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Annihilations of stationary particles on a lattice
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The time evolution of a system of particles which initially occupy points on a lattice and subsequently undergo
pairwise annihilation, is investigated with the help of the Master equation. An exact analysis is given for a one-
dimensional lattice of finite as well as infinite extent. Hierarchy equations are derived with the help of a generating
function technique, and are solved to give expressions for the number of particles, pairs, and n-tuples for arbitrary

I

time. Computer calculations for the number of singletons left behind are given for lattices of various sizes and shown
to be in complete agreement with the analytical results. The motivation of this study comes primarily from

pycnonuclear reactions in the interiors of dense stars and secondarily from recombination of free radicals on surfaces
and annihilation of Frenkel excitons in molecular crystals.

I. INTRODUCTION

Systems of mutually annihilating particles occur
in various fields of physics; The annihilation
process may stem from nuclear reactions, chem-
ical combination, or other interactions. The
present paper was motivated by a problem con-
cerning the so-called "pycnonuclear" reactions' '
in the interior of dense stars, but it should be of
interest also in the area of chemical reactions
on surfaces, e.g. , the recombination of con-
densed-gas radicals, ' and in the context of exciton
annihilation in molecular crystals. "

At the high densities in the cores of stars near
the end points of stellar evolution, the nuclei of
atoms become frozen into a regular crystalline
lattice structure. If the stellar matter is com-
pressed to densities that are sufficiently great,
as in the core of a presupernova star, for exam-
ple, nuclear reactions can be caused even as a
result of the zero-point motions of the ions about
their equilibrium lattice sites. These are termed
pycnonuclear reactions. ' ' Their rates have been
previously calculated in the limit where the frac-
tional concentration of the reacting species is-

approximately unity. No calculations have been
reported, however, in the opposite limit of small
concentration. This situation differs significantly
from the case in which the reacting ions are trace
elements in a gas. In the latter case, the reaction
rate at low concentration is simply proportional
to the product of the concentrations of the reacting
particles, because it is equally probable that a
reactive ion may be found anywhere within the
gas. However, in a lattice, where each ion is
restricted to the vicinity of its equilibrium lattice
site, it is easy to see that reactive ions may be-
come isolated by the previous history of the re-
action process and may therefore remain isolated
indefinitely. This has two important consequences.

First, when all reactions that can take place have
occurred, a finite concentration of singletons may
be left behind. Second, the volume-averaged re-
action rate must rapidly approach zero as the
concentration of the reacting species approaches
this asymptotic concentration of singletons.

Reactive free radicals of gases such as oxygen
and hydrogen, produced through dissociation as
a result of passing the gases through a discharge,
provide another example" of the above physical
process. When the free radicals are condensed
on surfaces at low temperatures, they combine
with their neighbors. Here again, when all pos-
sible reactions have occurred, a finite concen-
tration of singletons may be left behind. The time
dependence and the asymptotic value of the number
of radicals are of interest in this context.

Yet another example of a physical phenomenon
involving the above process is exciton annihilation
in molecular crystals. "Optical absorption in
molecular crystals generally results in the for-
mation of Frenkel excitons which may annihilate
one another. While it is true that in contrast to
the above two cases motion within the crystal is
of considerable importance in the exciton con-
text, a study of the process under investigation
in this paper will provide a starting point for the
analysis of exciton annihilation at high exciton
densities.

The process of pairwise-annihilation inter-
actions among particles on a lattice is thus of
interest in a variety of contexts in astrophysics
and in chemical physics. In this paper we restrict
ourselves to the following idealization: We con-
sider a rigid lattice, each of whose sites may
either be occupied or unoccupied by a particle.
Only particles which are nearest neighbors may
undergo reactions. They do so with a constant
reaction probability per unit time, and when a
pair of particles has reacted, they annihilate

3200 1981 The American Physical Society



ANNIHILATIONS OF STATIONARY PARTICLES ON A LATTICE 3201

each other, leaving the lattice sites they had pre-
viously occupied empty. The sites are all occupied
initially and we address the problem of calculating
the time dependence of the volume-averaged re-
action rate, and the asymptotic concentration of
singletons left at infinite time.

The plan of this paper is as follows. We for-
mulate the problem in Sec. II with the help of a
Master equation for the probabilities of realiza-
tion of the possible configurations in the lattice.
We give an exact analytic solution for the one-
dimensional system in Secs. III and IV and dis-
play explicitly the time dependence and the as-
ymptotic limit. The analytic results are com-
pared to those of computer simulations in Sec.
V. Concluding remarks, including a brief dis-
cussion of the source of the difference between
our results and those of an earlier analysis' of
a related problem, are presented in Sec. VI.

II. FORMULATION OF THE PROBLEM

I
&) - lc» o'2~ (2.1)

The system state is specified by giving the values
of the probabilities P~(t) that the configuration

l
$) is realized at time t. The time evolution of

the system is given by the Master equation

dP, (t) = ~~ [R„,P, , (t) -R, , P»(t)],
ft

(2.2)

where R«, is the transition rate from state
l
g')

to state
l
$).

The number of particles at site j (j is generally
a vector) is o'»:

We address the problem with the help of a Master
equation for the probabilities of realization of the
various configurations. We define variables o',
each of which can take the value zero or one.
These correspond, respectively, to the site m
being empty or occupied by a particle, and m can
be a vector of appropriate dimensions. A system
configuration is given by a set of 0's and is rep-
resented by l5), l$'), etc. Thus, for instance,
in a one-dimensional lattice of N sites

v&= a&P, t . (2.3)

The quantity of primary interest to us is the ratio
of the number of particles at time t to that num-
ber at t = 0, or equivalently to N, the number of
lattice sites. This ratio is given by

f,(t)= ~ K~I (2.4)

As we show below, a set of evolution equations
for the quantity f,(t) can be extracted from (2.2).
We shall see that a hierarchy of coupled equations
similar to the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy' is obtained and that
exact solutions can be found for the one-dimen-
sional system.

For the sake of clarity as well as analytic
tractability, let us restrict our analysis to a one-
dimensional lattice with nearest- neighbor anni-
hilation interactions. The indices i, j, m, etc. ,
are now scalars. The Master equation (2.2) takes
the form

=RQ [o', »»»', », Pt. (t) —o', „P, (t)J, (2.5)

where R, a constant, is the rate for nearest-
neighbor annihilation. The summation in (2.5)
is over the sites of the lattice in contrast to that
in (2.2) which is over the configurations

l
( ). The

superscript gI in the first term on the right side
of (2.5) denotes the state

l $I) wherein all o's have
the same values as in the state

l $), with the
exception of o'I and o'»,., These equal (o'»»+ 1) and
(a»'. ,+I), respectively. In other words, in (2.5),

c»= v»'(1 —5»»)(l —5», »»)

+ (»»,
'» —l)(5», + 5... ,.) . (2.5)

Note that we consider the lattice to be either a
finite ring (i.e. , obeying periodic boundary con-
ditions) or infinite. It is therefore unnecessary
to include separate terms involving o, , in (2.5).

A useful device in analyzing Master equations
is the transformation to a generating function'
equation. We define the generating function
U(z, t):

p(z„z„.. .z, . . .z„,t)= gg g g [(z,) '(z, )
'

~ ~ ~ (z„) "~ ~ ~ (z„)' P(t))»,
j. 2 N

(2.7)

sv(~, t)
O'J =

Bing

(2.8)

I

where each summation contains the terms cor-
responding to o =0 and o =1. All states

l
$) are

thus "sampled" by U(z, t). An immediate con-
sequence of (2.7) is

s'V(z, t)
g+& 8$ gg g g.

(2.9)

where z =1 represents z =1 for all m's.
All the information about the system evolution

contained in the Master equation (2.5) is also
included in the generating function equation
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eU(z, 7) ~ e'U(z, r)
er ~ ez. ez.i i i+j.

which may be obtained from (2.5) and (2.7}. Note
that we have put Rt = r in (2.10).

(2.10)

III. HIERARCHY OF COUPLED EQUATIONS

The initial conditions satisfied by the gen-
erating function can be written from those satis-
fied by P&(t). Since all lattice sites are initially
occupied by particles, P~(0) is zero for all f's
except that for which all 0's equal 1. For this

$, we have P~(0) =1. Substitution in (2.7) gives

U(z» z». . .z~, . . . zN, 0) -z, z2. . . z~. . .z„.
(3.1)

There are also the following additional conditions:

e'U(z, r) e'U(z, r)
8+2 (3.2)

8
a, (1 —z, z„,) = —(z„,a„,+z„„a„),

f g
(3.3)

where a, is arbitrary, straightforward differen-
tiations of (2.8) give, for instance,

which hold for all times and arise from the fact
that two differentiations with respect to the same
z would produce a product of o„and (o„—1), at
least one of which is always zero, since o =0 or
1. From (2.8) we now derive a hierarchy of cou-
pled equations for the quantities eU/ez, e'U/
ez ez .„etc. We shall first consider N=~ (i.e. ,
an infinite chain} and later on allow N also to be
finite. Using

8 8U 8'U a'U " 8'U
87' BZ m SZ ~Z m+ BZ 8Z

g +g + 1-z z ),ez ez. ez.m-1 m m+& i & m i i+&
(3.4}

e'U
8g 9 ~8 . 8

(1-z,.z, ,) . (3.5}

We observe that (3.4) and (3.5) are, respectively, the )7= 1 and 2 cases of the general equation

~ ~ ~ ~ ~ ~ ~ ~ ~

8"U gf)+1U lU

8'f)+2 U
+

i
~ ~ ~. ~ Bz Bz „~ ~ ~ 8z,„~Szi Bzi, ,

(1 —z, z„,) . (3.6)

df„(T)" — + ()7 - 1)f„(T)= -2f„.,(7 ) (3.7)

Differentiation of (3.6) with respect to z,„and
use of (2.8), (2.9), and (3.3) gives an equation
which is identical to (3.6) except for the replace-
ment of g by g+1. We have thus established the
validity of (3.6) by an induction proof. For we
have shown that assuming it is valid for g we can
prove its validity for q+ l. And from (3.4} and

(3.5) we have demonstrated its explicit validity
for g=1 and 2.

The average number of particles at site j at a
time f is given by (2.3). From the symmetry
inherent in the initial condition of our problem
it is clear that o& is independent of j. Equation
(2.4) shows that it equals the fraction f,(t) of the
initial number of particles left at time t. Denoting
by f„(t), the quantity o~o,., ~ ~ ~ o~.„„we find that
the replacement z=1 in (3.4)-(3.6) gives

df (T)
( )

d~

(ff,(r) +f,(r) = -2f, (r) .

(3.8)

(3.9)

IV. EXACT SOLUTION

We Laplace transform (3.8) and develop an
infinite series for the transform of f„(r) by re-
peated substitution of (3.7). We define the trans-
form

Equations (3.7)-(3.9) constitute a coupled hi-
erarchy of equations. Such hierarchies are typical'
of many-body systems. In more general cases
such hierarchies can be solved only approximately
through truncations and such procedures. How-
ever, for the present system, we shall give an
exact solution in the next section.

with particular cases
e(e)= I dre rr(r)"

0
(4.1)
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for any function g(r). The observation that the
initial conditions of our problem give f„(0)=1 for
all g, leads then to

valid for all times

f (~) =f (~)+ [f1(~)»f1(~)1. (4.11)

1 (2) (2)'
««(«+1) «(«+ I)(«+2)

(' 2)N~ «(«+1) ~ ~ ~ («+M)
(4.2)

(4.3)

Collecting coefficients of e "for E = 0, 1, 2, . . . ,
etc. , we obtain from (4.3},

The use of partial fractions allows the Laplace
inversion of (4.2) into

(-2)"(-1)'
(M,)

'"'

For the sake of completeness we now comment
on the modification that occurs in Eqs. (3.4)-(4.11)
when the lattice is not infinite but is a ring of N
sites. Equations (3.4)-(3.6) have now only a sum-
mation from i =1 to i =N but are otherwise still
applicable. The result z .„,=z „which is a

. consequence of periodic boundary conditions,
gives

B7' & Bz Bz „~~ ~ Bz,~ 2
+(N-2) I

BNU
m+N-&

)'(r)=e 'l)+2e '+ +
)

(2e ')'
2!

~2{(me + )=e (4.4)

BN~1PN

BZ BZ y Bz 2 BZ BZ~ ~ ~
(1 —z, z...).

(4.12)
Equation (4.4) is one of the primary results of

this paper. It shows that the fraction of occupied
sites reduces from the values 1 at t = 0 to e '
= 0.1353 as t- . This latter limit may also be
obtained directly from (3.11}with the help of an
Abel ian theorem:

( 2)N
lim f,(r)= lim «f, («)=

&

=e '.
7'm ()0 6~ 0 N=o

(4.6)

It is possible to obtain the exact solution for all
members f„of the hierarchy. Repeated Laplace
transforms of (3.7) give

(-2)
«+q-1 («+(7-1) («+r!)

( 2)2

(« + 0 - 1)(« + )7)(« + '(!+ I)

-f,("n- 1). (4.6)

The Laplace inverse of (4.6) shows that f„(r) is
connected simply to f,(&):

f (r) e (tt 1)Tf (r)-- (4.7)

f (7.) e Te -2(1-+ )- (4.6)

It is also of interest to eliminate w and express
the f„'s in terms of f,. For this purpose we write
(4.4} as

e '= 1+2 [lnf, (r)] .

Equation (4.7) then gives

f.(» =(1+2 [»f1(&H)" 'f1(&) .

(4.9)

(4.10)

Its particular case for &=2 shows the relation
between the fraction of particles and of pairs

In particular, f2(r), the fraction of adjacent pairs,
is given by

Since the second equality in (3.2} makes S2U/

Bz~ = 0 for any pR& and zm zm+N& the last term
in (4.12) is identically zero. The next differen-
tiation with respect to z .„,produces

( B BNU
+N

i Bl Bz Bz,l BZ,N-1
(4.13)

Equation (4.13) gives

df (7) Nf ( ) 0
cfT

(4.14)

~ ~
~ ~

(-2) -' «+N-1
«(«+1) («+N —1) «+N

The correction factor in (4.16) removes («+N-1)
and introduces («+N).

It is straightforward to invert (4.16) and ob-
tain f1(r) as a finite summation of exponentials.
We shall not give the details. However, we shall
exhibit the asymptotic limit of f,(r) for use in

which differs from (3.7) in two ways: there is no

coupling to any higher member of the hierarchy,
and the decay rate of f„ is proportional to Ãf„
rather than to (Ã 1)f„. The-general hierarchy
equation for the finite ring is therefore (3.7) for
rI&N and (4.14) for q=N. Thus

df„(T) +()7- I)f„(&)=-2f„„(r)

[2f,(7') -f (r)] (4 15)

where q assumes values smaller than or equal
to N. The N=~ result (4.2) is now replaced, for
the finite lattice, by

( 2)N

a(c+)) (&+M))
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. the comparison to the numerical simulations to
be carried out in the next section:

TABLE I. Ensemble average number of singletons left
at the end of Markov pair-annihilation sequences on one-
dimensional rings.

e- 0 &fi(")}

(4.17) 0 0c

0.3333
The difference between (4.15) for the finite ring
and (S.V) for the infinite ring, which we discussed
above, makes its presence felt through the "end-
correction term" in (4.17).

V. NUMERICAL SIMULATION

Generalization of the analytic results presented
in Secs. III and IV to systems of more than one
dimension appears to be a difficult task. In order
to provide a basis for carrying out numerical
simulations of the pair-annihilation process in
higher dimensions, we have therefore begun a
number of such simulations in the one-dimen-
sional system. We display the infinite time limit
of the fraction of singletons left behind obtained
in this manner. It will be seen that complete
agreement with our analytic results occurs.

We begin with a ring of N sites, each of which
is initially occupied by a particle as in Fig. 1.
To take the first step in the resulting Markov
sequence, we select one pair of lattice sites at
random and allow the particles to react, anni-
hilating each other. We are then left with a lattice
in which two of the sites are empty, leaving N,

6

lO

FIG. 1. Example of a Markov pair-annihilation se-
quence on a one-dimensional ring.
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'Analytic result from Eq. (4.17).
bNumerical result from the average of L Markov

sequences.
Exact result, holds for all Markov sequences.

=N-2 singletons and N, different pairs which are
available for subsequent reactions. For a ring,
N, =N, =N i.nitially, and N, =N —3 after the first
Markov step. To make subsequent steps in the
Markov sequence, we again pick a particular pair
of lattice sites at random. Now, however, we
must first make sure that both sites are occupied
by particles; if either lattice site is empty, no
reaction can take place for that pair. In this case,
another pair of sites on the lattice is selected at
random, and the site occupancy tests are repeated.
The first pair of randomly selected sites to be
identified in this way, both of which are occupied,
terminates the search. Both particles are an-
nihilated, completing this step of the Markov
sequence. This process is continued until there
are no pairs of particles left on adjacent lattice
sites, at which stage we have reached the end
of the Markov pair-annihilation sequence.

Because the fraction of singletons left at the
end of a Markov pair-annihilation sequence, which
we denote by f, (~), depends upon the (random)
sequence of annihilations, different Markov se-
quences lead to different values. A particular
example of such a sequence on a ring of N =10
sites is shown in Fig. 1; this sequence left two
isolated particles at the end. To obtain the en-
semble avarage number of singletons, we have
carried out large numbers of repetitions of each
Markov pair-annihilation sequence and have
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averaged the results to obtain the results given
in Table I below. The column headings in this
table have the foll.owing meanings: The number of
lattice sites (which equals initial number of parti-
cles) is given inthe column labeled N. The ensemble
average fraction of singletons left at the end of
the annihilations is denoted by (f, (~)) and the
number of configurations in the ensemble is I .

VI. CONCLUDING REMARKS

The agreement between the numerical results
and the analytic predictions is excellent. Note
particularly that for small N, the fraction of
singletons left behind, f,(~), shows considerable
variation with N. It vanishes for N=2, equals
—,
' for N=3, vanishes again for N=4, equals 2 for
N=5, and so on. This nonmonotonic behavior,
whose source can be understood by considering
the annihilation process step by step, is faithfully
reproduced by our analytic results (4.1V). The
last term in (4.17), which provides the end cor-
rection as explained in Sec. IV, oscillates in sign
as N changes and makes considerable contribution
to the behavior of f,(~) for small N As this. term
is proportional to 1/N, its contribution is negligible
for large ring sizes. Therefore f,(~) converges
to exp(-2) =0.1353 in the limit N- ~. The accurate
description of all the variations that is provided
by (4.1V) is a convincing indicator of the validity
of the analytic formulation presented in this paper.

However, our results differ significantly from
those given in an apparently related context by
Jackson and Montroll. They treated the problem
of free-radical statistics by using time-independent
considerations. Their analytical result shows
that the singleton fraction for their problem equals
0.1VV0 as N- ~. As their analysis is also exact,
it is important to understand the reasonfor the
difference. Unfortunately, a direct comparison
for small N cannot be made because the analysis
in Ref. V is for open chains, whereas our analysis
is for rings. It is only for large N that the two

systems become identical.
The method of Ref. V consists of an enumeration

of all possible configurations of the system at
t =. The singleton numbers in each configuration
are added together and the sum is divided by the
number of all possible configurations (at t =~) to
give the expected fraction of singletons. As in
Ref. 7 we shall denote this fraction by f. To
understand why f does not equal our f,(~} let us
examine a ring of six sites and apply the technique
of Ref. 7 to calculate f. If we list all possible
configurations, we find as many with singletons
left at opposite corners of the "hexagon" as with
no singletons left. The fraction f is therefore

(6.1)

which is sometimes said to provide a natural
description of annihilation processes.

We conclude by recalling our primary results
for the infinite system: For the infinite system,
the hierarchy equation (3.V), its solutions

f (f) 2(( 8 R() (6.2)

f (f) e (0 &)Bte-2(1--e
( 6.3)

and the asymptotic limit (4.5); for the finite sys-
tem the hierarchy equation (4.15), its solution
(4.16) for the Laplace transform off, (r), and the
asymptotic limit (4.1V}. We have also developed
approximation procedures and have determined
bounds for two- and three-dimensional systems.
These will be reported in a future publication.

On the other hand, if we begin with all corners
of the hexagon occupied at t = 0 and follow the
actual evolution in time, we arrive at a different
end situation. After any one pair is annihilated,
there are two ways the next annihilation can take
place in such a manner that no singletons are
left, but only one way it can lead to two surviving
singletons. The weight of the state with two sin-
gletons is therefore —,

' in the time-dependent ar-
gument, in contrast to 2 in the time-independent
argument. We thus find f,(~) =—,

' as in Table I.
The difference in our results and those of Ref.

V arises from different weights attached to the
various possible confj.gurations. In Ref. V an
assumption of equal weights is used. In our anal-
ysis we make no additional assumption about the
weights. They are decided by the system dynamics
and are generally smaller than those in Ref. V.

Our f,(~) therefore tends to be smaller than their
f. For large N the result 0.17VO for the eventual
fraction of singletons is exact for the formulation
given in Ref. V. The result exp(-2} =0.1353 is
exact for the formulation given in this paper. Our
formulation is the appropriate one wherever a
fully populated lattice evolves through annihilation
processes as we have described.

We comment in passing that our result (4.4) for
the time evolution of the fraction f,(f} has an
interesting structure. It is exponential at short
times with the exponent -2Rt and its general
form is called the Gumbel distribution. It is en-
countered in contexts as varied as diffusion in
a harmonic well" and vibrational relaxation of a
molecule. " It is ppprly apprpximated by the sp-
lution of a bilinear equation such as
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