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Excitation of convective cells by drift waves
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Parametric excitation of convective cells by drift waves is considered. Noting that the convective-ce11 fluctuation of
the electrostatic potential is much larger than that of the density, we derive a set of coupled differential equations
describing the interaction of the drift waves and the convective cells. For a weak pump, a general dispersion relation
which describes three-wave decay and modulational instabilities is given. The growth rate of the latter is found to be
generally smaller than that of the decay instability. Our analytical result agrees with computer simulation in which
enhanced cells appear in the presence of drift-wave turbulence. The problem of anomalous cross-field diffusion is
also discussed.

I. INTRODUCTION

Numerical simulations' have shown that vortex-
like convective-cell motion' ' plays an important
role in the diffusion of plasma across an external
magnetic field. The cells appear as a resu1t of
particle convection in crossed electric and mag-
netic fields at the drift velocity cE & B/8'. Being
homogeneous along the magnetic field, these
modes are characterized by their two-dimension-
al nature gr„=0) as well as aperiodicity (Re& =0).
Convective-cell motion is therefore similar to
that of two-dimensional vortices in a incompres-
sible fluid, both motions being divergence free.
In the presence of collisions, the cells are damp-
ed because of ion viscosity p. , leading to a normal
mode with purely imaginary frequency. An im-
portant property' of these cells is the absence of
significant density variation n'., accompanying the
ele ctrostatic potential fluctuation (pg't/n, «eP/T, ).
The slow motion of the convective cells can lead
to anomalously rapid plasma transport across the
magnetic field even in thermal equilibrium. ' '
The process becomes especially pronounced in
the presence of mechanisms which can cause
instabilities leading to convective-cell excitation.
In the simulations of Cheng and Okuda+' it was
found that rapid generation of convective cells is
associated with drift-wave turbulence in an in-
homogeneous magnetized plasma. They explained
this result in terms of a simple mode-coupling
process' in which initially given linearly unstable
drift waves beat to excite the convective cells.
Sagdeev et al.' reconsidered the problem self-con-
sistently in terms of a three-wave decay process.
Their results are, however, of limited applica-

tion. The reason is that they assumed that the
density perturbations in the two-dimensional low-
frequency motion are much larger than that of the
electrostatic potential (vi't/n, » eg/T, ) . This, ex-
cept for very large wavelengths, is in contradic-
tion to the basic properties of the convective cells.
Using a wave packet formulation, Mima and I ee'
recently considered convective-cell generation
from a modulationally unstable drift wave. They
assumed three-dimensional low-frequency motion,
and n',./n, =eg/T„which is actually within the
drift wave sealing as discussed by Hasegawa and
Mima. Thus, the convective-cell motion consid-
ered by them is not the two-dimensional one which
Cheng and Okuda found to be most important.
Recalling that the latter are characterized' by po-
tential fluctuations much larger than the density
fluctuations, we consider here in detail the non-
linear coupling between finite-amplitude drift
waves and convective cells of this kind.

In the next section, we present the basic set of
equations which govern the dynamics of drift
waves and convective cells. %e then obtain a
coupled set of equations describing the drift and
convective-cell modes together with their para-
metric interaction. A general dispersion relation
for the weak pump case is given in Sec. III. In
Sec. IV, we analyze the three-wave decay inter-
action leading to a purely growing instability.
Explicit expression for the growth rate is obtained
and its dependence on the va,rious plasma para-
meters is discussed. A four-wave process which
gives rise to a new kind of modulational instabil-
ity is considered in Sec. V. It is found that in
general the decay process has a higher growth
rate than the modulational instability. The corre-
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sponding plasma diffusion is discussed in the last
section.

II. DERIVATION OF EQUATIONS

%e shall use the fluid equations in the drift
approximation to describe the coupling between
the drift waves and the convective cells because
all the frequencies involved are much smaller
than the ion cyclotron frequency. In the absence
of magnetic shear, the governing equations are

~~/~+ Q 's.v -= Oy

v~,. =D,. «V' ——&, + vj,, ' V' —p, V' 7'

(2a)

e.
Pd.

v'e = 4w g e,n, ,

(2b)

~g A Dq&vy
v~~. =Dye x Vyt 0,. 8t

D2
(e xvg v)vy+(2xvy v)v(, (4)
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where'D= ID, I, q=l+T, /T„p. =3@.p./]pfl. , p.
= (T,/m, A',.)'~', and v,. is the ion-ion collision fre
quency. The potentials p and t/r are normalized by

where n&=n, Q)+n&(x, t), Q,. =e,B/m c. , D,. .=cT,/
eP. The external magnetic field B is taken to be
along the g axis. The other notations are stan-
dard.

For a low-P plasma, the parallel phase velocity
of the drift waves lies between the ion and elec-
tron thermal velocities. The electrons maintain
equilibrium by streaming along the magnetic field,
so that n~ =n, (x)ep/T, . The ions move in a plane
perpendicular to B. On the other hand, for con-
vective cells both ions and electrons move per-
pendicular to the magnetic field, and the potential
fluctuation P is much greater than the density
fluctuation n', /no«e)'/T, . -Decomposing the field
quantities into their high- and low-frequency com-
ponents, that is 4 =P+g, n,.=n, (x)+n~&+n,' , and.
v» =v,"&+v",&, we obtain

T,/e. Note that the electron E x B drift is exactly
canceled by its diamagnetic drift. Hence, there
is no net perpendicular electron drift.

Matching terms of the same frequency in the
ion continuity equation, and using (4) to (6) as well
as the quasineutrality condition, we find an evo-
lution equation for the drift waves including the
effect of the slowly varying potential P of the con-
vective cells,

(1 —'qp, V )&,g —'gp, Q)vp xe 'Vlnno

Dvg x-e 'vp

+D p,q(VJ xz ~ VV Q + Vg xe ~ VV2$) .
Here, as well as in the dynamics of convective
cells discussed below, we neglect nonlinear self-
interaction terms.

Next, matching terms of low frequency (that is,
for the convective-cell mode) in both the electron
and ion continutiy equations, using (3) to (6), one
readily finds an equation for the two-dimensional
convective cells including the effect of beating of
the high-frequency waves, '

e, —— ' v'Iv'. g= ((vy xe V)v'y), (8)

where the angular brackets denote time average
over a drift wave period. We have defined a = (A,/

Since the convective cells involve rather weak
density fluctuations (n', /n, = —x'v'eg/7, where X,
is the electron Debye length), the usual density-
ponderomotive force relation does not hold. Here,
the ponderomotive force term originates from the
nonlinear ion flux due to the nonlinear ion polari-
zation drift, since the electron perpendicular
drift vanis-hes, and the contribution due to n",.v", is
smaller by a factor ~J*Gp2~,', where &o,*=-cT,k,
x2 ' VlnngeB is the drift frequency and k, is the
wave vector of drift waves.

Before proceeding to analyze (7) and (8),
'

we

should point out that for the case simulated by
Cheng and Okuda, &' in which T,/T, =4, the as-
sumption k~,. «1 required for the fluid approach
is only marginally satisfied. Since for the decay
and modulational instabilities we are considering,
the waves in the k~, -1 range of the drift-wave
spectrum are of dominant interest. This is be-
cause only in this, part of the spectrum waves with
similar values of frequency and parallel wave
vector, but different perpendicular wave vectors,
exist. Only such waves can couple parametrically
to convective-cell modes having zero frequency
and no parallel wave vector. However, due to the
particular functional dependence of the dispersion
relation on k~, when kinetic theory is used, it
turns out that the fluid approach is adequate. '
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III. THE DISPERSION RELATION

We now consider decay and modulational insta-
bilities of drift waves in the presence of convec-
tive cell motion. For this purpose, we split the
high-frequency potential in (7) and (8) into three
components, namely the pump and the upper and
lower sidebands. Thus,

2

(~+ir)q=iD ",,"&&k, &k (k' k',)y,yP 1+a)
—k, (k', —k2O)g o*g,),

(10)

where I'=p;k~/(1+a) and b—= 1+q(k2 —k~jp, . Com-
bining these equations, we obtain the following
general dispersion relation for decay and modula-
tional instabil. itic s,

~+i 1"= —D, , ~g & k 'k~
k (1+a)

k' O' 'I

x ~ + - "'
(~y, ~2 (12)

where

o', = (1 +qk~,')(co, —(u, )

&~ = cu,*/(1+rtk2, p~).

Equation (12) describes the parametric coupling
between drift waves and convective cells.

y = yoexp(-i(ug+ik, 'x)+ y, exp(- i(u, t+ ik, 'x)

+P exp(-i~ t+ik 'x),
(9)

where ~,=(d a&p and k, =kakp. The low-frequency
potential g is assumed to have a time-space de-
pendence of exp(-i~t+ik'x). Equations (7) and

(8) then become

0

(~, Dg xk, 'Vlnno+p, 'g(dP', )Q, =+iDg x4'kP

and Mima, ' ' who considered decay within the con-
vective motion of the drift waves. We emphasize
that although (13) is similar in form (but different
in the coupling coefficients) to the result obtained

by Sagdeev et al. ,
' the physical processes involved

are quite different as'discussed earlier.

V. MODULATIONAL INSTABILITY

Here, we assume both sidebands are active and

that the wavelength of the modulation is much
smaller than that of the pump. The dispersion
relation (12) becomes

4D'bq'lz ~k k„i'k„k
k (1+a)(1+qk~p2)

(14)

where &(d=& —~k «~p is the frequency shift.0 kp
instability occurs if (k, k&~) &O. For
and I', the growth rate is

) k„.kg(/ )
&/3

(1+a)(l+qk p ) ~ 0

Thus, in general the decay instability is more im-
portant than the modulational instability. For in-
teraction among drift waves of nearly the same
wavelengths, we have

M~11D

We note that the modulational instability discussed
here differs from that of Mima and Lee.' They
considered modulational instability of drift waves
within the drift-wave spectrum, in that the drift-
wave scaling n,' /no- eg/&, is. also assumed for the
low-f r eque ncy motion.

VI. DISCUSSION

IV. DECAY INSTABILITY

Here, we assume that only the lower sideband
is resonant. For ~k

~

« ~k, ~, we found a purely
growing instability with growth rate

&.=(1,.)(1,„k, )

(13)

where yD» I' has been assumed.
Energy is pumped into the convective cells as

well as long-wavelength drift waves by this pro-
cess. Thus, this decay reinforces the process of
large-scale eddy formation discussed by Hasegawa

We have considered modulational and decay in-
stabilities caused by interaction between drift
waves and convective-cell motion. Inherent non-
linearities which produce mode coupling within
the drift or convective-cell spectra are of higher
order in &,/0,. and are therefore not included in
our stability calculation. We have shown that for
the convective cells (n',./no«eg/&, ) observed in
the simulations, the coupling coefficient between
drift and convective-cell branches is smaller than
that proposed previously and scales with com-
pletely different parameters. Using the parame-
ters in Cheng, and Okuda's simulation, '' we ob-
tain from (13) a convective-cell generation time
of r =600~~, which is in much better agreement
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to the simulation result than those of Hefs. 6 and
V.

The maintenance of an overall stationary spec-
trum can be visualized as follows. The energy
pumped into the drift waves, for example, by the
universal instability, is first transferred to the
convective cells by the instabilities considered
here. It is then lost by plasma diffusion due to
viscosity or destruction of the organized convec-
tive-cell motion. To consider this problem one
must include the mode-coupling terms in the con-
vective cell equation. Such a calculation is rather
complex and shall not be attempted here. Instead,
we mention that rough estimate such as that of
Sagdeev et al. ' shows that enhancement factors

(convective-cell energy density versus equilibrium
thermal-energy density) on the order of 400 can
occur and can thus cause considerable diffusion.

Inclusion of finite-P effects, "kinetic effects,
magnetic shear, as well as the toroidal geometry"
in the present investigation is in progress and the
results shall be presented elsewhere.
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