average

We use the convenient abbreviation

x(t) =—', ((Itt„lq("„';
'

) (ii„"„';)) (t. ts)

and write the result derived in Appendix A as

D((d, o) =[I+i(0&(t)+in&(t)+ tI'&(t)'] "". (7.27)

The remaining two integrals in Eq. (7.20) are
elementary and yield our final result for the
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asymptotic passage-time distribution,

~(~/2) (&(&))
'" ( &(t))

~ ~

M'Z (f) & (t)'M
2~(f)' 4~(f)~(f)'

I- 0.6

Z
IJJ
O

0.4

o 0.2

N = 10

(v. 28)

We may point out that the asymptotic passage-time
distribution takes the same form whatever the
dimensionality d of the position space is. It is
not even bound to the special form of the deter-
ministic (homogeneous) part of the field Eq. (7.1).
In particular, it holds whether or not the field
S is conserved, i.e. , for a =0 and 1. The case
n= 2 has found an application in superfluores-
cence, ' a problem with field equations quite dif-
ferent in appearance from (7.1). We shall show
in the next section that the validity of Eq. (V. 28)
may even extend to some nonlinear field equations.
It is indispensable, though, that the distribution
of the effective initial field be Gaussian in nature.
While the form (7.28) for W(t) is, as we have
noted, rather universal, the expectation values
(~S (f)~2) and (~dS (f)/dt~') do indeed depend on
the dimensionality as well as on details of the
field dynamics. We must still check whether the
expectation values &(f) and n(f)' are sufficiently
insensitive to the wave-vector cutoff for the
result (7.28) to be an acceptable approximation
to the first-passage-time distribution of the
Ginzburg-I a,ndau model. We shall here present
such a consistency check for the case a =0.

lt is obvious from Eq. (V. 24) and (V. 25) that,
in contrast to the function Z(t), neither the time
derivative Z(f) nor the mean square de-rivative
(7.25) diverges as the cutoff A approaches unity.
We split the potentially dangerous function &(f)
into a singular part

TIME

FIG. 2. The asymptotic passage-time distribution
according to Eq. (7.28) for n =d=2, M =1, N =10,
and various values of the cutoff, A=0.8, 0.9, and 0.95.

This expectation is fully borne .out when Z(t)
and W(t) are evaluated numerically for a suffici-
ently large value of N. In Fig. 2 we show the dis-
tribution W(t) obtained for n=d =2, N= 10', M'=1,
and A =0.8, 0.9, and 0.95. Even though the
moments of these three distributions do not diQer
by more than a few percent, the cutoff dependence
of the distribution W(t) itself is quite noticeable.
If, however, N is increased to 104, we obtain a
distribution W(f) which is shown in Fig. 3. To
within the accuracy of the plot there is no cutoff
dependence in the range 0.7 & ~ s 0.999.

We can draw similar conclusions from Fig. 4
where we plot, as a rough measure of the mean
passage time, the solution 7 of the equation .

The lower curve pertains to N =10' and shows
a significant dependence on A, whereas the upper
curve, corresponding to %=104, describes a
constant to within 0.5% for O.V ~A ~ 0.999.

As the strength 1/N of the microscopic noise
is further decreased the cutoff independence of

2 1 A yf"1

Z(0) =
N (4&) 31'(d/2) dk

1 —k
(v. 29)

and a regular part
t A

dt'&(t') =—
(4 ) g,~( / )

dt' dkk~ ' e'»',
(v. 30)

0- 0.6
H

Z
IJJ
C5 0. 4
0-

H

H
lI) 0. 2
IQo
K
0

N = 10

which can be expressed in terms of hypergeome-
tric functions. Since the singularity in Z(0) is
only a logarithmic one, we can expect that Z(t)
and thus W(f) suffer no appreciable cutoff depen-
dence except when A is quite close to unity.

TIME

FIG. 3. Same as Fig. 2 but for N =104; there is no
visible cutoff dependence for 0.7 & A &0.999.
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N = 104

(8.2)

thors by introducing an associated field S,(x, t)
by means of the transformation

S (x, t) =So(x, t) [1+o.S,(x, t)'] ' '

3 2

The deterministic field equation for S„
S, ~S +V'S +3o.SO(VSo) /(1+ctSO), (8.3)

LL)

Z
HI-

O. S
I

O. 75
CUTOFF

1.0

v' [as well as that of W(t)] must extend to ever
smaller values of A. The reason is simply that
the preponderance of the fastest growing modes
S „(t) over the slower ones will be more pro-
nounced when the gap between the threshold M'
and typical effective initial values of ~S~~ becomes
larger.

Obviously, then, for sufficiently large N we can
choose a A from within the range of cutoff in-
dependence such that even the most slowly growing
mode retained reaches its asymptotic behavior
(7.6) for times near the typical passage time r
This argument demonstrates the self-consistency
of our asymptotic result (7.28).

VIII. NONLINEAR GINZBURG-LANDAU MODEL

When we add a saturation term to the field
equation (7.1) we can, in general, no longer find
nontrivial exact solutions in closed form. We
could then try to find the passage-time statistics
by numerical means. To that end we would have
to calculate a large number of deterministic
solutions S~ (x, t, f sj) the effective initial vectors
of which adequately represent the distribution
(7.8).' Alternatively, we can use closed-form
approximations to S . To illustrate that method
let us consider the nonlinear Ginzburg-Landau
equation

dS—=S (1 - o.8') + V2S+f
dt

(8.1)

with op 0. The noise force f is assumed to have
the same properties as the one we used in Sec.
VII. Suitable approximate solutions for this equa-
tion have been found by Kawasaki, Yalabik, and
Gunton" for the case n=1. We follow these au-

FIG. 4. Cutoff dependence of the approximate average
passage time defined in Eq. (7.31). The drop of the
curve for & =104 which occurs near A =1 is not resolved
in the plot. The left and right vertical scales refer to the
the cases N =104 and 10, respectively.

appears to be somewhat more complicated than
Eq. (8.1). However, the nonlinear term in Eq.
(8.3), in contrast to the one in Eq. (8.1), contains
the squared gradient of the field. We expect the
nonlinearity in Eq. (8.3) to be less important than
the original saturation term in Eq. (8.1). By the
time saturation effects become appreciable the
diffusion term in the field equation has tended
to smooth out spatial inhomogeneities in the
field S, so that S,( VSO)2 will indeed tend to be
considerably smaller than S',. In fact, we see by
comparison with Eq. (5.2) that for a strictly
homogeneous field the ansatz (8.2) represents the
correct long-time behavior of S(x, t) if S, (x, t)
is evaluated from Eq. (8.3)with a = 0. Since the non-
linearity is negligible for small times in any case we
should. obtain a reasonable approximation for
S(x, t) if we set n =0 in Eq. (8.3) and thus reduce
it to a linear equation; the saturation of the field
S(x, t) is then accounted for only by the nonlinear
relation (8.2) between S, and S.

We could not expect the approximation just
described to be meaningful for all Fourier com-
ponents S(k, t) of the field S(x, t) The beha. vior of
the components with

~
k ~=l, for example, will be

especially distorted by neglecting the third term
on the right-hand side of Eq. (8.3). These short-
wavelength Fourier components will have no ap-
preciable influence, however, on the field S(x, t),
provided the initial configuration S(x, 0) is suf-
ficiently smooth.

The qualitative argument just presented makes
no reference to a specific number of components
n of the field S. We shall, in fact, use the an-
satz (8.2) for any n, to determine the asymptotic
time dependence from the linear field equation

(x, t, (sj)=(1+V')S,(x, t,( s j), (8.4)

and take the effective initial field to be distributed
according to Eq. (7.8). Starting from the general
expression (3.5) we can easily reduce the asymp-
totic passage-time distribution to the one found
in Sec. VII. We first observe that d S'/dt and
d 8,'/dt have, according to the transformation
(8.2), the same sign. We then verify that

6(S -M ) =6(S' -M~) "
cM cN

(8.5)

with
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M.' =M'/(1- ~M')

and conclude that

(8.6)
P(d, t~r) =f dt'f„(r, t')P(d, t —t ~)R),

0
(9.2)

IX. SOME RIGOROUS RESULTS FOR THE FIRST-
PASSAGE-TIME DISTRIBUTIONS

In two classic papers Siegert and Darling'@"
solved the first-passage-time problem for a
single random variable the motion of which is
describable by a Fokker-Planck equation. We
shall here employ their method to treat the iso-
tropic first-passage-time problem for a random
n-component vector S.

We denote by P(S, t
~ S,) the conditional pro-

bability density for finding the random vector at
time t within a differential volume element d "S
at S provided it had the value S, initially. The
time dependence of the probability density, we
assume, is given by the Fokker-Planck equation

SS, ~ Nes2 (9 1)

For p = +1 the model so specified has the in-
stability already considered in Sec. IV. For p
=0, Eq. (9.1) describes the Einstein-Wiener
diffusion process and for p = —1 the Ornstein-
Uhlenbeck dissipation process.

We now let the variable S have at t=0, an iso-
tropic distribution with the fixed modulus r, that
is the probability density 6(~ S~ —r)/r" if'„. We
seek the distribution fz r, t) of its first passages
through the sphere

~
S =R. Eventually, we shall

be interested in the first-passage-time distribu-
tion obtained by setting r =0 and letting 8 be the
threshold M. Because of the isotropy of the pro-
blem states we can relate the distribution f„(r,f)
to the reduced conditional probability P(p, t r)
p" 'dp that the vector is found in a spherical shell
with radius p and thickness dp provided it was
equally likely to be found anywhere in similar
shell of radius r initially. A well-known relation
between the two quantities f„and P, the "renewal
principle, "

II'(f) = 6(S:,„-M:) ' e —SR
~

(8.V)~
d df 0« RR]

where S0 is the asymptotic solution of Eq. (8.4).
The only difference between Eqs. (8.V) and (V.13)
is the replacement of the threshold M' by Mo. By
that replacement we then obtain the final result
for the passage-time distribution W(t) from Eq.
(V.28). Since M'0&M' the passage times tend to
be larger than in the linear problem. The non-
linearity does not otherwise have any qualitative
influence on the statistics of the passage time.

with r&R &p, expresses P(p, t ~r) as a super-
position of contributions, each of which refers to
a previous passage of

~
S

~
through an intermediate

shell of radius R. If we rewrite the identity (9.2)
as one for the temporal Laplace transforms

f«lr«)=f , dt« "f«(r, t),
0

and similarly for I', we find

P(p, z~r) =f„(r,X)P(p, X~R). (9.4)

Since, on the right-hand side in Eq. (9.4), f„
(r, A) is independent of p, while P(p, X ~R) is in-
dependent of r, it follows that the conditional
probability I' can be written as a product of
suitable functions of these variables

P(p, z Ir) =u(r)v(p). (9.5)

By inserting the representation (9.5) in Eq. (9.4)
we conclude

f„(r,X) =u(r)/u(R), r &R . (9.6)

p d, +I r+ ~ )
——A. P(pt A. ~r) =0. (9.8)

d' / n —1) d

We can use any solution u(r) of this ordinary
differential equation which is regular at r =0 to
find fz(rtX) from Eq. (9.6).

By means of the transformation z = —pNr'/2 we
easily reduce Eq. (9.8) to the differential equation
for the confluent hypergeometric function. As a
solution regular at the origin we can take Kum-
mer's function'3.(.) =I( n

2 '2' j (9.9)

Since M(- A/p2, n/2, 0) =1, the Laplace transform
of the first-passage-time distribution reads

f~(0, X) = Ml ——,—,-p —NM ) . (9.10)

This result holds for any value of the threshold

The identity (9.6) permits us to calculate the first-
passage-time distribution by solving the adjoint
of the Fokker-Pianck equation (9.1)

fl

P(S, t
~ S,) = g (+pS„+—,P(S, t

~
S,)

0i

(9.'I)

for the reduced distribution P(p, t ~r). After a
temporal Laplace transformation and setting

( S0) =r,
~
S( = p the adjoint Fokker-Planck equation

reduces to
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„n(™"'(, „)
2

Obviously, the result (4.11) is thereby recovered.
For the sake of illustration we shall discuss the

dependence of the first moment of the exact dis-
tribution on the parameter NM'. That moment
is obtained from Eq. (9.10) as

t =- —f„(0,A.)N

I'(n/2)
( NM, ).„,vt'(v+n/2)

212 1,1;1+—2; -~'NM (9.12)

where, E, is the generalized hypergeometric
function. " For n =2, the result (9.12) can also

M' and the diffusion constant 1/N. In order to
compare with the asymptotic result obtained in
Sec. IV we set p =+1 and use the asymptotic form
of the Kummer function for large argument, "
i.e. , for NM'-,

be expressed by means of the exponential integral
E,(x) (Ref. 23) and Euler's constant y as

f = ,'[E,-,( ,'NIV-I2)+I (,'m-S')+yj. (9.12)

This expression differs from the asymptotic
result (4.12) only by the first term. Since
1/~& e "E,(~) ~ 1/(@+1), the asymptotic approxi-
mation already becomes accurate for rather
small values of the parameter 2 NM'. Since our
main concern in the present paper is the decay
of unstable equilibrium states we defer discussion
of the rigorous result (9.10) for p, =-1 to Appen-
dix B.
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.APPENDIX A: EVALUATION OF TWO FUNCTIONAL INTEGRALS

We first evaluate the functional integral in Eq. (2.22). To save space we assume the observable s to be

a single real variable. If we represent the delta function by a Fourier integral the functional integral
takes the simple form

)p(s)- —e ' ' d(f (t)) exp( —— dtf(t)' -se dte 'd(t)) .g(c7

2g
(Al)

We take the time variable to be discrete, whereupon the functional integral in (Al) becomes a multiple

Gaussian integral

4 oo f N
tp(s)- fdee'"' df, exp( ——dtft —itse "'ttstf~) (A2)

which is easily evat. uated and yields

tp(s) —fdtee' 'i '[exp( tstte'e '"'tt'tt))-

d(pe'"'exp -(g' dte '"' N

are treating a spatially homogeneous system, we
can simplify that average by writing the kernel
(7.23) as

M((up Qt x't x")= —(I + V")5 (x' -x")

+i(dG(x', t)G(x", f)

d e~"'exp —(d' 2yN

- exp( ,'yNs'), -- (AS)

which is the result given in Eq. (2.23).
Next, we consider the quantity D(&o, 0) defined

by the functional average in Eq. (7.22). Since we

+iA
d

[G(x', t)G(x", t)j. (A4)

By Fourier transforming with respect to the spa-
tial variables and letting the wave numbers take
discrete values we transform the right-hand side
of Eq. (7.22) into a multiple Gaussian integral
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I'. =- tt

D( teA)= 01 f( SS, exp -Q Mn(x, A),SS t

=& "fdet[M({0 Q)])-""

n
=OP exp ——tr tn[M({d, Q)] ~, (A5)

cr+iQ —(G)G~) j. (A6

The normalization constant % can be eliminated
with the help of the condition D(0, 0) =1. We then
obtain

D(teA) =exp ,(- —tr (n[M{te, A)M(0, 0) '])

n-
=exp ——tr )n[ re (te, A)])2

(AV)

m,.&({2],Q) =6&&+(b k) (i{t)2/N(t —. k', ))(G, G~)

with

Mn(te, 0) = {02)" (Il„.(1 —2';)tr/2(0 2)'+ ixD; 0,

(-.' NM')". (82)
vj. VV~

For large (A'NM') the moment t is then dominated
by the asymptotic approximation to the exponen-
tial integral Ei(x),"

t =eM" ~'/NM' for 'NM'-— (84)

We obtain a general asymptotic approximation
for arbitrary n most easily by using the asymp-
totic form of the Kummer function for large ar-
gument" in E{t. (9.10),

Brownian motion.
In contrast to the mean first-passage time (9.12)

the one we consider here grows not logarithmically
but exponentially with the parameter & NM'. That
behavior is due to the potential barrier &

M' which
the variable S has to climb while propelled by
random forces of strength I/v' N Th. e dependence
of f on (-,' NM') is especially transparent for
n=2, where E{t. (Bl) simplifies to

f = —,
' [Ei(-,' NM') -y -ln( —,

' NM')]

+(hk)~(iQ2/N(1 —k,.)) —(G) G ) . (A8)

Since the matrix (m, &
-5~&) is built up by the di-

rect products of the vectors C, and G, its powers
and thus its logarithm must have that structure
too. By expanding lnm in powers of nz —1 we then
easily find the result (V.2V).

i'n)

f (o ][.)=
(n -][.

fn]
PNM. ) {MA)/2

(X)
l, 2

(85)

1 g (n/2)
(

1 NM2)tr' „, vt'(v+n/2)

It is interesting to consider the limit 2 NM'-0 of
this expression,

-= 1—NM for NM « 1
2n

(82)

which is quite reminiscent of Einstein's expres-
sion for the diffusion constant in Brownian mo-
tion. Obviously, in the limit considered, the
variable S diffuses to its first encounter with the
threshold O' =M' without taking notice of the
linear force. In fact, Seshadri and Lindenberg"
have previously obtained the result (82) for free

APPENDIX B: EXACT FIRST-PASSAGE-TIME
DISTRIBUTION FOR THE ORNSTEINee

UHLENBECK PROCESS

For p = —1 we find the mean first-passage time
from Eq. (9.10) to be

t = —(-,nrM*), P, 1, 1 1+— 2 tlM')-

We should point out that the asymptotic form
(85) of f„(0,][.) is not valid for ][.-~. In fact,
since the right-hand side in E{t. (85) does not
vanish for ][.-M), the approximate fM(0, ])) is not
even a Laplace transform of any well behaved
function of the time. The expression (85) is use-
ful though as a generating functional for the mean
values t with finite ~ since the latter are de-
termined by the behavior of f„(0,][.) near ][.=0.

The first term in large squares bracket in Eq.
(85) is negligible compared with the second one
except when A, is close to a negative integer or
zero. The main role of the first term is to shift
the poles of f„(0,][.) slightly away from

X=O, -2, -4, . . . (86)

(BV)

and to modify the corresponding residues as well.
These shifts are especially important near X =0
since the behavior of f„(0,][) in that region de-
termines the moments t . The mean passage
time which follows from E{t. (85) is
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This asymptotic result reduces, of course, to the
one given in Eq. (B4) for n = 2. It also includes
a result previously obtained by Lindenberg and
Seshadri" for n =1. As already noted above, the
mean passage time t includes the exponential
exp( —,

' NM') which we must expect on the basis of
qualitative statistical arguments. The specific
nature of the passage-time problem is reflected
in the factor which precedes the exponential.
That factor shows an interesting dependence on
the number of components n of the random vector
S.

The poles of the asymptotic expression in Eq.
(9.10) near the points (B6) in the complex X plane
give the long-time behavior of the first-passage-
time distribution. The leading term is

(0 t) ) exot e t/t-
t

where X, is related to the average (BV) by

(B8)

(B9)

The first correction to Eq. (B8) is characterized
by a decay constant,

X = -2-2(-'mS')'-'"+"' I ~"~n+S'I

2i
(»0)

which is very large compared to the leading one.
The result of (B8) and (B9) has also been obtained

previously. '
The exponential form (B8) of the first-passage-

time distribution would be rigorously correct at
all times for a delta-correlated process, for
which the values taken on by the variable S(t) at
different times are independent. It can be derived
as an asymptotic approximation, however, by a
well-known heuristic argument. "

Both the mean and the root mean square of the
first passage time must be expected, on general
statistical grounds, to be of the order exp( —,'NM ).
Such times are enormously long compared to the
unit of time characterizing both the decay of the
correlation function (S(t)S(t')) and the loss of
memory of any initial conditions. Before the
variable 8 finally arrives at the reference dis-
placement ~ it has presumably many times
reached maximum values such that 1/N «S' & I(d'.

On each such occasion the process has lost mem-
ory of prior excursions to maxima of this magni-
tude. In other words, on a time scale of order
exp(2NM ) the random process S(t) indeed appears
approximately to be a delta-correlated process.

The argument just presented makes no explicit
use of the Gaussian nature of the stochastic
process described by the Fokker-Planck equa-
tion (9.1). It holds, in fact, for any Markovian
motion in a binding potential y(S) with ) -+~ as
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