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Unstable modes of a quenched fluid interface
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It is shown that the flat interface separating two coexisting phases of a binary liquid is unstable under

nonequilibrium conditions corresponding to quenching the system deeper into the two-phase region. For given

quench depth the instability persists out to a finite wave number k, ; for larger wave numbers surface tension renders

the interface stable. As a by-product of the calculation, the effect of diffusive relaxation on the ordinary capillary-

wave dispersion relation and power spectrum is evaluated. Results indicate that previous experiments were

conducted in a regime in which diffusive effects do not affect the extraction of the surface tension from the power

spectrum.

I. INTRODUCTION
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FIG. 1. Coexistence curve for a typical binary fluid
showing the. miscibility gap 4C and the reduced temper-
ature &.

A recent experiment by Schwartz et al. ' raised
the possibility that the interface separating the two
coexisting phases in a critical binary mixture may
become unstable as the system is rapidly quenched
deeper into the two-phase region. The situation
is depicted in Fig. 1. The system is initially in
equilibrium at temperature T, , and it is quenched
to final temperature

T~ = T,(1 —a)

with final miscibility gap &C as shown. ' When the
system was quenched, a certain amount of struc-
ture was observed in the vicinity of the inter-
face, but none was observed in the bulk. Thus
the quench was not sufficiently deep to induce
homogeneous nucleation in the bulk material.

As pointed out by Cahn' the usual phenomeno-
logical assumptions of local equilibrium suggest
that ordinary nucleation should be suppressed in
the vicinity of the sharp interface and should not

give rise to observable structure. Under these
assumptions particle transfer occurs very rapidly
across the interface and there the system reaches
the final equilibrium compositions characterized
by T&. Hence one is led to consider the possibility
of a special interface instability.

It is not clear at this stage whether the initial
experimental results were caused by such an in-
stability. A more systematic series of experi-
ments is in progress. ' The purpose of this short
paper is to point out that, in principle at least,
such a surface instability exists and to suggest
that the preliminary experimental obser vations
may have been related to the phenomenon.

The instability is related to one well known in
metallurgy, the Mullins-Sekerka instability, which
is driven by supercooling. The boundary between
stable and unstable domains (of parameters) is
essentially due to a competition between diffusion
and surface tension. In the case of a fluid the shear
viscosity plays an important role. However, as
we shall see, at sufficiently long wavelengths the
instability is riot removed.

Our calculation is based completely on macro-
scopic hydrodynamics in which the interface is
considered sharp. Near the critical point of a
simple fluid or typical binary fluid the charac-
teristic width of the interface is experimentally
on the order of the bulk correlation length, ' ' al-
though there is strong evidence' that there is a
nonuniversal dependence on the gravitational
acceleration which plays a stablizing role. We
shall in any event assume the interface is stabilized
and of strictly finite width L. A hydrodynamic
analysis in the regime kL « I can effectively
neglect the finite interface width. This is the
usual phenomenological assumption which we
adopt while recognizing that a complete micro-
scopic analysis for its justification is not yet
available.

Our primary interest is in the character and
characteristic length scale of any instability. Thus
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we make several simplifying assumptions of sym-
metry between the two phases. As a by-product
we shall also evaluate the contribution of diffusive
relaxation to the capillary-wave spectrum as
analyzed by Wu and Webb' and Huang and Webb. '
Under the experimental circumstances it appears
that such contributions do not affect the extraction
of the surface tension from the ordinary capillary-
wave power spectrum.

The remai. nder of the paper is divided as follows.
In Sec. II we briefly review the surface instability
that occurs when velocity fields are completely
neglected. In Sec. III we include the Navier-Stokes
equations to obtain the full dispersion relation
for the surface modes. Analysis of the result
is contained in Secs. IV-VI, while concluding
remarks and a brief summary appear in Sec. VII.

II. INTERFACE INSTABILITY: NO VELOCITY FIELDS

This model neglects any velocity fields and is
thought to be applicable to the situation in solid
alloys. This case has been treated by Langer and
Turski'; however, for completeness and to intro-
duce notation we sketch briefly the analysis.

Before the system is quenched we have the sit-
uation depicted in Fig. 2(a); that is, there are
two coexisting phases, n and P of compositions'
C' and C& in equilibrium. The interface separating
the phases is sharp and planar. A short time
after the quench the situation is depicted sche-
matically in Fig. 2(b). At the planar interface
the concentrations rapidly reach the final equil-
ibrium values C" and C~~ appropriate to the final

DV'C =
et

(2.1)

where we have assumed for simplicity symmetry
in the coefficients

D =DB =D. (2.2)

The diffusion equation must be supplemented by
appropriate boundary conditions. At some instant
the configuration of the surface is shown sche-
matically in Fig. 3. The interface is specified
by the function z = f(x, t) where x is a two-dimen-
sional vector in the plane perpendicular to the z
axis. Because of the curvature, at the inter-
face, C and C~ are no longer the coexisting
equilibrium values of the composition. Bather,
a Gibbs- Thompson relation' requires

u =C —C"=-(&C)l,K,

u, =C, -C; =-(~C)f,~,
(2.3)

where K is the local curvature which we can take
for small displacements as

temperature T& as shown in Fig. 1. However, in
the bulk of the material the compositions have
not yet adjusted as a finite time is required for
matter diffusion, in contrast to temperature equil-
ibration which is taken to be infinitely rapid. Since
we are only interested in the instability or stability
of the planar interface we characterize the non-
equilibrium situation by the initial slopes at the
interface. Hence following Langer and Turski we
replace the solid-line shape in Fig. 2(b) by the
dashed straight lines, the slope of which charac-
terizes the degree of s'upercooling.

The equation which governs the relaxation is
the diffusion equation

0 K=-& g, (2.4)

and as noted &C =C"-Ca' is the final miscibility
gap. The parameter l, is a capillary length. We

(b)
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FIG. 2. The interfacial shape assumed in the macro-
scopic analysis. (a) Prior to the quench, showing the
initial compositions. (b) A short time after the quench,
showing that at the boundary the compositions have ad-
justed to the final equilibrium values. The dashed lines
show the profile in the kinetic model.

FIG. 3. Schematic indication of a perturbation of the
flat interface z=0. The instantaneous interface is de-
scribed by z =f(x,t).
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have chosen the same value for this parameter in
both phases consistent with our assumption of a
symmetric binary system with

s = i-~/Dk',

2
y =- —(1-~')

N

(2.13a}

(2.5)

along with equal molar volumes. Under these
conditions,

BC o
c s (gC)2 (2.6}

where o is the surface tension and v is the volume
per unit mass. Note that C is the mass fraction
of type A molecules. We note for future appli-
cations that (in our notation) near the critical
point /, is proportional to the bulk correlation
le"gth g»nce sc/»-

I I

" o'-
I

I'" "" and
(&C)-

I
s

I

~ in the usual notation. " From (2.6),
I, is given by I,-

I
e "' "' '~- Ie I

"-$.
In addition to (2.3 one further boundary con-

dition is required. Namely, if (dC/da), ~, do not
match, there will be an imbalance of diffusion
fluxes which will cause the interface to move. The
appropriate condition is'

-D[gu) —Pu), ] ds=(&C) d'x, (2.7)

(~c)
(2.6)

which embodies the "ramp" shown in Fig. 2(b),
and assumes

u =u e'~ '"'e~' R.ep&01 1 (2.9)

along with a similar form for the P phase. The
interface is also assumed to oscillate according
to

g eQ& 5&~ (2.10)

Matching the boundary conditions (recalling that

u„f are considered to be small parameters), one
obtains

-ggp ——' l, k )+i(df =o1

)
(2.11a)

with

P =(k'-i(o/D), '~', (2.11b)

where+ -indicates the positive real part. Equation
(2.11a) yields the dispersion relation

where ds is the surface normal (oriented toward
the n phase). For smalldisplacements ds becomes
parallel to the z direction.

To study the linear stability of the planar inter-
face, one makes an harmonic analysis. One
writes

with

v = k/k„k,'= 1/II, . (2.13b)

The signature of an instability is a solution to
(2.13) with Reb&0 corresponding to Re( i(u-)&0.
It is easy to see that for k&k, there is always such
a solution". The planar interface is unstable at
long enough wavelengths.

The situation is easily understood. The boundary
between instability and stability is due to com-
petition between surface tension and diffusion.
At k=0, where surface tension plays no role (there
being no curvature), the interface is always un-
stable. Consider the solid lines in Fig. 2(b}. If
the flat interface were shifted to the right, the
values of the composition at the new position would
remain at their equilibrium values (the local
equilibrium assumption). But the o.'phase would
have a larger composition gradient at the inter-
face. The difference is such as to displace the
interface further to the right. At finite wave
vector k, surface tension resists the displace-
ment. At k~k, there are only damped-wave so-
lutions. We now turn to the case of a binary fluid
mixture. As we shall see the inclusion of velocity
fields (mass transport instead of merely com-
position) reduces the domain of instability.

V =VB,

III. INCLUSION OF VELOCITY FIELDS

Here we generalize the analysis of Bouchiat
and Meunier and Wu" of the capillary-wave spec-

~ trum in a single-component Quid. In addition to
the diffusion equation (2.1}we have the equations
for the velocity fields

V V=0,
(3.1)

BV
=v &'V — VP. —

Bt p

Here v = ri/p is the kinematic viscosity (g being
the shear viscosity and p the mass density) and
P is the pressure. We assume incompressible
Qow as is reasonable for typical binary fluids.

The boundary conditions at the a-P interface
are modified as follows":

yu (1+s},'~'+s =0, (2.12) (3.2)

where the dimensionless parameters y„and p are
given by

-P+2qB = - P+2q ~ +o
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DV'C= +V +C.8C
st (3.3)

where the second and third lines express the
equality of the tangential and normal parts of the
stress tensor. The normal part includes the extra
contribution due to the curvature; 0 is the sur-
face tension as above. Because of the velocity-
field coupling the diffusion equation (2.1) becomes

ogous to the Gibbs-Thompson relation. When
there are velocity fields and curvature of the
interface, the pressure is discontinuous across
the interface P eP~, which means that the com-
positions C and Cz no longer take their bulk
equilibrium values. One finds a modification of
(2.3). The thermodynamic boundary condition
for this binary system becomes

The second term is usually of higher order, but
here because of the composition ramp in (2.9) we
have, to lowest order,

D& u= —~ («).eu V
et l

The conservation condition (2.8) is modified to
read

-c[Ps).—((s) ) ss= (sc) st -t,), (s.ri)
df

where again we have assumed symmetry in the
diffusion coefficients. Finally, we must take
account of the statement of local equilibrium anal-

where 5P ~=P I —P" are the pressure fluc-
tuations and I =C —C"; the designation "eq",
as usual, refers to the final flat-interface sit-
uation. For ease in analysis we assume com-
plete symmetry of the coexisting liquid phases.
(We shall return to this point in the discussion
below. ) We take p = pl = p and further we assume"
q =7l~=q. Under these conditions the form (2.3}
is recovered.

A somewhat tedious but straightforward anal-
ysis yields the dispersion relation

2ra
ss (1 st (s),'~')

y+~ &~2 y
C

2ar (1+3),'/'
2g

1 / a )(
" 2ra 1

(1.+s/a)', ~'
~( a-1 ) a'~ a- I i

(3.6)

and

a=- v/D (3.V}

0'

4Dk 0
(3.8)

are dimensionless constants. All square roots
are understood to have positive real part.

The dispersion relation has been presented in

full detail to comment on its limits. Below we

shall mainly be concerned with the scaling i&nit
of (3.6). Note that (3.6) reproduces the earlier
dispersion relation (2.12) in which velocity fields
were neglected in the limit v-~ (or a-~) for
fixed k. Furthermore, if diffusion is neglected,
D- 0, (3.6) reproduces the ordinary capillary-
wave dispersion relation" "(in the somewhat
unusual case of two fluids of equal density and

viscosity but nonvanishing surface tension). If
such a symmetric system has an instability, it
will appear as a solution (d = (d(k) of (3.6) with

Re[ i(d(k}])0. -
One can determine the power spectrum of the

where x, k„ l, l„and the complex frequency
s= i(d/Dk' ha-ve been defined in (2.13), and where

interface fluctuations as follows. " Suppose a
surface force v(x, f) (of dimensions force per
area) were applied to the interface; such force
would be added to the third boundary condition
in (3.2). One then determines the linear response

E(k, (u) = X(k, (())v(k(u), (3.9)

and according to usual fluctuation-dissipation
relations the power spectrum is given by"

P, ((u) = s lmX(k(o) .k~T (3.10)

f= 3/a = -i(d Qvk'

(3.11)

The reduced response function 4„ is given by

2p 1+u)y(f)
B(( r2k X so(f) t (3.12)

The analysis is once again straightforward; how-

ever, the general result is quite lengthy. Our
main interest here is in the effect of diffusion in
the absence of supercooling (I-~). In that (equil-
ibrium} case it is convenient to express the result
in terms of the dimensionless frequency variable
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where The identification (4.2) yields k, from (2.13},

r(f}=-(I+f)' '[I+(I+f)' '] (3.13) k'= e/(' (4.3)

and

&(f) =y.,r(f)(1+af)' '+fr(f)+x. (3.14)

In these equations all roots have positive real
parts. The parameters zv, x, and y„are deter-
mined by the physical conditions and fluid char-
acteristics according to

x —= 2r/va = o/2v'pk

—= 2(kl, )/am,

y„=2( kl,)/ a.

(3.15a)

(3.15b)

IV. EVALUATION OF PARAMETERS
IN THE KINETIC MODEL

For realistic comparison with experiment we
must identify the "supercooling length" l used
in the kinetic model to simulate the nonequilibrium
state. In an experiment the system requires an
"intermediate" time on the order of f; $'/D to
respond to the quench, this being the time for
material to diffuse across the (finite) interface
thickness which for practical purposes is of the
order $, the bulk correlation length. From the
macroscopic point of view a concentration adjust-
ment is required at the boundary to establish local
equilibrium after an infinitely rapid quench (see
Fig. 2). The adjustment is

6C =C - C' =-e(aC), (4.1)

Note that in the limit of vanishing diffusion co-
efficient D-0 we have a- so that y„-0 and
m-0. In that case (3.12} reduces to the ordinary
capillary-wave response function. The dispersion
relation (3.6) and the response function (3.12)
constitute our final results. Before turning to a
discussion of the dispersion relatiori we comment
on the magnitudes of various parameters which
have been introduced, in regimes of experimental
interes t.

Hence for sufficiently small supercooling 0, one
can consider wave numbers up to and greater than

k, and remain in the hydrodynamic regime. Note
also that / is at least several times the correlation
length g which suggests that the macroscopic
analysis is valid.

In Table I the physical parameters in the scaling
limit of a typical binary fluid are shown. Note
that in the scaling regime

r =6m/4e'~'=- (d,e' ')-', (4.4)

where the form of D from Table I has been used.
The convenient abbreviation d, has been introduced
since formally the limit d, - 0 corresponds to
neglecting diffusion. Other useful combinations
which will appear below are

=(d,k$) '»1,
4gDk

(4.5)

V. DISPERSION RELATION

We return to an analysis of the dispersion
relation (3.6). The ordinary capillary-wave
dispersion relation [neglecting the entire third
term of (3.6)] is a fourth-order etluation. The
situation with supercooling is much more com-
plicated. Diffusion alone, with no supercooling,
raises it to an eighth-order equation. In the ex-

TABLE I. Numerical parameters for typical binary
fluids near criticality.

(4.6)

(4.'I)

Note that se-0, x-~ when diffusion is neglected.
However, the parameter x introduced in (3.15a)
remains finite.

so that 6C is a measure of the supercooling; e
measures it as a proportion of the final miscibility
gap. Hence an estimate for the gradient that can
be established on time scales of the order t,
("zero time" for the macroscopic analysis} is
(dC/dz)-e(&C)/$. This leads to an estimate of
the supercooling length

Symbol Name

Correlation
length

Miscibility
gap

fol~l " $0' —2 A
v —0.62

B—1
p

dependence Values used

l= —.e'
A consistent identification arises from solution of
the diffusion equation in the halfspace z &0,"when
such macroscopic analysis is continued to inter-
mediate times of order tp.

Pc
D

Surface
tension

Kinematic
viscosity

Fluid density
Diffusion

coefficient

pe0

Do

-kgT /$

v-0.02 cm /s

p-1 gm/cm3
BTc/'6xv p$
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perimental regime of interest (near but below
the phase separation critical point) the diffusion
coefficient is very small and the parameter a is
very large (10'-10'). This causes computational
problems which can be circumvented in the scaling
limit (see below). The terms of (3.6) which in-
volve the combination p'g arise from the V ~ V
coupling.

The characteristic feature of the interface in-
stability discussed in Sec. II is that as k-0,
-ie approaches a real positive qu'antity [ i+-
-4D(b, C)/l'] as is easily seen from (2.11). This
feature persists with the inclusion of velocity
fields; as k-o, there is a solution of (3.6) with
Re(—ice) & 0. The question of principle is resolved
as expected —at sufficiently long wavelength the
quenched-fluid interface is unstable. One finds
once again as k-o, -i&@-4D(bC)/I' so that the
(finite) shear viscosity does not make itself felt

in leading order. The question of the domain of
. instability, that is, the upper limit k, for which

the system is unstable, can be answered num-
erically. A complete interpretation of the pre-
liminary experiments of Schwartz et al. ' requires
an estimate of such a scale.

Fortunately it is possible to reduce (3.6) to
manageable proportions by going to the scaling
limit. Near the critical point the diffusion co-
efficient is small so that a»1. Frequencies of
interest are in the domain

~
g

~

- &u/Dk'=O(1),
which means that we may treat h/a as a small
parameter. We shall show that we can make a
self-consistent approximation especially valid
in the boundary region between stability and in-
stability where Rep goes through zero.

Hence we replace (3.6) by the scaling-limit
form

2ez/2
D (5) = 8+—— (1+a)',~' (1-~') —,(1--'y) ~+, =0.

j &b
(5.1)

2m 2m 4m 40
k tc~ 9

which is quite compatible with microscope obser-
vations of fine structure. '

One further point is worth noting here. In equi-
librium (no quench, 9 = 0, I = ~) the scaling-limit
dispersion relation (5.1) becomes

(5.2}

a+ +2(kg}(1+@),'~'=0.
4gDk

(5.3)

Recalling from (4.5) that o/4qDk = 1/d, kt, one
easily verifies that this equation has no solution
on the physical sheet determined by Re[(1+8)' ']
&0. This may indicate interesting analytic prop-
erties for correlations in the system. We com-
ment further in Sec. VI below.

In this form the values of r (depending only on the
degree of supercooling) and x =k/k specify every-
thing. The equation becomes fourth order, and
solutions are easily obtained. The condition
Re[(1+s)' '] &0 eliminates spurious roots. For
~ (~,=0.49 the solution has Res&0 (unstable)
while for ~&~, the system is stable. In the vicinity
of the crossing the root is purely real; on the
stable side the capillary waves are overdamped
as is the case close to the critical point when
diffusion is neglected.

Numerically the to(k) relation is quite flat below
k, so there does not appear a "most unstable"
wave number, in contrast to the situationdescribed
in Sec. II. Translating the scale k, to a length
scale d, one finds

VI. POWER SPECTRUM

In the stable regime the response function for
the surface involves the dispersion relation (3.6)
as denominator. We have not included the general
expressions as they are lengthy; the response
function for the equilibrium fluid (no quench, e
= 0, I = ~) has been given in equations (3.12)-(3.14).
The power spectrum of surface fluctuations is
essentially the space-time Fourier transform of
the surface displacement autocorrelation

a(x, f) =(g(O, O)g(x, f)) (6.1)

and is directly measurable. In light scattering
experiments the value of k is determined by the
wavelength and by the scattering geometry. " Val-
ues of k in the approximate range 200 to 2000
cm ' were reported by Wu and Webb, ' while in the
earlier experiments of Huang and Webb' some-
what smaller values of k were achieved. We shall
concentrate on the binary-liquid experiments of
Huang and Webb since the comparison with the
present calculation is most direct. " We have
used k =200 cm ' as a representative low value
of k. The power spectrum P~(&u) is plotted in Fig.
4 for a frequency range -0.1 to -10' Hz cor-
responding to 0.001& ~f ~

c10. This frequency
range is fairly typical although in an experiment
the window would be adjusted as parameters were
varied.

The first feature to notice in Fig. 4 is the (ex-
pected) increase in intensity as T, is approached.
At m =10-4 the effect of diffusion would not be
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FIG. 4. The power spectrum P~(~) of interface dis-
placements under equilibrium conditions (zero quench)
at k =200 cm '. The dashed lines are the pure capillary-
wave power spectrum. At & =10 and 10 4 the inclusion
of diffusive relaxation produces no distinguishable
change in the frequency rang0 shown. At ~ =10 the sol-
id line indicates the new spectrum including diffusive
effects which deviates from the pure capillary-wave
spectrum above ~='20 s '.

10

observable at &-10' s ' where it produces a
—,'% effect (over the pure capillary-wave power
spectrum). At e =10 ' and above 1000 s ' the dif-
ference is at least a factor of 2 (3dB).

In the experiments of Huang and Webb' a reduced
temperature of 4 =10 ' was reached. Our num-
erical analysis indicates that at k = 200 cm ' and
t =10 ' diffusive effects (or at least a clear devia-,
tion from the pure capillary-wave spectrum) would
have been observable at ea 5 x10' s '. At pre
quencies greater than about 1 kHz the deviations
would have been at least a factor of 2 (3 dB). Our
numerical analysis further indicates that there
would have been ample intensity out at such fre-
quencies.

The experiment of Huang and Webb' directly
determined the surface autocorrelation function.
At temperatures close to critical and for small
k relaxation times were on the order of 20 s. For
these measurements low frequencies were the
primary concern. By converting their analyses to
equivalent frequency windows, "we conclude that
diffusive relaxation was probably unobservable
in those experiments. Hence the extraction of
such quantities as the surface tension from the
experiments should have been unaffected. At

higher frequencies, or more precisely, at higher
values of If ~, if one can separate out the inter-
face contributions from bulk scattering, apparently
the effects of diffusive relaxation can be detected.

One further point should be made on the anal-
ytic structure of the results. As first pointed out
by Bouchiat and Meunier, "the power spectrum
in the case of pure capillary waves [see (3.12) to
(3.14) with w=y„—= 0] contains a branch cut which
makes the analytic structure somewhat more com-
plicated than for an harmonic system exhibiting
only simple poles. There are, in addition to the
cut, poles corresponding to the solution &(f) =0.
These poles are on the physical sheet determined
by He[(1+af)'~'] &0. On the other hand, when
y„c0, so that D is no longer neglected, we have
already noted that S (s}= 0 (or equivalently setting
X)(f) =0 in the scaling regime) has no such solu-
tion on the physical sheet [see (5.3}et seq. ].
Hence, while in most regions the effect of dif-
fusive relaxation on the correlations may be
numexica'lly small, there may be interesting
analytic effects. This prospect has not been fully
examined at this stage.

!

VII. CONCLUDING REMARKS

The standard hydrodyanmic analysis we have
reported indicates that the flat interface separating
two coexisting phases is unstable to long wave-
length perturbations when the system is quenched.
The question of the existence of an instability was
addressed using a generalization of the non-
equilibrium model introduced by Langer and
Turski' in which the evolving composition profile
is replaced by a time-independent supercooling
length f (see Fig. 2). Such analysis is probably
sufficient to demonstrate the existence of an in-
stability and to estimate the cutoff wave number
kp but it may need modification at long experi-
mental times. When the system is stable to the
quench, the power spectrum of surface distor-
tions will evolve in time; at very long times it
must become characteristic of the final equilibrium
state (l-~). This evolution is not included in our
analysis. The present analysis is expected to hold
for times f a $'/D following an infinitely rapid
quench. In practice a rapid quench may take sev-
eral milliseconds so that the results are expected
to hold as soon as the final temperature is reached.

As noted above, Schwartz et a/. ' have reported
observation of structure near the interface of a
quenched sample. Their experiment was not
originally designed for the study of a (potential)
instability, but the size of the structures these
calculations suggest are in the appropriate range.
As a biproduct of the calculation we have allowed
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for diffusive relaxation in the ordiriary capillary-
wave spectrum. Such relaxation makes an obser-
vable contribution at sufficiently high frequencies;
fortunately the experiments of Huang and Webb'
were effectively restricted in frequency so that
the contribution was negligible. This allowed
proper extraction of the surface tension from the
ordinary capillary-wave power spectrum.

We have made a number of simplifying sym-
metry assumptions to reduce the algebraic com-
plexity. It is not too difficult to break the com-
plete symmetry by allowing the two coexisting
fluids to have slightly differing densities. One
expects

The magnitude of the correction on the power
spectrum is typically very small and for our

purposes can be neglected. The effect on the
dispersion relation is computationally serious
in that the small perturbation due to &p0 raises
the order of the characteristic equation. We have
not attempted to allow for differences in the kine-
matic viscosities of the two phases. Finally we
have rioted the possibility of interesting analytic
consequences due to the singularity structure of
the power spectrum when diffusion fields are
allowed to couple with the ordinary velocity fields.
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