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Turbulence in binary fluid mixtures is studied. Because concentration gradients can react back on the advecting

velocity field, such systems support (overdamped) transverse waves. The primary efFect of this coupling in miscible

high-Prandtl-number fluids is to shorten the viscous-convective cascade of concentration fluctuations. When

concentration fluctuations are injected at short wavelengths, we find at time-dependent inverse cascade with

spectrum C(k)-k "'. This cascade may be related to the dynamics of phase-separating binary mixtures at
intermediate times.

I. INTRODUCTION

A. Purpose

A salient feature of turbulent fluid motion is a
striking enhancement of transport coefficients. '
The famous turbulent cascade of velocity fluctua-
tions to small length scales proposed by Kolmo-
gorov in 1941 (Ref. 2) dissipates energy very
efficiently. One can define an effective "eddy
viscosity" in a chaotic fluid which is orders of
magnitude larger than the equilibrium shear vis-
cosity. ~ The turbulent advection of temperature
fluctuations and passive contaminants has also
received much attention. 3 Let us consider for
concreteness a mass density p(r, t) of contami-
nant liquid molecules, and focus, on a dimension-
less deviation,

4(r,
'

f) = [p(r, t) poj/po, —

from the homogeneous state p(r, t) =po. We as-
sume the contaminant liquid is miscible with its
host. If the host fluid is at rest, P(r, t) simply
diffuses,

a standard phenomenologys 8 reviewed below. Our
aim here is to investigate turbulent transport in,
say, 50-50 concentrations of AB binary fluid mix-
tures. As we shall see, new dynamical effects
arise, since concentration fluctuations now react
back on the advecting velocity field. Spatially non-
uniform but miscible "active" mixtures can re-
spond to stirring rather differently than in the
passive case.

Miscible binary mixtures only exist outside the
region of two-phase coexistence shown in Fig. 1.
Fascinating questions arise when mixtures are
stirred violently within this miscibility gap. Pre-
sumably, a steady state develops, controlled by
turbulent mixing and the contravening tendency of
the mixtures to phase separate. Concentration
fluctuations in such a nonequilibrium steady state

B,p = DV2$ (1.2)
Tc

Since typical diffusion constants D are of order
10 5 cm'/sec, a one-centimeter inhomogeneity in

c(r, t) would relax to uniformity in a time of order
one day. Stirring reduces this time drastically,
effectively enhancing D by a factor -105.'

"Passive" diffusion or advection of a contami-
nant correctly describes the dynamics in a rela-
tively small region of the phase diagram for a
symmetric AB binary mixture shown in Fig. 1.
Below a critical temperature T„such systems
phase separate into distinct A-rich and B-rich
components. Advection of "passive" contaminants
takes place on the extreme right and left of this
phase diagram, upon stirring. Turbulence in
these regimes can be qualitatively understood via

0
&eq

1

FIG. 1. Schematic plot of the temperature-concen-
tration plane for a symmetric binary mixture in thermo-
dynamic equilibrium. The solid curve bounds a region
of two-phase coexistence. The dashed, spinodal curves
enclose a shaded region where the effective diffusion
constant is negative. An abrupt quench in temperature
into this unstable region is shown. The mixture consists
primarily of species A on the extreme left, and of spe-
cies B on the extreme right. Here, the variable g

= (Pg(» t))IPp.
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could be studied with light- scattering techniques,
similar to those used to investigate spinodal de-
composition. ' Processes discussed here, which
drive miscible binary mixtures toward uniformity,
must certainly play a role in turbulent immiscible
mixtures as well. Our study of turbulent miscible
mixtures may be viewed as a prelude to an attack
on this more difficult problem. Some comments
and speculations concerning turbulence in phase-
separating binary mixtures may be found in the
concluding section.

B. Passive versus "active" binary mixtures

In the presence of an advecting macroscopic
velocity field v(r, t), the diffusion equation (1.2)
for a Passive contaminant becomes

D,g= (8, +v V)$=DV2$. (1.3)

The velocity itself obeys the wavier- Stokes equa-
t ions

(8, + v V)v = ——VP + vV v+ f,
po

(1.4a)

v=0, (1.4b)

where f is a random force stirring the fluid, and
Eq. (1.4b) enforces the constraint of incompressi-
bility. To determine how the chaotic velocity field
produced by f affects the concentration, e con-
sider the spatial integral of its autocorrelation

(1.5)

which is conserved in the absence of diffusion,

Since D is small in typical fluids, rapid mixing
can only be achieved if stirring produces large
concentration gradients. Large concentration
gradients are in fact generated because fluid line
elements are stretched, on average, by turbu-
lence. "

As discussed in more detail in Sec. Q, the stan-
dard phenomenology of passive scalars advected
by turbulence envisions two simultaneous cas-
cades. Forcing Eq. (1.4) at long wavelengths sets
up the usual Kolmogorov cascade, w ith an energy
spectrum E(k) -k ~~3. The velocity field then car-
ries concentration fluctuations down to the Kolmo-
gorov microscale, l~- (v /e )'~, where, e is the
rate at which kinetic energy is injected. This con-
centration cascade also has the Kolmogorov expo-
nent, C(k) -k ~) 3, which is plausible since the
(v v)c' term in Eq. (1.3) implies a nonlinear time
scale similar to that governing the kinetic turbu-
lence itself. Here, E{k) and C(k) are proportional

I

P,v + (v V)v = ——Vp' —c(VgV g + pV2v +f,
pp

(1.9a)

v=0 (1.9b)

Several terms involving g have been absorbed into
an effective pressure p'. These equations are
identical to those for a passive scalar, except for
the term involving concentration gradients in
(1~ 9a). Its coefficient a has the dimensions of a
transport coeff icient squared; in Appendix A, we
argue that Wn is of the order of a typical fluid
viscosity.

This term represents a force of the form p»Vg,
where Pzs ——nV'P is a local chemical Potential

to the Fourier- transformed velocity and concen-
tration correlations, respectively. Integration
over all magnitudes of the scalar wave number
gives the total kinetic energy E„, and the corre-
sponding quantity for concentration fluctuations

1oC ~

Velocity fluctuations are dissipated by viscosity
at scales shorter than l~. At large Prandtl num-
bers P(P = v/D), which are of order 103 in typi-
cal liquid mixtures, there exists a "vis cous- con-
vective" range of wave numbers greater than
for which diffusion remains unimportant. s The
concentration cascade continues in- this regime
with spectrum C(k)-k ~ down to a scale l,'- l„/v P,
where diffusion becomes important. If there is no
mechanism for inj ecting concentration fluctuations
into Eq. (1.3), these two cascades rapidly produce
a state with g(r, t) =0.

The equilibrium dynamics of binary mixtures at
approximately 50-50 concentrations ("active" bi-
nary mixtures), have been studied quite exten-
sively. " ' The hydrodynamics of real binary
mixtures involves an extra conserved density, in
addition to the five conserved variables entering
ordinary liquid hydrodynamics. 5 It is convenient
to take this quantity to be proportional to the dif-
ference in the mass densities p„(r, f) and ps(r, t)
of the two species involved,

4(r, f) = [& (r f-) p(r f)-1/po (1.7)

where pp is the mean mass density. If the veloci-
ties involved in binary mixture turbulence are
much less than the sound velo city, w e can de-
couple the two sound modes by imposing incom-
pressibility. For the special case of a symmetric
binary mixture at 50- 50 concentrations, thermal
fluctuations do not appear in the concentration dif-
fusion mode, and P(r, f) decouples from thermal
diffusion. '4 The equations of motion for the mean
velocity v(r, f) and g(r, f) then read'~'4

3,4+ (v. V)4=DV'0, (1.3)
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difference between the A and 8 components of the
mixture. The dependence of i(,„e on ()) itself has
been absorbed into the redefinition of the pres-
sure. This thermodynamic force leads to fluid
motion in response to inhomogeneities in g. In
the presence of concentration gradients, it tends
to reduce the area of surfaces of constant concen-
tration. In this sense, the n term acts like a
dynamic analog of surface tension.

The term in (1.9a) allowing concentration gra-
dients to generate velocity fluctuations is known to
be important near the critical point in Fig. 1. To-
gether with the convective part of (1.8), it causes
the equilibrium concentration diffusivity to vanish
at T„" '4 and leads to a weaker singularity in the
shear viscosity. ' In this sense, one can always
work at high Prandtl number in mixtures by
moving sufficiently close to T,. The a term may
also be significant in turbulent binary mixtures
because of the violent growth of concentration
gradients. When a diffusion is unimportant, a
gradient of (1.8) leads to

& (8;0) -=(8 +v'&)8;0

=(8;v )8 g, (1.10)

C. Results and outline

Equations (1.8) and (1.9) for symmetric binary
mixtures have some structural similarity to
those describing magnetohydrodynamics (MHD),
provided we identify the concentration difference
g(r, f) with the magnetic vector potential. " MHD
turbulence has been extensively studied, using
both Kolmogorov-type scaling ideas' and phe-
nomenological closures of the dynamical equa-
tions. ' Turbulence in symmetric binary mixtures
is perhaps most similar to tggo-dimensional MHD

turbulence, where the 'helicity effect" ' is ab-
sent, and where the vector potential is a scalar.
Much of this MHD phenomenology can be adapted
to symmetric binary mixtures.

In the absence of dissipation, there are two

where the summation convention has been em-
ployed. Thus, concentration gradients in fluid ele-
ments moving along a flowline increase at a rate
determined by a strain rate matrix 8,v& with the
dimensions of vorticity or =& x v. But it is known
that fluctuations in v(r, f) grow explosively in
three-dimensional turbulence, to a size limited
only by viscosity. "8 One might expect vorticity
fluctuations to drive a rapid growth of concentra-
tion gradients as well, via (1.10). If concentration
gradients in binary mixtures are not dissipated
before they become large, they will act back on
the turbulent velocity field via the coupling in

(1.9a).

quadratic conserved quantities associated with
symmetric binary mixtures. In addition to the
squared integral of the concentration fluctuations,
the quantity

is conserved. When concentration fluctuations are
absent, one expects the standard Kolmogorov cas-
cade of kinetic energy. More generally, however,
there are peculiar wavelike excitations (similar
to internal waves22) which transfer kinetic energy
to concentration gradients and back. Under the
appropriate conditions, an ultraviolet cascade in
these quantities arises with inertial range spec-
tra, 3

E„(k)-k-'i', C(k) -k-7~'.

Here, E„(k) is related to correlations in the
velocity

E„( )—:22ektf dere'
' '(e(r, t) r(0, t)),

(1.12)

while

C(k)=kek'f d r t''(e)(r, t)tt(0, t)) . (1.14)

C(k) -k-&~'. (1.15)

Such a cascade must be sustained by injection of
concentration fluctuations at some intermediate
wave vector. Its possible relevance to spinodal

The concentration waves, which propagate at a
rate determined by the large-scale concentration
gradients, are analogous to Alfven waves in MHD.
In contrast to MHD, however, the waves are over-
damped in binary mixtures, and the cascades (1.12)
are probably not realized in practice. Overdamped
waves can, however, alter the far dissipation
range, where C(k)-k ~ in passive mixtures (see
Sec. V).

We have studied wave effects, using a phe-
nomenological closure of the dynamical equations,
at several values of the coupling n. For large e,
the waves cause concentration fluctuations to hang
up, and persist for several hundred eddy turnover
times. A very similar effect was uncovered by
Pouquet ' in two-dimensional MHD. Although n is
too small to cause persistent concentration fluc-
tuations at scales greater than ld in real mixtures,
the effect is quite interesting; a simple explana-
tion is provided in Sec. IV.

Studies of absolute equilibrium solutions of the
system (1.8) and (1.9) allow one to predict the di-
rection of cascades. In this way, we find a possi-
ble infrared cascade of concentration fluctuations
to large length scales, with spectrum
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II. CONSERVATION LAWS AND ABSOLUTE
EQUILIBRIA

Although turbulence has little direct connection
with equilibrium statistical mechanics, studies of
conservation lams and the associated canonical
probability distribution functions have proven quite
useful in uncovering trends in turbulent sys-
tems. ' ~ 8 As can easily be checked from Eqs.
(1.8) and (1.9), the only quadratic constants of the
motion for zero dissipation and forcing are

Ctt 2 (2.1)

and.

E„,=E„+Eg,
where the kinetic energy is

(2.2)

E„=2 d x v r&t (2.3a)

and the gradient energy is

Eg ——2 dr V r t (2.3b)

With periodic boundary conditions, and in terms
of the Fourier transforms

v.(t) fd ve' ' 'v(r. , t), =- (2.4a)

decomposition in the two-phase region of Fig. 1 is
discussed in Sec. 7I.

Throughout this paper, we neglect effects due
to the "intermittency" or spottiness of real turbu-
lence. ' Corrections to the 1941 Kolmogorov phe-
nomenology and closure results due to intermit-
tency often turn out to be small. Nevertheless,
it would be interesting to determine how intermit-
tency affects the results presented here.

In Sec. II, we discuss conservation laws and ab-
solute equilibria for the symmetric binary mix-
ture. Standard turbulence phenomenology is ap-
plied to "active" mixtures and contrasted with
"passive" mixtures in Sec. III. The passive scalar
phenomenology is illustrated with a simple shell
model, similar to those used in studies of Navier-
Stokes turbulence. " The eddy-damped quasi- .

normal Markovian (EDQNM) closure is applied to
the model equations in Sec. I7, where numerical
results are presented. In Sec. p, me show horn

overdamped waves modify the viscous-convective
range. Section VI dwells briefly on the relevance
of our work to phase-separating binary mixtures.
A more general model of turbulent binary mixtures
is discussed in Appendix A. Detailed calculations
relevant to the eddy-damped quasinormal Marko-
vian closure are contained in Appendices B-E.

t;(t) f=drv e"" t(r, t), (2.4b)

the (unnormalized) canonical distribution function
associated with these co~served quantities is

e'((vt), (t6) err(- lZ (&(let I'+»'I tt I')

with

et)It;I')). (2.5a)

k v„-=0. (2.5b)

It is easily seen that, neglecting dissipation and
forcing, the distribution (2.5) is a steady-state
solution of the Fokker-Planck equation associated
with (1.8) and (1.9). Since forcing acts only at
large length scales, and dissipation at small ones,
we expect that turbulent intermediate or "inertial"
scales will initially evolve towards (2.5). If it
mere actually possible to reach an equilibrium de-
scribed by (2.5), we would have,

&~v„-~ &=I/A, (2.6a)

& ~q„-~ & =I/(a+ oAk&). (2.6b)

When o. =0, corresponding to absolute equilibrium
of a passive scalar, ( ~

v~ ~2& and ( ~ p„~ & are inde-
pendent of wave number. Both A and B must be
positive, and it follows that

E„(k)-k~, C(k) -k2. (2 7)

Imposing an ultraviolet cutoff 0=k to obtain
finite a total energy and concentration, we see
that E„(k) and C(k) tend to be concentrated at large
wave vectors. This ultraviolet pileup suggests the
usual cascades of energy and passive scalar con-
centrations proposed in modern turbulence theo-
ries.

A different kind of absolute equilibrium is possi-
ble for symmetric binary mixtures with ac 0. One
can then have B negative, provided we require
that excitations exceed a certain minimum wave
number,

kmm &(IBI/nA)'~2, (2 8)
which can be very small for appropriately chosen
J3 and A. The anomalous steady state which re-
sults (see Fig. 2) has concentration fluctuations
piling up near k~, suggesting a possible infrared
cascade of concentration fluctuations toward small
mave numbers. To sustain such a cascade, one
must presumably inject concentration at wave vec-
tors k»k . . In Sec. VI, we show that yn infrared
cascade of concentration fluctuations does indeed
occur for symmetric binary mixtures within the
EDQNM closure. Pouquet has observed a similar
cascade of vector potential fluctuations in two-
dimensional MHD. '
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FIG. 2. The absolute equilibrium concentration
spectrum C(k) vs wave number for B negative. Fluc-
tuations pile up against k -, suggesting a tendency
toward an inverse cascade.

Conservation laws and absolute equilibria for a
more realistic model of binary mixtures are dis-
cussed in Appendix A. Two scala, r fields, g, (r, t)
and $2(r, f), representing concentration and tem-
perature fluctuations, are convected by and al-
lowed to react back on the velocity field. In addi-
tion to the squared integrals of g, and g2, there is
a quadratic conserved quantity of the form

E,„=2 dr v +eV
&

+ V2 . 29

(3.2)

kggv y
$~ = 4m k2(

~
Q„-

~

2) dk
a„/~
%~My

=2 Ckdk.
&n/W

(3.3)

A shell model is designed to mimic the struc-
ture of (1.3) and (1.4), preserve the conservation
laws, and implement the physical idea of Kolmo-
gorov that the important transfer of conserved
quantities to small scales occurs between neigh-
boring shells in k space. The simplest equations
satisfying these requirements are

——vk„v„+ k„(v„4—kv„v„, g), (3.4)

dg„
d

"———Dk„g„+a'k„(v„&g„&—bv„(„,&), (3.5)

where a' is a positive constant, and n ~ 1. %e
imagine that vo is prescribed by the forcing

v2 =4w k2(
I vk 12) dk

&n/~

kg(~
=2 Ekdk.

g /My

In a similar way, we define a concentration vari-
able p„associated with the nth shell,

The corresponding absolute equilibria suggest
possible infrared cascades for both concentration
and temperature fluctuations.

Vo 2 2 2
2

dt
=- vk, v, —Ok v,v, +e (3.6)

IH. TURBULENCE PHENOMENOLOGY

k„=k (3.1)

Here 5 is a discretization parameter which ex-
ceeds unity. The basic dynamical variable is v2,
i.e., twice the kinetic energy contained in the nth
shell,

In this section, we contrast phenomenological
ideas about turbulent convection of passive scalars
with the concepts necessary to describe turbulent
binary mixtures. The passive scalar phenomeno-
logy will be illustrated with a simple shell model.
The model displays the turbulent enhancement of
the diffusivity, and exemplifies the more compli-
cated closures of Sec. IV.

A. Shell model for passive sealars

Our aim is to construct simple, tractable carica-
tures of the passive scalar equations (1.3) and (1.4).
The Navier-Stokes turbulence described by (1.4)
has been extensively studied by this technique. 2'

Let us denote by & the rate of energy injection pro-
vided by the random force, and call k;„ the wave
number at which the forcing spectrum peaks.
Fourier space is discretized into shells about the
origin, containing the wave vector

and set (0—= 0. It is straightforward to check that,
with v = D = e =0, the conservation laws are satis-
fied

(3.7)

Equation (3.4) was first studied by Desnyansky
and Novikov. ' It admits a steady-state solution of
the form

~1/3k-i/3
lg

for k„ in the inertial range

kmm" n "ku.
The dissipation range wave vector k~ is

k, - (~/~')'~4

and, as can be seen from (3.2),

Z(k„) -v„' jk„-k„

(3.8)

(3.9)

(3.10)

(3.11)

One drawback of these shell models is that they do
not admit the absolute equilibrium solutions dis-
cussed in Sec. II. Another deficiency is that the
form of the steady state in the far dissipation
range (k„»k4) depends on the discretization pa-
rameter b. Generalizing the analysis of Bell and
Nelkin, 2' we find
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E(k„)-exp(- const x k„'"'/'") . (3.12)

In particular, one cannot get a sensible dissipa-
tion range in the limit 5 -1. The partial differen-.
tial equation one obtains in this way has been
studied Qy Kovasznay28 and Leith. 9

To solve the passive scalar Eq. (3.5), we as-
sume a steady-state velocity cascade has been
established, and insert (3.8) to obtain (with a'

44 b
- 1. / 2)

(

—+Dk~)( =ac~&&)2&~(() —b~& 3( ), (S 13)
( d

Note that the right-hand side of (3.13) vanishes
when P„exhibits the Kolmogorov-type spectrum

k-1/2

corresponding to

C(k„) -g /k„-k„

(3.14a)

(3.14b)

The time dependence of Eq. (3.13) can be obtained
explicitly in the limit 5-1, which is weQ behaved
in this case. Upon defining

g(k„, t) —= k~/2$„(t)

and setting 5 = e~, with 5 «1, we obtain

(3.15)

—+Dk g(k t) = —2ae / k2/ ' . (3.16)(
a Bg(k, t)

ak

To obtain a finite result, we have assumed that a
depends on b in such a way that

a = lim [a(b) 1nb] (3.1V)

exists.
The partial differential equation (3.16) is readily

solved by the method of characteristics. The char-
acteristics are a set of functions k(t) parametrized
by k(t=0) =ko, namely,

k(t) (k-2/3 4 44~4/3t)-3/2 (3.18)

Along these special lines, g(k, t) obeys a simple
ordinary differential equation

—g(k(t), t)= —Dk2(t)g (k(t), t).N (3.19)

The problem of the time evolution of g„(t) is now

completely solved. Perhaps the most striki'ng
feature is that the characteristics bend over and
reach infinite wave vectors in a finite time set by
the convective nonlinearity in (3.13):

t„,„( )k- k 2e/2'/2. (3.20)

Initial data specified for k-k . in Fig. 3 is swept
away in a time of order k . ~3& '~'. If concentration
is constantly injected along the vertical line at
k;„, a universal steady state, independent of the

"min k

FIG. 3. Characteristic curves k~(f) for Eq. (3.16).
The concentration fluctuations in the shaded region are
independent of the initial conditions and depend only on
the boundary conditions at 0, The rapid growth with
increasing time of the length of the line g =constant
joining two characteristics reflects the violent turbulent
stretching of concentration gradients.

t „„(k ) « t, =1/Dk'~. , (3.21)

there is an enormous increase in the efficiency of
mixing. Plots of C(k, t) obtained from (3.18) and

(3.19) with initial data concentrated near k are
displayed in Fig. 4. The Kolmogorov spectrum
(3.14b) is established quickly, and then decays
rapidly to zero in a self-similar fashion.

As mentioned in the Introduction, one has
Prandtl numbers P = v/D much larger than unity
in typical mixtures. The physics of passive
scalars then changes in the viscous-convective
range of wave vectors exceeding k». Since there
are no appreciable velocity fluctuations in this
range, the smallest eddy turnover time effective
in transferring concentration between shells with
k„)k» is just the time appropriate to k» itself. It
is a simple exercise to show from (3.4) that this
time is

t, =~-'/2k„-2/2 = 1/vk' (3.22)

One imagines that transfer of concentration be-
tween neighboring shells is controlled by a ran-
dom strain rate with a characteristic time (3.22) ~

A simple modification of the shell model (3.13)
which incorporates these physical ideas is

~,„d,t+Dk.' 4.(t)=s~,—, (4. 4- 4.). (3.23)

Passing to a partial differential equation as be-
fore, we find a steady state with

initial data, is established above the characteristic
with k, =k . Since t „„(k ) is much less than the
diffusion time at k for large ~ and small D,



3230 RICARDO RUIZ AND DA VID R. NELSON

t~ 0.0
0.2
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FIG. 4. Time evolution of the concentration spectrum with & «1 obtained from (3.16). The driving velocity field
satisfies E~- k for all wave numbers displayed. The time is measured in units of t, ,(k 0).

C(k) =C(k„)(k~/k) exp(- k2/k~~aP). (3.24) p p)0 —= Bo Vp =0, (3.27)

This result was first obtained by Batchelor. s

The characteristics of the partial differential
equation associated with (3.23) when b —l are

k(t) =koe'"'~" ' (3.25)

k~ =k~gv/D . (3.26)

B. Symmetric binary mixture phenomenology

If the term coupling concentration gradients
back into the velocity field in (1.9a) is negligible
the passive scalar phenomenology is of course
applicable to symmetric binary mixtures. We
have already seen in Sec. II, however, that this
term suggests an inverse cascade of concentra-
tion fluctuations not present for passive mixtures.
This coupling also leads to transverse waves in
the presence of concentration gradients. Although
these waves resemble "internal waves" in strati-
fied fluids, the restoring force is not gravity, but
a surface-tension- like effect.

The concentration waves can be studied by im-
posing a uniform concentration gradient Bo, and
linearizing about the state

It now takes an infinite time for information to
propagate to infinite wave vectors. For finite dif-
fusivities D, the concentration is finally dissipated
at a wave vector

Carrying out this linearization in the absence of
forcing, we find

8,(= —v. Bo + DV2 p

B,v=- nBO(V b)+ vV v, (3.28b)

where b(r, t) represents a small deviation of con-
centration gradients from uniformity,

V P(r, t) =- Bo +b (r, t) . (3.29)

The n term (3.28b) tends to even out inhomo-
geneities in the concentration gradients; i.e., it
tends to produce parallel straight lines of constant
concentration. In this sense, it is like a surface
tension. Taking care to enforce incompressibility,
it is straightforward to find wavelike solutions of
(3.28) where b(r, t) and v(r, g) vary iige e'~ ' '"a".
In the limit of small damping, the dispersion re-
lation is

&u(k) =+ vo Lkx B, ~

—z'i(D+ v)k'. (3.30)

As can be seen from Fig. 5, the velocity is di-
rected along Bo, while b(r, t) varies perpendicular
to this direction.

Concentration waves in symmetric binary mix-
tures resemble the Alfven waves of magnetohydro-
dynamics; although Alfvhn waves propagate along
the magnetic fieM lines, concentration waves
propagate perpendicular to the direction singled
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/

-b

V

b

Bo

nique in Sec. Ip.
There remains the possibility, under certain

circumstances, of an inverse cascade of concen-
tration fluctuations. If concentration fluctuations
are injected at a rate ~&, dimensional analysis
suggests that the form of the concentration spec-
trum cascading toward large length scales is

(3.32)

V

i(V

FIG. 5. Geometry of the wave propagation. The lines
are contours of constant concentration.

E(k)- (eH )~&2k (3,31)

where Bo is the root-mean-square fluctuation in
the large-scale magnetic field. A similar result
holds for the magnetic field spectum.

Kraichnan's arguments carry over, in principle,
to symmetric binary mixtures, implying equiparti-
tion of the two energies in (1.11) and k '~2 spectra.
Because a is so small, however, concentration
waves probably never become important before the
dissipation range is reached. The most important
effect of the concentration waves is to shorten the
viscous-convective cascade referred to in the pre-
vious subsection. Because concentration gradients
can be transformed in velocity fluctuations and
then dissipated, no appreciable concentration
fluctuations will exist beyond a cutoff wave vector
appreciably smaller than the passive scalar cutoff

As discussed in Sec. V, the k ' spectrum pro-
posed by Batchelors for passive mixtures is trun-
cated prematurely. The effect of waves on binary
mixtures with large n is studied by a closure tech-

out by B0. In Appendix A, we argue that 0, is of
order of shear viscosity squared in real fluids.
Consequently, the concentration waves will be
heavily damped unless Bo is extremely large.

The relevance of Alfvhn waves to MHD turbu-
lence has been discussed by Kraichnan. ' Random,
large-scale magnetic fields lead to a new inertial
range time scale, given by the period of the cor-
responding Alfvhn waves. At sufficiently high
wave numbers this time is shorter than the one
entering the Kolmogorov phenomenology. A new
kind of turbulence results, dominated by "non-
local" interactions between small and large wave
vectors in Fourier space. Kraichnan argued that
the Alfvhn waves would bring the magnetic and
kinetic energies into equipartition. Largely on
dimensional grounds, he suggested that the velocity
spectrum would be

in analogy to an inverse cascade of magnetic vec-
tor potential in two dimensions. ' The relevance
to this cascade to spinodal decomposition is dis-
cussed in Sec. VI.

IV. EDDY-DAMPED QUASINORMAL MARKOVIAN
CLOSURE

A. The EDQNM equations

(8, + 2Dk2)C(k) = T,(k),

(8, + 2 vk2)E„(k) = T„(k)+ E(k),

(4.2)

(4.3)

There has been, in the last decade, remarkable
progress in the construction of closure equations'
for turbulence which (1) incorporate the Kolmo-
gorov phenomenology in a more precise mathe-
matical setting and (2) determine the time evolu-
tion of spectra from arbitrary initial conditions.
In this paper we use the EDQNM closure used pre-
viously for the study of the Navier-Stokess'3 and
MHD turbulence. ' ' As discussed in Ref. 1, this
closure links the fourth-order cumulants (C4)
phenomenologically to the third-order ones (C~)
by means of an eddy relaxation operator p, ,

C4- p, C3. (4.1)

The EDQNM closure can be regarded as a more
elaborate version of the simple shell-model equa-
tions of Sec. III A. The closure preserves the con-
servation laws and absolute equilibria of the primi-
tive equations. 33 Simple physical ideas governing
cascades are incorporated into "triad relaxation
times. " The closure can then be used to predict
the direction of cascades and the time evolution of
spectra. In this sense, closure such as the one
used here represent a kind of crude "mean field
theory" of turbulence. The phenomenological
spectral exponents are built in.

When Eq. (4.1) is used to close the hierarchy of
cumulant equations derived from (1.8) and (1.9),
we obtain equations for the spectra of the kinetic
energy and the concentration fluctuations. As-
suming homogeneity and statistical isotropy of our
system, these equations have the form
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where E(k) is related to the force (see below), and

T,(k) and T„(k) are "transfer integrals" discussed
below. The transfer integrals for symmetric

binary mixtures in d dimensions are worked out
in Appendix B. Specializing to d=3, we find

and

T (y) —2 f f rgprgq(
'"

)
—e,'~l'{ z, ',-(P)„{(."c(q) q'-('(+l) —~(+' —s')P'(:(+)(:(w)) (4.4)

T (k) — dpdq B~( '5» E„(q)[k E„(p)—p E„(k)]v, kpq Qpq Qpq v

gg) sin p p2 2 P2 q2 ~2 p2 q2 k2C p C q ~P2C q Q (4 5)

The double integral is restricted by momentum
conservation to wave-vector magnitudes P and q
such that k, p, and q form a triangle. We have
averaged over the random force (or, equivalently,
over different turbulent realizations), and F(k) is
the power spectrum of the forcing, assumed to be
Gaussian white noise for convenience. Turbulence
at small scales should be independent of the de-
tails of the large-scale forcing. In (4.5), k», is
the usual geometrical coefficient3~ »

and

p~, = p,,+ p~+ jL, ,
(2) v v v

~ag q
= Wa+ &p + I q y

{3) v c c

(4.8)

p, —Dk =p,"—vk

dqqzq +C k dq&q Cq

(4.9)

The terms proportional to D and v are generated
automatically in a perturbative treatment of the
nonlinearities. Their presence ensures the
existence of proper dissipation ranges for the
spectra. The term proportional to Cs in (4.9) is
the inverse eddy turnover time for the velocity

[k'P' + (O'- C')(k'- 4')], (4.8)2k' ( k

where P is the angle opposite to wave vector k in
the triangle formed by k, P, and q.

The quantities B,'~)(t), (i=1,2, 3), are called the
triad relaxation times; their choice is the main
feature that differentiates alternate schemes of
closure. For the particular case of the EDQNM
closure they take the form

1 —e '"ap
(s)

B».'(f) = ()- (4.7)~O&

where

&apq= &a+ &a+ &q y

(1) c v c

B. Conservation laws and inertial range spectra

Given the importance of conservation laws in the
Kolmogorov- type phenomenological arguments for
turbulent systems, it is important to check that
the quantities conserved by our original equations
(1.8) and (1.9) are also conserved by the spectral
equations (4.2) and (4.3). One can indeed check
easily the following:

(a) The closure equations are not only compatible
with the conservation laws of the quantities (2.1)
and (2.2), but also with detailed conservation of the
same quantities by any of the interacting wave-
vector triads. 24 More explicitly, if we write (4.4)
and (4.5) as

7'...()') -=Jl I &p&a r„.(& In~)

dpdq T„,k Pq + T„„k qP

q ~sym (4.10)

field. ' It is designed to model the characteristic
time associated with convective transfer, which
dominates in ordinary Navier-Stokes turbulence.
The constant C~ itself can be fit to experiments on
Navier-Stokes turbulence, and was determined in
Ref. 32 to be C~ =0.360. The term proportional to
C is the inverse period of the concentration waves
discussed in Sec. III B. We have only attempted to
model the tendency toward equipartition when dis-
sipation can be neglected. Although C„ is a free
parameter of the closure, a simple self-consis-
tency argument presented in Appendix D suggests
we take C =l.

If one sets C(k) —= 0 in (4.4) and (4.5), we recover
the closure used to study Navier-Stokes turbulence
in Refs. 31 and 32. In the limit o-0, we model.
turbulent convection of a passive scalar, which
was studied via a slightly different closure in Ref.
6.
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and

dk T (k)=0
0

(4.13)

dk T„k + nk27, k =0,
0

(4.14)

which in turn imply the conservation laws.
(b) The absolute equilibrium spectra (2.6) are

in fact steady-state solutions of the spectral equa-
tions in the limit D= v = Ek =0, provided the spec-
tra are bounded by some k . One can prove,
using the techniques of Ref. 33, that these are the
only steady-state solutions in this limit.

The procedure used to extract the inertial range
spectral exponents from Eqs. (4.2) to (4.5) is out-
lined in Appendix C. The results for different
regimes are summarized in Table I. The scaling
behavior of the triad relaxation time is crucial in
determining the power-law exponents for the spec-
tra. The second column of Table I contains the

detailed conservation means

T:,.(kluq)+ T~-(«Ikey)+ T~-(P lqk) =o (4»)
and

[&~ (k If'q) + ok2&o (k IPq)]+ c.p. =0, (4.12)

where c.p. represents all cyclic permutations.
Upon integration over k, (4.11) and (4.12) are

equivalent to

term of p, k that dominates in each case. It is con-
ventional to say that there is a cascade of some
conserved quantity Q if there is a range of scales
where the quantity II&(q), defined by

k
Ir ~(k) = — dq Tq(q),

0
(4.15)

is independent of k. ' The quantity iio(k) corresponds
to the rate of energy injection and dissipation en-
tering phenomenology theories in the steady state.
In this way, we associate with each inertial range
some kind of a cascade, as compiled in the table.

C. Closure results for passive mixtures (0( = 0)

The closure equations (4,2)-(4.5) are too compli-
cated to be solved analytically. Here, we present
numerical results for "passive" mixtures, with e
set to zero. The analysis serves as a check on the
equations themselves, and complements the pas-
sive scalar phenomenology of Sec. III A. The
EDEN M equations were integrated numerically
using a modification of the method used, for ex-
ample, by I.eith. 34

Figures 6 and 7 illustrate the time evolution of
kinetic energy and concentration spectra with a
large-scale, band-limited forcing. At time t=0,
all concentration fluctuations reside in the large
scales. Figure 6 shows how the usual k 5/3 cas-
cade in kinetic energy is established. Also shown

TABLE I. Summary of the different regimes, cascades, and spectral exponents allowed by
our closure equations. Column 2 contains the dominant term of the relaxation operator p for
each. regime. In the fourth and fifth columns, the cascades are listed as ultraviolet {infrared)
if they evolve towards the small {large) scales.

Regime
Dominant

Spectra Ccascade Ecsecagg

NSE
C(k) = 0

0. =0
( '~ ') 1/2

d««'E(«) I
E(k) ™-k"' UV (E„)

Passive scalar
C(k) & 0, 0. =0

l 1/2 E@) P 5/3
«), I C(k) -k-'/'

0
UV {E„)

Viscous .convective
passive regime
(k»k, ), Eg) - 0 Pk- 4E/V

Eg) decaying
Cq) -a-'

Active mixtures
1

k ) 1/2 Eq ) P-5/3
Pq- d««E(«)

I c@) k-&/&
0 )

C@)-P-&/3
(/y d««@(«)

I E(k) k-1/3
0 )

Cq)-u»2
pk- q C(q)dq E@)

IR

UV («E +Ec)
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FIG. 6. Evolution of the kinetic spectrum E»(k) with time for o =0. The units are such that a=f0 dkE(k) =1, and
&(k) peaks at 4 =k 0=1 The viscosity is p=10 in these units. Time is measured in eddy-turnover times at kp, and
the initial energy was zero. The Reynolds number is R —(vz)t~t/vko -—104 in the steady state. The quantity Iis (k) is
shown in the inset.

is the kinetic dissipation rate lie (k) defined by (4.15).
Once the cascade of velocity fluctuations is set up,
this quantity is a constant in the inertial range.
Concentration fluctuations are dissipated by the
Navier-Stokes turbulence in Fig. 7. After a few
large eddy turnover times to (t~-lo/va, where va

is a typical velocity at the largest scale lo), C(k)
displays a time-dependent 0 ~ cascade, and
then decays rapidly to zero. The concentration
dissipation rate H, (k) is shown for t = 10 t, in the
inset.

In Fig. 8 we have plotted the time variation of

C...(t), together with the kinetic dissipation rate
K. This latter quantity is simply related to the
mean-squared vorticity when o. = 0,

E=2v k2E„A' dk =2vQ t, (4.16)
0

Since a steady state is achieved when this quantity
equals the kinetic energy injection rate ~, we ex-
pect Q(t) to rise rapidly in Navier-Stokes turbu-
lence to a value e/2v. The abrupt increase of the
kinetic dissipation rate near t=3.5t0 is consistent
with the explosive singularity in Q(t) found by
Morf et al. '6 in a simulation of the Taylor-Green
vortex. The rise in Q(t) is accompanied by a sud-
den decay in the total concentration, which is un-

changed prior to this time.

eo

d"'- ———2D kzC(k)dk =——2DEo. (4.19)

In Appendix E, we show that the Markovian ran-
dom-coupling model predicts that the gradient en-
ergy Eo(k) obeys

o() =G(d —1)Q(t)E (t). (4.20)

The singularity in Q(t) means that Eo(t) also di-
verges at t,

Analytic insight into this behavior can be ob-
tained using the Markovian random-coupling mod-
el, 5 in which one simplifies closures by arbitrari-
ly setting all triad relaxation times to a constant. 8.
One then finds analytically in d dimensions that,
v=f=0,

Q(0)
1- G(d- 2)Q(0) e,t '

where C is a dimensionality-dependent constant. '
The simple pole in Q(t) one finds at t~ =1/G(d
—2)Q(0)80 should be compared with the behavior

Q(t) - [t t ]
0 8 — (4.18)

found by Morf et al. ' It is easily shown that the
dissipation rate of concentration fluctuations is
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Cp

(c)

Ck

Cg

Ep (4.24)

Nonlocal interactions are also important in the
high Prandtl number viscous-convective range
k & k~ discussed in Sec. IHA. The evolution of
C(k) in this range is controlled by the triad shown
in Fig. 9(b), which couples C(k) to scales larger
than 4~ . As shown by Kraichnan, such triads
give a contribution from the large scales to
T, (k),

[q', (k)]„=—
(

dk H~ti'Pnk„(k))ls

FIG. 9. Types of triads contributing to the nonlocal
interactions discussed in the text. Figure (a) repre-
sents the contribution to the turbulent eddy diffusivity
(4.24b). The triad of (b) dominates in the viscous con-
vective regime. The triads (c) and (d) represent the
action of the waves on the small scales.

T,(k) (with n =-0) of the form

[T (k)]„=—D,~ (k)k2C(k),

where

(4.23a)

dt, , (k) = k J dq q,",,'E.(q) . (4.23b)

The turbulent eddy diffusivity D, „(k) represents
the enhanced dissipation of concentration fluctua-
tions due to turbulence. Approximating H~„by'
[&(q)q ] '~ and inserting E„(q)-q 4~, we recover
the famous result first obtained by Richardson":

(4.25)

in three dimensions. This term is reminiscent of
the right-hand side of the shell-model equation
(3.23). Both the usual viscous-convective spec-
trum C(k) -k ' and absolute equilibrium [C(k) -k ]
cause this nonlocal part of the transfer to vanish.

D. Closure results for active mixtures (af large)

We have also integrated the closure equations in
the more interesting case n D. To enhance the
effects of concentration waves, we have set n =-1

(in units such that e = 1 and k, = 1), which is un-
realistically large. By understanding the effect of
waves in this limit, we can see why they are in
fact unimportant in the inertial range of realistic
binary mixtures. The waves do, however, play a

a

2
3

l~ 8

o&
~ $

I

gl

A

6.

O
h k k

-e -i o ~ e s - q s a 7 e y io
log (k)/log {2)

FIG. 10. Evolution of E„(k) with time for ~ =1. The units and all the other parameters are identical to those of Fig.



TURBULENCE IN BINARY FLUID MIXTURES

o
2

7
3

cA

8
CQa

k

o & e 3 q S a & 9 ~0

log, (k)/log, (2)

FIG. 11. Time evolution of C(k) for ~ =1. The driving velocity field is that of Fig. 10, and the Prandtl number is
&= 1. The initial conditions had Cfog(0) =10 . The differences with Fig. 7 are due to concentration wave effects.

&d(k) -[k~C(k )] ~ k. (4.26)

The quantity Bp has been replaced by the root-
mean- square large-scale concentration gradient,

( ac i/2
B(k,) = Pg), =

i
k2C(k)dk

p

= [k,'C(k.)]'~' (4.27)
I

The effects of waves can be understood more
quantitatively by considering the nonlocal portions
of the transfer displayed in Figs. 9(c) and 9(d)."
Considering the effect of large scales on transfers

role in the viscous-convective range of high-
Prandtl-number fluids. We have set v=@ in the
large- e limit for simplicity.

In Figs. 10 and 11 we show the time evolution of
E„(k) and C(k) with the same forcing and initial
conditions as for n =0. The presence of two dis-
tinct regimes is most manifest in the concentration
spectrum. Figure 11 shows a passive scalar spec-
trum at low k and gives C(k) -k '~2 at higher wave
numbers. As shown in Fig. 12, there is approxi-
mate e[luipartition between E„(k) and 2ok2C(k) in
this high wave-vector range, where E„(k)-k2C(k)-k ~ . The two regions of k space are separated
by a wave vector k, at which the concentration
peaks up. The high-k region is evidently domi-
nated by waves with a frequency given by Eq.
(3 3l)

with k & k„we find contributions

[T,(k)j„=[[a~I dq8 ~ c(q)[k [Qak c(k) —z(k)],
5 p

(4.28a)

4( 4/A
«8-a'C (e)

~
[E(k) —2ok'C(k)],

p ]
(4.28b)

where A is given by (4.23). When combined with
(4.2) and (4.3), these results imply the approach
to the equipartition displayed in Fig. 12. The
ratio E(k)/nk2C(k) tends to 2 because there are
two independent (transverse) components of the
velocity; the waves produce equipartition between
each velocity component and the single concen-
tration degree of freedom.

Although we have not yet done simulations at
high Prandtl number, the results {for n =l) must
be qualitatively unchanged. No concentration gra-
dients are possible for k ok~ since the waves
enforce equipartition beyond k,. A nascent con-
centration gradient with k & 0~ would be converted
into kinetic energy and dissipated.

A consequence of concentration waves which
was unanticipated by the phenomenology of Sec.
IG is shown ln Fig. 13. In contrast to the passive
case n =0, concentration fluctuations take an ex-
ceedingly long time to decay. The decay would be
even slower if D were lowered to more realistic
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FIG. 12. A graph dispj. aying the approximate equipartition between E„(k) (
by the waves. The spectra are those of Figs. 10 and 11 at t =10.

10 11 12 13

) and E~(k)=2@k C(k) (-" —" ) induced

values. A very similar persistence of vector-
potential fluctuations was observed by Pouquet in
two-dimensional MHD turbulence.

This slow mixing can be understood by using
(4.19) to estimate the concentration dissipation
rate. Using C(k) -k ~~2 we find

fusivity is significantly diminished by the concen-
tration waves. For small D, w, can be quite long.

To determine the importance of this effect in
real mixtures, it is crucial to estimate k,. Wave
effects should become important when their period
becomes comparable to the convective nonlinear
timescale (3.20), which gives

k Ckdkw-2$7ck k . 4,29
~c

Because of the steep concentration spectrum the
integral is dominated by its lower limit. This is
not the case for the more gentle k 5~ passive
scalar spectrum. Using an estimate of the
stretching of concentration gradients by the pas-
sive scalar cascade between ko and k„we find o8

~ ~

PASSl&E
ACTI&E

4/8
C(k, )ks = ~

~
C(ko)k(~).

ko
(4.30a)

Q
$O

Since C„,=koC(ko), Egs. (4.29) and (4.30a) imply
a ti'me scale for turbulent mixing:

7, a 1jDkq2(k, /ko)4~3. (4.30b)

We can regard this formula as an application of
the Richardson formula (4.25) for the turbulent dif-
fusivity acting on the concentration at ko, except
that k~ has been replaced by k,. Since k, «k~ for
large a, the turbulent enhancement of the dif-

I
O0.00 1.00 2.00 3.00 &.00 5.00 6.00 7.00 8, 00 'P. OO 10.00 11.00 12.0013.00

FIG. 13. Comparison of the decay of Ct &(t) for active
( ) and passive ( = " ) mixtures. The conditions
are those of Figs. 7 and 10. (P =1 in both cases. )
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k, =e/n'/'[Vy(t, )]'. .. (4.31)

The root-mean-square concentration gradient ap-
pearing in (4.31) is evaluated at a time t, such
that the concentration gradients have been
stretched sufficiently to sustain the waves in a
quasi-steady state beyond k,. At times t &t„one
has a formula analogous to (4.27):

k md(t) ) i/2
[V())(t)],= j k C(k, t)dk

i
0 ]

(4.32)

[VP(t.)] .=
k ~

[VP(0)1 . .oi
(4.34)

Inserting this estimate in Eq. (4.31), we find
finally

k =a~/3k /~/n /2[V(P(0)] (4.35)

The formula (4.35) is in excellent agreement
with our numerical simulations of the closure
equations for a=1. For realistic values of e, we
find that k, always exceeds k~, indicating that con-
centration waves are in fact unimportant in the
inertial range. The estimate e - v~, together with
[Vg(0)],-k„ leads to

(4.36)

supporting the same conclusion. Although formu-
las (4.30b) and (4.35) do not apply to real mixtures,
we expect that they can be taken over to the per-
sistent vector-potential fluctuations observed by
Pouquet in two-dimensional MHD.

where k (t) is the maximum wave vector to which
the concentration cascade has penetrated. Since
this cascade is purely passive for t &t„we have

C(k, t) =C(ko)(k/ko) ~/3, k &k (t) (4.33)

where concentration fluctuations are initially
present in the vicinity of k0. Conservation of total
concentration implies that the amplitude C(k, ) is
approximately independent of time at the short
times of interest here. Upon equating k (t,) with
k„Eqs. (4.34) and (4.33) may be combined to give
the stretching of (Vg, )

To understand this effect more quantitatively,
consider the exact concentration wave dispersion
relation arising from (3.28), namely

(d), (k) =a ~ [4nB2k2 —(D- v)2k4]'/2 —,'-i(D+ v)k~.

(5.1)
The quantity B, has been replaced by the root-
mean-square concentration gradient due to scales
larger than k-', namely,

1/2
))(d)=('j d~C(d)d)

(

(5,2)
i

Taking over estimates discussed in Sec. IV, we
have, for k &k~,

B(k) =B(ko)(k/ko)2/

Remembering that n- v2 and noting that B(ko)
-k0, we can construct a wave time

7 ~(k) =I/va B(k) -I/vks/ ko

(5.3)

(5.4)

which must be compared to the diffusive times
1/vk2 and 1/Dk2. For high-Prandtl-number mix-
tures, 1/vk2 is always shorter than either 1/Dk2
or r„(k) How. ever, the wave time is itself
shorter than 1/Dkm for all wave vectors less than

k' = (v/D)3ko. (5.5)

Since k' far exceeds k„ in typical turbulent mix-
tures, we are justified in neglecting Dk in Eq.
(5.1), and expanding in I/r . The resulting eigen-
frequencies are

(d, =- ivk2, (d =- inB2(k)/v, (5.6)

with ~, corresponding essentially to pure velocity
fluctuations, and v primarily relaxing concentra-
tion fluctuations.

Although the concentration has acquired a new
damping mechanism from the "waves, " the
damping rate ~ is still negligible compared to
the turbulent eddy turnover time even at k~. Thus,
the C(k) - k ' viscous-convective range discussed
in Sec. III B will be established beyond k~, just as
in passive mixtures. Now, however, the cascade
will be cut off when ~ reaches the random strain
rate t„'- vk2~ [see (3.22)]. Neglecting possible
logarithmic corrections, we find that in the vis-
cous- convective range,

V. VfAVE EFFECTS IN THE VISCOUS-CONVECTIVE
RANGE '/'t k '

B(k) =B(k,))
—=B(k,)j ~
kg ( ko Ek

(5.7)
As we have seen, real binary mixtures behave

like "passive" mixtures in the inertial range be-
tween k0 and k~. However, the viscous-convective
range of wave vectors in high-Prandtl-number
fluids can be shortened considerably by wave ef-
fects. Concentration gradients for k»k~ are
simply transformed into velocity fluctuations and
dissipated.

Equating ~ and t„, we find the viscous-convec-
tive range terminates beyond a wave vector

k =k~(k~/ko)~/~. (5.8)

Concentration fluctuations will persist out to k,
provided k~ is not so large that passive scalar cut-
off k~ = v'v/D k~ does not come in first. It appears
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that overdamped "waves" will dominate in limiting
the viscous-convective range for high-Prandtl-
number mixtures at Reynolds numbers accessible
in the laboratory.

VI. TURBULENCE IN PHASE-SEPARATING BINARY
MIXTURES

8,$+ (v' V)g= XV (6.1)

where X is a positive transport coefficient, and
the functional derivative is of an effective long-
wavelength free energy

6 =l 3 l
d x(,'-gtlvglt+ '-x(t2+u)4). (6.2)

The parameter u is usually taken to be positive
and temperature independent while (according to
mean field theory) r changes sign at T„

As mentioned in the Introduction, turbulence in
the two-phase region of Fig. 1 raises some in-
triguing questions. To treat this unstable regime
correctly, one must generalize the model of sym-
metric binary mixtures defined by Eqs. (1.8) and

(1.9}. Although the equation for the time evolution
of the velocity is unchanged (except for a modifica-
tion of the pressure), Eq. (1.8) becomes""

x~ T —T (6.8)

The quantity $ is a correlation length which sets
the scale of the coarse graining needed to produce
(6.2). Well above T„we can neglect both the
quartic coupling and gradient term in (6.2), and
recover the simple convective ~nation (1.8}, with

D= DD
—= AksT /$3. (6.4)

When mixtures in equilibrium above T, are sud-
denly quenched into the two-phase region (see Fig.
1) a dynamic instability occurs. 38 If concentration
fluctuations are small initially, we can neglect the
quartic coupling in (6.2) and write (6.1) in Fourier
space as38

8,(„+N = D(k)k'-t}„

with

D(k) = —
l D, l

+ (As T/g)k',

(6.5)

(6.6)

where N is a nonlinear term. Since x &0 below
T„DO ——Xks Tr/gt is negative, as is D(k} for small
enough k. According to (6.5), concentration fluc-
tuations will be amplified with a maximum growth
rate occurring at

(6.7)

I 5 I 7
rogio(2)

A~, ot
O

(ao0

ii
~ F

A7 -eI
oa3 1 3 e 7

lag 1O(&)/lOS iO(2)

FIG. 14. The inverse cascade of concentration fluctuations obtained by introducing a random forcing in Eq. (1.8).
The spectrum of both the concentration and the kinetic forcing peak at k =—k 0

—1, and are normalized such that

foF„( )dkk=J"F (k)dk =1. The initial conditions are E„(k, t =0) =C(k, t =0)=0. The viscosity is v=sx 10 3 and the
Prandtl number is P =1. Time is measured in units of the velocity turnover time at k = ko. The inset shows II (k) at
time t =247. The lack of linearity of the concentration spectrum in the region where H, (k) is k independent is a con-
sequence of the waves trying to produce equipartition between C(k) and 2k C(k). The peaks of C(k) at different times
line up, however, with a+3 slope.
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The wave vector k determines the initial size of
droplets of A and B phase which form from the
uniform mixture and then coarsen. 9 Experimen-
tally, laser light scattering experiments reveal a
striking ring-shaped intensity pattern (with a
radius of order k '), which shrinks in time as the
mixture coarsens. e

The negative diffusion constant appearing in
(6.5) injects concentration fluctuations at wave-
lengths comparable to k ', which can be of the
order of several thousand angstroms. 9 The con-
ditions are then ideal for the inverse cascade of
concentration fluctuations discussed in Secs. II
and III of this paper: If appropriate equilibrium.
Langevin noise sources act on (1.9) and (6.1), it
is straightforward to show (neglecting the quartic
coupling) that the system relaxes toward a dis-
tribution function of the form (2.5), with

B=r g0. (6.8)

As we have seen, a negative B is associated with
a possible inverse cascade.

An inverse cascade is already contained in the
closure equations (4.2)-(4.5). In Fig. 14, we show
the result of artificially injecting concentration
fluctuations by adding a random force to the right-
hand side of (1.8) with ct =1. There is a time-de-
pendent infrared cascade of concentration fluctua-
tions with the spectrum predicted by (3.32),

C(k)-k ~~3. (6.9)

Although the conditions in real mixtures are dif-
ferent from those in Fig. 14, we expect that a re-
lated inverse cascade may in fact appear at in.-
termediate times- in phase- separating binary mix-
tures. Of course, the quartic term in (6.2) ulti-
mately becomes important for stability during the
late stages of phase separation. Equation (6.2)
then acquires a third-order nonlinearity and our
analysis must be revised.

Complete phase seyaration can be prevented if
the mixtures are stirred violently at long wave-
lengths. The Kolmogorov cascade of velocity
fluctuations toward short length scales will mix
the phase-separating fluid when it collides with the

inverse cascade mentioned above. For large
Reynolds numbers, an unusual steady state should
develop. We hope to investigate this problem
using the closure and phenomenological ideas
developed here in a future publication.
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where A, B, and C are constants and, of course,

k v, =-0. (A5)

There is no cross coupling between g, and g2. This
equilibrium distribution is associated with the con-
servation of the squared integrals of |), and $2, as

well as of E„, defined by (2.9) in the absence of
forcing and dissipation. If g& is allowed to relax
to zero in (A1)-(A3), one recovers the model of
'symmetric" binary mixtures studied in this

paper.
Taking over the analysis of Sec. II, we see that
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inverse cascades in both g, (k) and $2(k) are possi-
ble. As discussed in Sec. ~, one might expect an
inverse cascade of concentration fluctuations in
the two-phase region of Fig. 1 where 8 is nega-
tive. If the mixture is above its consolute point,
it could still be near an ordinary liquid-gas criti-
cal point, described by the order parameter P2.

'

Nell within the region of two-phase liquid-gas co-
existence, C would be negative and an inverse
cascade of |rt, is possible.

Model parameters like n and P can be estimated
by appealing to absolute equilibrium. Returning
to symmetric binary mixtures, we can estimate
o by noting that the equilibrium probability dis-
tribution above T, should be of the form

+—P;t(k) g 4(P)4(e)q, (P' q')-,
A=p+q

(Bl)

(&t+»')l(k)=-f P q u(&)P(q)
k=P+ q

where

(82)

u, (k) =P; t( k)v t(k),

P;tt(k) =kt P;, (k)+ktP;t(k),

and P;t(k) is the transverse projector

(83)

(84)

(8t+ vk2)u;(k) = ——P;t, (k) Q v;(P)vt(q)
k= p+q

(P ~ e-F/Aa T (A6) k;k~P,t(k) = 5,t— (85)
with [compare with (6.2)]

t'fd "=( mi~l'+'-*' x't'I't-I'+!x 't'~-

o.(T) = ]'(T)/mX(T). (A8)

Here we work in the mean-field approximation,
where

1 1g(T)- (T T (f/2 X T (T —T [
' (A9)

so n is approximately temperature independent.
Evaluating n far above T, for convenience, we

take X(T) to be the concentration susceptibility of
an "ideal" binary mixture

(AV)

Here, m is the particle mass, g is the correlation
length, and X is concentration susceptibility. Com-
parison with (2.5a) gives immediately

8t t=&123t2 3+1523 )'2t)'3t+Lt2 t+2f ,t

8tft ~t23~2~3+ +12~2

(86)

(87)

The subscripts in (86) and (87) represent both
vector indices and Fourier components, and a
summation convention compatible with conserva-
tion of momentum is assumed. The vertices r,
P, 5, L",L~ are defined by comparison between
(86), (BV) and (81), (82).

To obtain the hierarchy of cumulants with max-
imum economy in the algebra, we introduce two
auxiliary fields p and tjt, and define the moment
generating functional as

2 (gtPtilt+t4ltg ) (88)

It is very convenient to introduce a self-explana-
tory and more compact notation in which Eqs. (81)
and (82) read

X(T) = I/k~T . (A10)
Averages can be obtained from p by differentia-
tion:

~(t,r)'" (A11)

In this same limit we expect the fluid shear vis-
cosity to be of order of an interparticle separation
times a typical particle velocity, (89)

(ttt t't2t ~ ~ ~ it't Pttr ~ ~ itjt
1 2 n m

=1 ~n+m+

5&t, & ~ ~ ~5&t 54t i ~ i 54't g=y=of

Using (86) and (87) we obtain for Z the equation

Inserting (A10) into (A8), we have finally

Q V ~ (A12)

Note that e is not related to the mixture concen-
tration diffusivity, which vanishes near T,.

ri2a &' ~i2S
ZPg +

p g2
+tQt .2 5 5 Z,

P2
(810)

APPENDIX B: DERIVATION OF CLOSURE
EQUATIONS

%e summarize briefly in this appendix the steps
needed to derive the spectral equations (4.2) to
(4.5). One begins by writing Eqs. (1.8) to (1.9)
in Fourier space:

H= lnZ, (811)

that generates the statistical cumulants. H obeys
the equation

where we have omitted the linear terms that do not
pose any closure problem. It is more convenient
to work with a functional H;
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BH . y„6H 6H 6H')( 6„$(
6H 6H 6H

&)

»26&3 6t)2 6&3»' &666@3 64 «3&

P&23 6 H 6H 6H'. i2 ),6P26&t&3 602 6&3
(812)

The equations of motion for the cumulants are now obtained by functional differentiation of (812). The
results that we need are

6H
B 1(4142) 1/3 —P f$4((2(4V3) o P234((1'4V3) o )

f 2 o =a=0
(813)

B,(v,v, ) =yf 34(v2V3V4), + y235(v &v3V4), + 6f34(V2(3&4), + 623,(v fg3g, )„
B,(vf(2&}3) yf45((V5V5$2$3), +2(v4$2)(&C3V5))+6&45(($2$3$4$ ), +2(i( g )(Q |t ))

+ P245((vfv5$3$5)o+(Vfv4)(ij'3/5) +(1 f&c'5)(V4&t3)) + P345((vfv4$2|05) +(Vfv5)($2/5) +(Vf&15)(V4$2)) )

(815)

where the symbol (), means statistical cumulant. For example,

(816)(VfV2V3)o =(VfV2V3) (Vf)(V2V3) (V2)(vfv3) (V3)(VfV2)

One now carries out a short-time expansion of Eqs. (813) and (815), and assumes Gaussian statistics
at t=0. We write, for example,

8 8
(vlvo(t)) (vlv2(t})l, =o+ t 3 (Vfvo«»l &=o (BlV)

In this way, orie finds

Bf(vfv2(t}) =4t(yf34y250(v3v5)(v4v5) +2yf34y355(v2V5)(v4v5) + 6f346250(c3c5)(c4c5) + 6f34p355(v2v5)(c4c5)}

B1(c c2(t)) =2t(2P 6 (cfc )(c c5) + Pf35P250(V3v )(c c0) + P455P&34(v v )(c co)') .
(818)

These equations are, of course, exact in the limit t-0. Returning to the notation of (81) and (82), one
obtains after considerable algebra

B&C &3& To(k} (820)

B,E„(k)= T„(k),

where

T', (&)= ~' '
)Jl Jdpdq( ~ .)

—
I ~' ) p' 'c(q)-s' '~(~)(-~o"-e'))"('(&)((q)(

and

T„(k)= ' t dp dq( i k, b~g„(q)[k2E„(p}—p E„(k)]S, ... ( k
& kpq d-1'

+
k2 p q (p —q }~ 4 (p —q )k C(p)C(q) —

2 d 1 p C(q}E„(k)
~2 d-1

(823)

Ho& (&(t)
—t . (824)

The more elaborate expressions (4.V) agree with
(824) in the limit t-0. The detailed motivation
for choosing triad relaxation times as in (4.V) is

These expressions are identical to (4.4) and (4.5)
in d=3, with the replacements

I

discussed in Ref. 1. Most of our results depend
only on the triad relaxation times satisfying

e&"(t}- tape

eo& (t} 1- 1/ffao

(see Appendix C). The basic assumption is a
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rapid loss of memory ("stochastic scrambling" )
of the turbulent cumulants.

fore,

a=1. (C8)

APPENDIX C: SPECTRAL EXPONENTS

We describe in this appendix how to obtain the
results that we earlier summarized in Table I.
Mathematically, the inertial range spectra are
required to satisfy

The solution of (C6) with the restrictions (C7),
(C8) yields the results of Table I. To get informa-
tion about the cascades from (4.2)-(4.6), recall
from Sec, IVB that we say that there is a cascade
of a quantity Q if the flux

T,(k) = T„(k)=0, (Cl) "g(k) —f )'a(k)kk
0

(C9)

where T,(k) and T„(k) are given by (4.4) and (4.5).
A method which allows us to extract power-law
solutions from (Cl) has been given by Orszag. '

We assume that there exists an inertial range
where

eke a ekkk

p-m

~ q-&

The change of variables

(k, p, q) —(k, p, a) = (k/a) (a, p, k),

dp dq = (k/a)'dp dq

leads to

)k(» ffdk-&k7. (klkk)
~k

dpdcr k o '"' '"'T k pq

(C2)

(C3)

(C4)

where Q is either C or v and e(a, m, n) is a poly-
nomial of first degree in a, m, n. We then choose
values of a, m, n such that e =-0, thereby obtaining

is independent of k (for wave numbers in the iner-
tial range). This is equivalent to saying that there
is a range of values of a real constant A. such that

dq To(q) = dq T(q),
0 0

(C10)

APPENDIX D: SELF-CONSISTENT DETERMINATION
OF THE WAVE PART OF THE TRIAD

RELAXATION TIME

The wave contribution to the spectral equations
of motion is [see (4.28a) and (4.28b)]

(3k~a) r.s = &k I"),(nk C)k —E),/2),

(3,k C~) ~~
=k I'~(E~/2 —c(k C~) k

where

(Dl)

which implies, after an obvious change of variables
in the second integral,

Tg(~ IV, W) =I/&'To(k IP, q) (Cl 1)

It is very easy to check that (Cll) together with

(C2) is equivalent to (C6).

Tq(k) =ff dk da )'~ (k(ka)

dpda gq g pk (C5)

k

I,= — dq 6...q'c(q) l.
0 ]

(D2)

This shows that relaxation to equipartition takes
place in a time of order

Symmetrizing and using the detailed balance con-
ditions (4.11) and (4.12) we see immediately that
(Cl) is satisfied. Thus, to obtain the inertial
range exponents, one just has to solve

e '=-'k'Z', .
Since it follows from (4.7) that

(D3}

(D4)

e(a, m, n}=0. (C6)
we can combine (D2) with (D3) and find

Equations (4.7) to (4.9) for the triad relaxation
times lead to additional relations between a, m,
and n:

(i) In the regimes where it is legitimate to
neglect the contribution proportional to C in

(4.9), we have

3-na=
2

(C7)

(ii) In the wave-dominated regimes is the term
proportional to C~ which is negligible. There-

k

e~„2,= k2 dq q2 C (q) .
0

This suggests we set C„—= 1 in Eq. (4.9).

(D5)

APPENDIX E: HYDRODYNAMIC SINGULARITIES
IN THE MARKOVIAN RANDOM-COUPLING

MODEL

We present here the derivation of (4.17). We
start from the Markovian random- coupling- model
version of Eq. (4.3) with u—= 0, namely,
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P k2C 8 1
Q dP dq

Ec= dk k2Ca,
0

we obtain, after some simple manipulations,

d—E~= d
' B~fff Odd Pd(qsinP)

d

(E2)

x EqC—,(k2 —q2) . (E3)
kq

x ' (a'-'C —q'-'C ) .d-1
(E1 )

Integrating over k, and recalling the definition

Introducing polar coordinates with P as the
aximuthal angle, all the integrations can be done
explicitly, with the result

d 4S, , I ( )I (d+,'-)
df o (d —1)S~ I'[(d + 2)/2]

The enstrophy 0 is defined by Eq. (4.16). The de-
rivation of Eq. (4.17) from (4.2) is very similar,
and can be found in Appendix 4 of the review by
Bose and Sulem.

Similar, but more complicated equations can also
be derived for Eo(t) and A(t) for ne0. They sug-
gest the sharp onset of dissipation shown in Fig. 13.
The results are analogous to those of pouquet for
MHD turbulence.
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