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Analytic characteristics of time-correlation functions
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(Received 5 December 1980)

It is shown how the analytic properties of classical equilibrium time-autocorrelation functions (TACF s} and the
corresponding memory functions (MF s), associated with the generalized Langevin 'equation in the Schmidt-
orthogonalized representation, are intimately connected. In particular, the Maclaurin expansions of the TACF and
Schmidt MF's and the continued-fraction representations of the corresponding Laplace transforms exist and
converge in well-defined domains and under conditions consistent with the existence of finite positive transport
coefficients.

I. INTRODUCTION

Many experimental measurements on relaxation
processes, such as scattering cross sections,
electromagnetic spectra, and thermal-transport
coefficients, can be expressed as the Fourier
transform of the time-autocorrelation function
(TACF) of a characteristic dynamical variable.
Consequently, TACF's (and their transforms) are
central to the modern statistical-mechanical theory
of irreversible processes. Within classical mech-
anics, the equilibrium TACF of a dynamical vari-
able 4 can be represented variously as

and

1p iPetp ~ ~ ~ y N

A, (t) = &A.(t)

(3a)

(3b)

C~(t) = -X~ dTKg(T)C~ ~(t —7'),
0

(3c)

leads to the following geneLalized Langevin-type
equation of motion for C(t)' '.

C(t) = C,(t),
C (t) = C...(t) —X,C, ,(t), 1 &j & Z- I

C(t) =(A(t)A*(0))

=([exp(«)A(0) ]A*(0)&

=Q (—1)"g„t'"/(2n)!,
n=0

where

g„=(g "A(0)][2"A*(0)]) . (2)

where

and

KE(~) -=(jexp[(1 —PN)&T]ZN(0) jzP(0))

x (Z„(0)ZP(0)) '.

c,(t) -=(z,.(t)z,*(o)),
=—(Z,.(0)Z*(0)}(Z (0)Z* (0)), j - 1

(4a)

(4b)

(4c)
In (1) Pu is the Liouville operator in anti-Hermitian
form and the brackets ( ~ ~ ) denote a full phase-
space average with respect to the equilibrium dis-
tribution function. In addition, 4 is assumed to be
an explicit function only of conjugate variables
such as Cartesian coordinates and momenta. The
g„are the 2nth moments of the Fourier transform
of C(t), i.e. ,

where

The memory function (MF) Kz(t) is the TACF of
Z„evolving under the projected Liouvil. le operator;
P„projects any dynamical function onto the mani-
fold spanned by Z0 Z] Z&

Since the "lowering coefficients" A,. [see (3b)] are
uniquely determined by the moments z„[see (2)],
and conversely, C(t) can be regarded as a function-
al of the set A=@.&),

", Likewise, K„(t) is the
same functional of its lowering coefficients, say

In the next section we shall prove the
relation

(N)
P ~ =&~+x ~ (5)

C(&g) =v ' dt cos(&ut)C(t) .
0

Introducing Schmidt- orthogonalized variables
Z.

&
defined by

z,(t) =A(t),

t (A,(0)Z,*(0)).&(Z,(0)Z,*(o))

The significance of (5) is that analytic properties
of C(t) depending only upon the asymptotic (i.e. ,
large j) behavior of XJ are also shared by K„(t).
The purpose of this article is to elucidate some of
the consequences of this observation. Thus, in
Sec. III we shall examine the influence of the.
asymptotic behavior of X,. upon the convergence
properties of the Maclaurin representations (MR's)
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of C(t) and K»(t) and in Secs. IV and V we shall do
the same for the infinite continued-fraction repre-
sentations (ICFR's) of the Laplace transforms of
C and K„. Next in Sec. V.I we shall develop some
of the practical implications of the results of pre-
vious sections by deriving conditions on the lower-
ing coefficients necessary for the existence of
positive finite transport coefficients.

II. RELATION BETWEEN LOWERING COEFFICIENTS
FOR C(t) AND K~(t)

In this section we wish to prove relation (5).
Taking the Laplace transform of (3) gives

sC(s) —C(0) =C,(s},
sC)(s) + X)C),(s) = C)„(s), 1 &j «N 1—

and

C»(s) = -X»K»(s)C» s(s),
where the overbar denotes the transformed func-
tion. Defining the ancillary functions

G,(s) —= C ~(s)/C, ,(s),
permits us to rewrite (6) as

C(s) = C(0) [s —G,(s) ] ',
G&(s) =-X&[s —G&„(s)] ', 1&j &N-1

and

G„(s) =-X»K»(s) .
Successive elimination of G„beginning with the
last line of ( t), yields the (finite) continued-frac-
tion representation of C(s):

C( )/C(0) = ~ ~ ~
"- "- . (8)s+ s + s + + s + [s+X»K»(s)]

Comparing (8) to the ICFR" of C(s),

1 X X Xg ~ Xg
C(s)/C(O) =- ~ ~ ~ ~

"-' —"+~ ~

S+S+S+ + S + S

we find

and noting from (4c) that K/0) =1 we obtain finally
relation (5}.

The significance of (5) is readily understood.
From (9) and (ll) it is evident that the mathemati-
cal properties of C(s) and of K»(s) (and, conse-
quently, of their Laplace inverses} are deter-
mined by the lowering coefficients. Furthermore,
every property of C(s) [or C(t)] depending only
upon the asymptotic (i.e., large j) behavior of
X& must also be a property of K»(s) [or K»(t)].

m~ & X)/j~ & M, ) all j .
From (5) it follows that

m, «p, ,'"'/(j+N}&-M, , all j,

(12)

if X&
= 0(j~) .

It can be shown' that the moment g„of a classical
equilibrium TACF is a sum of Q„=(2n)! [n! (n+ 1)!]'
positive terms of the form

III. CONVERGENCE PROPERTIES OF -THE
MACLAURIN REPRESENTATIONS

OF CANDK~

We may conveniently classify the asymptotic be-
havior of the lowering coefficients by the "order
of infinity" of the sequence A=(X&].&",. Consequent-
ly, those analytic properties of C and E„depend-
ing only on the asymptotic behavior of A,

&
can also

be categorized by the order of infinity. In this
section we examine some of these properties for
the Maclaurin expansions (MR's) of C(t) and K„(t}.

By the term "order of infinity" we shall mean
the following. If the inequality'

m &limX /j~&M
+OQ

holds for positive finite numbers m and M, then
X& is of the order of j~ and we write A. &=0(j~). If
M must be chosen infinite then we write A.&&O(j ),
whereas if rnmust be chosen zero we write
X.&O(j&). In the case X,. =O(j~) there exist finite
positive numbers m, and My such that 0(m, ~ nz,

oM an

X+1 X+2 ~ ~, 8+i1 A. A,

S+ S + S + + S + (10)

Since K„(t) is the TACF of the dynamical vari-
able Z» (governed by the projected Liouville oper-
ator), its Laplace transform has the ICFR

1 Qf ) ~(N)
K (s)/K (0)=- ' ' ~ ~ ~

S+ S + S +

A, ~~X 2K~3 ~ ~ ~ A,
~J1 2 3 J

where J ranges from 1 to n and
J

Qk, =n, k)~ 1.

Thus, if X,. = 0(j~} then

~(-I)"ag'"/(2n)!
~

&M,"(n!)~qg'"/(2n)! —= p„. (13)

(8)
P~

+ S +

in whi. ch the p, (""sare lowering coefficients that
play the same role with respect to Kgt) as do the'
X's with respect to C(t}. Comparing (10) with (11)

Similarly, the magnitude of the (n+1}th term of
the MH of Kjt) is less than

p„'"' —=M,"[(N+n)!]~@„t' "/ [(2n)!(N!)~] . (14)

Using Stirling's asymptotic formula for n. , we find
from (13) and (14) that
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lim(pg""=lim(p„'"')' "

= lim M, t' exp(2 —p)nk '.

Now, if A.
&
=0(jk), we have from (12)

m,"(n!) /2(2n)! & ~(-I)"a„/(2n)!
~

&M,"q„(n!) k/(2n)! . (15)

Inequality (15) provides upper and lower bounds
A„and A, on A as

R„=lim [m,"(n!)%2n)!]'""

and

R, = lim [M,"(n!)2/[n!(n+ 1)!)]'"".

Again with the aid of Stirling's approximation we
obtain

R = lim2m '" exp[(p/2) —1]n" 2"'

It then follows from the root test for absolute con-
vergence of a series' that the MR's of C(t) and of
Kgt) are absolutely convergent if A&& 0(j'), di-
vergent if X,.& 0(j'), and absolutely convergent for
t &M-1i2 if X,.=O(j2)

The radius of convergence R of the MR of C(t)
can be written'

R = lim ~(-I)"a„/(2n)!
~

'"".

cases p =2. For C,(t) one has X,.=j' (Ref. 11),
hence, e, =M, = 1 and 1 & 8 & 2. This result com-
pares favorably with the exact value R = m/2. For
C z(t) a numerical study' yields m, =2, M, = 2.5 so
that 0.63 &A & 1.42. Again, the bounds compare
reasonably well with the exact value of unity.

We note that a convergent power series with
R&0 is uniformly convergent for ~t ~&R. Hence,
the MR's of C(t) and Kk(t) are uniformly conver-
gent for ~t

~

&R,. Moreover, our criteria for con-
vergence are based on the root test. More sophis-
ticated criteria may yield more refined bounds on
the radius of convergence. For example, j'lnj
&0(j') by our definition. But also j'lnj&0(j"') for
any positive &, no matter how small. Consequent-
ly, the transition from 0(j') to greater than 0(j')
must be treated carefully.

IV. ANALYTIC PROPERTIES OF C(s) AND E&(s)

An amalgamation of several theorems from the
analytic theory of continued fractions, '" special-
ized to the ICFR of C(s) given by (9), states that
(9) converges uniformly in every bounded region
of the complex s-plane whose distance from the
imaginary s-axis is positive if, and only if, the
ICFR of C(s) satisfies the Hamburger condition,
which can be expressed in the present context as
follows. Let

and

R =limM '" exp[(p/2) —1]n" 2"'.
b2k+1 ( 1 3 5 2k-1}( 2 6 6 2k}

b2

The analogous calculation for the MR of K„(t}
gives

R„'"'=lim 2m, '" exp[(p/2) —1](n+N) '"n .

n ~~

and or

b
k=1

"1 -1
~2k ~2k-1 2k-1 y

then either

(18a)

R'"& =limM '"exp[(p/2) —1](n+N) k"n.

Thus, if p&2, B,=R,'"'=, whereas if p=2,
or

+odd Z b2k+1
k=0

(18b}

M ~A~2m 1 (16)

and if p) 2, then R„=A„'"'=Q. Therefore, we have
the following result.

Statement (I). The MR's of C(t) and K„(t) have
infinite radii of convergence if A,. & 0(j ), finite
nonzero radii if X&= 0(j'), and vanishing radii if
A,. &0(j').
Thus, C(t) and Kgt) are regular at the origin when

X,. & 0(j').
To illustrate the quality of the bounds on R given

by (16) for the case A, =O( j'), we consider the
functions C,(t) = sech(t) and Cz(t) =(1+t') '. In both

B=gb, ~,(b, + b, + ~ ~ + b,—g'
k=o

(18c)

diverges. If the Hamburger condition holds, i.e. ,
if at least one of (18a), (18b}, or (18c}holds, then
the ICFR of C(s) is analytic in the half-plane
Re(s) &0. If the Hamburger condition does not
hold, the ICFR of C(s) diverges for every value of
S ~

We may, in the present context, dispense with
(18c) by appealing to a theorem of Van Vleck, "
which asserts that (9) converges for Re(s) & 0 if,
and only if, , the infinite series +~, ~bk! diverges,
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provided that

Re(b,s) &0 and !Im(b,s)!- cRe(b,s) (19)

Statement(IV). We conclude that: If A has a
finite least upper bound, then the ICFR of C(s)
convenes.

for k =1,2, 3. . . and c&0. In the present case
b, &0 so that g~, !b, ! =B,„+B,« S.ince A.„&0,
the provisos (19) are satisfied for Re(s) & 0 and

Zc~, ! b~! diverges if, and only if, at least one of
B,v„or B,«diverges. An alternative approach is
to demonstrate that (18c) diverges if, and only if,
at least one of (18a) and (18b) holds under condi-
tions (19).

Statement (I1}. We shall first demonstrate that!:
The ICFR of C(s) converges if, and only if, that of
Kgs) does.

. The Hamburger condition for Kgs) can be. ex-
pressed as follows:

~ ~ ~ ~ ~!!(&,~, - ~ ~ x&,)(x,x3'' x ) gb, N=2n —1
B(&) —( k=n

even

! (X~X~ ' X~ ~)(X~X4 ' XN) Q b2q, N = 2n lim X~~ /Xq& 1 . (22)

Note that on account of the positivity of the A. 's, A

is bounded below by zero. Thus, A is a bounded
infinite sequence so that it has at least one ac-
cumulation point. "

This last point is of particular significance in
connection with crystalline solids, for which the
phonon frequency-distribution function g(&u) pos-
sesses cutoffs. " For pure, cubic lattices g(~)
is the Fourier transform of the single-particle
velocity TACF, Q(t)." Cutoffs in g(v} translate
into bounds on the X's associated with Q(t). In-
deed, frequency-bounding approximations on g(v)
have been used" "to construct functions that
bound Q(t). This technique is also applicable to
fluids.

Let us consider now the situation in which

! (~~ - x}(x~ ~ ~ ~13 ~ 24
B'0«

!!I
(A. A. A. )(x x

(20a)

X„,) 'Qb2~, N=2n —1
k=n

«, )
' gb2~, , N= 2n ~

k=n

X~~ /Xq& p, all k &n . (23)

In case n is even, i.e., n =2m, we have from (17)
and (23)

Condition (22) implies that A has no finite accumu-
lation points. There exists an integer n and a
real number p, & 1 such that

(20b)

Note that the infinite sums in (20) correspond to
B,„„orB,«minus a finite number of terms. Con-
sequently, B,'„",', and/or B,'~~' diverges, if at least
one of B,v„or B,«does, and conversely. Invoking
the theorem of Van Vleck" completes the proof
of statement (II).

Statement (jig). Combining statement (II} with

the theorems stated earlier, we conclude that:
The ICFR of C(s) converges uniformly to a holo

morphic function in the half plane Be(s) &0-if,
and only if, the same is true for Kgs).

where

and

h =(XX X )(XX ~ ~ ~ x )

m

Beven b2k ~nl 2fn+1 +
k= m+1

Thus, it follows from (18a) snd (24) that

(24)

(25}

(26)

b2k b2k 1 2k-1 2k 1 lub (21}

Now, if B,v converges, b»-0 at large k and it
follows from (21) that b...-0 in this same limit.
This implies that b», diverges as k becomes large
and consequently, that B,«diverges. If, on the
other hand, B,v„diverges, we need not examine

BQ«

V. CONVERGENCE CRITERIA FOR C(s) AND E&(s)

Here we shall examine how the Hamburger cri-
teria (18a) and (18b) constrain the behavior of the
sequence of lowering coefficients A=/. „)~,. Let us
begin by supposing that A has a finite least upper
bound X,„„. Then from (17) we have

limX„„/X~4 1.
'k -+i a)

(27)

Since the right-hand member of (26) is bounded

and since the partial sums to B,v,„ increase mono-
tonically, B,v„converges. In case n is odd, i.e.,
n =2m+1, we find that

b2~, &h 'P, V, k&m

and by a logical sequence analogous to the pre-
ceding one we conclude that B,«converges. There-
fore, by Van Vleck's theorem" it follows that the
ICFR fails to converge if (22} holds. Hence, if
A has at most a single accumulation point, then a
necessgxy condition for the convergence of the
ICFB of C(s) is
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Now let us consider the case

lime~I /kg&1. (28)

Next, consider the case

llm X~~I /A. ~
= 1 .

k~~
(34)

Condition (28) implies the existence of an integer
n and a real number p, &1 such that

X~, /X~&p, , all k&n.

From (29) it follows that

nz =0, 1,2, . . . .
Thus, A is bounded above by

XI b max(XIy Any ~ ~ ~ l X }
and from statement (IV) we conclude the following.

Statement (V). The ICFR of C(s} convenes under
condition (28}.

Note that statement (V) is somewhat stronger than
the result which is reached upon the basis of t,he
ratio test' applied to B,„„orB,«. The ratio test
would require at least one of the following coridi-
tions as sufficient for the convergence of the ICFH
of C(s):

p„=—(A~„/A~}- 1, k =0, 1,2, . . . (35)

where we take XO=A, Thus from (34) it follows
that

lim p„=0,
k~~

and from the positivity of the X's that

p„&-1, all k.
Moreover,

k+1

We shall show in Sec. V that condition (34) is
necessgxy for the existence of a positive finite
transport coefficient. Thus, this case is of con-
siderable relevance physically; it is also interest-
ing from a purely mathematical viewpoint since
the ratio test fails.

We first develop a bound on the rate of change of
the lowering coefficient with respect to its index.
Define

lim X,~/X», &1,
k~~

1im X»„/X» & 1 .
k~~

(30a)

(30b)

,gk~, k even

bk', k odd

where gob and g, b&0. We have

(31)

To deepen our understanding of the results thus
far obtained, we consider the special case

x„,=x, „,(1+p,).
In the limit of large k we can solve (35) to get

x, -x,.exp T p,),
for k' sufficiently large. Since the sequence

(p,]", , is bounded above,
k

IImk'Z lp, I-~
k ~~ l=k'

(36)

x„/~„,- ab-'[1+ p/(2k —1)]+0(k-').

X2@ I /Any a b(l +p/2k) + 0(k )

(32a)

(32b)

b, ~, -b,„,„(k/k') ~~~"exp[(b —a)(k —k')/a],

b»-b». (k/k') ~ "exp[(a —b)(k —k') jb],

(33a)

(33b)

where k' is chosen sufficiently large. Since g e5,
at least one of (33) diverges exponentially with k
for gl/ values of p. Hence, either B„orB,«
diverges for all values of p and the ICFR of C(s)
converges. The l.owering coefficients of the Jaco-
bian elliptic functions cn(t, k) and dn(t, k) are of
the form (31)."

It is interesting that in case ~=5, then either
B,~„or B„„diverges only if p ~ 2. We shall treat
this case more fully later.

In this case A has no accumulation points, although
the seIIuence of ratios $X~., /A„j,",has two, namely
ab ' and a 'b Clearly (30.) fails to apply. Calcu-
lating the b's asymptotically from (17) and (32}, we
obtain

where M is some finite positive number. Hence,
from (36) we conclude that if (34) holds

X,-X„,exp [C(k)],

where ~C(k)
~

~ 6(k), i.e. , under condition (34) the
lowering coefficients cannot. increase faster than
exponentially mth k.

If the series Q, , ~p, ~

converges, the sequence
A is bounded above and it follows by statement
(IV) that the ICFR of C(s} converges. If, however,
p„„~0for all l&l,', then

b2&+2/b2I ~2I/~2i+I

=(1+p„„)-'~1, all t&l'.

Hence, b»„&b», for all l&l', B„„diverges and
the ICFR of C(s) converges. By similar reason-

g P2l ~ 0 for all /& l', then B,«diverges and
the ICFR of C(s) converges. Combining these re-
sults, we conclude that the ICFR of C(s) converges
under condition (34) and at least one of the follow-
ing additional conditions:
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b»»+l b»» y ( p/2k)b»» l + o(k )

b, ~, —b, »
= (-p/2k) b,„+o(k ') .

Integrating (38), we find

b,~, —b,»;,(k/k')»/' -k»",

b, »
- b»». (k jk')» ' -k» ',

(38a)

(38b)

(39a)

(39b)

for k greater than some sufficiently large fixed
k'. We conclude from (39) that both B„„and B,d~

diverge if p & 2. Consequently, statement (VI)
holds true.

Statement (VI). Under condition (37), the ICFR
of C(s) convergesif p & 2.

%'e note an interesting connection between state-
ments (VI) and (I) (see Sec. III); If A» is of order
p, i.e., if (37) holds, then p =2 is a sort of "singu-
lar" point. For p& 2, the MR's of C(t) and Kgt)
have infinite radii of convergence and the ICFR's
of C(s) anf Kgs) converge for all s in the half-
plane Re (s) &0. On the other hand, if p&2 the
radii of convergence vanish and the ICFR's fail
to converge.

In closing this section we consider a generaliza-
tion of (37), namely,

~»»/~»»-i =1+p/2k+O(k ) l , (40a)

X»., /X» = 1+q/2k+ O(k '), large k . (40b)

Condition (40) appears to obtain in the case of a
Lorentzian TACF (1+P't') ', for example. ' Equa-
tions (40) can be rewritten as

x„-X„,=(p/2k)x„, +o(k-'),

X»„—.X,»
= (q/2k) X»»+ o(k ') .

(41a)

(41b)

(a) Q, , ~p, ~

converges,
(b) p„&0 for all l&l',
(c) p„„&0 for all l&l',

where l' is some fixed integer. Of course, if p, =0
for all l & l', then B,d~ always diverges [see (17)].

Final. ly, let us assume that

X~, /A» = 1+p/k+o(k '), k large, (37)

where p is a constant independent of k. From (17}
we deduce that

b»», »- b»». ,»(kjk') ' ',

Therefore, the ICFR of C converges if either P
oxq is less than or equal to 2. That is, the ICFR
of C converges if, for instance, p ~ 2, regardless
of the value of q. But the MR has a nonzero radius
of convergence only if p+q ~ 4. Hence, the condi-
tion for the existence of the MR is much more
stringent than that for the existence of the ICFR.
The case (40) emphasizes the nonequivalence of
the analytic characteristics of the MR and ICFR.

VI. CONNECTION WITH TRANSPORT COEFFICIENTS

The results of the preceding section are largely
just straightforward exercises in the analytic
theory of continued fractions. To demonstrate
their relevance to physics, we shall consider here
the zero-frequency transport integral

(43)

where
k

/, =1++~ l, „/l, ),
g, =l+Q l, /l, ,),r=j I},m'=r

d2k @k 2k

-1/2
d2k ~-Irk~2k i y

(44a)

(44b)

(45a)

(45b)

and k» is defined by (25).
Suppose, in addition, that D is positive and fi-

nite. Then, taking the ratio of the last line of (43)
to the first line, we obtain

D = dt C(t),
0

P

which provides a characteristic time for the physi-
cal process of interest.

If the ICFR of C(s) converges, D is given" by

D = 1im d, (f, , /g)'"
k~

Combining (41}, we obtain to o(k '),

~„., —~,„=[(p+q)/2k]x„,

[(p+q)/2k]A»» &
large k

Equations (42) can be solved to yield

(42a)

(42b)

limf„/(X „f,/X, ) =1.
k~~

From (44a) one may readily obtain the identity

f» 1 = ~»».lf»-i /~»» l

which upon substituting into (46) yields

(46)

(47)

)l»= &».(kjk') '»'"" k &k'

for k' sufficiently large. We conclude that if
p+q & 4, then X»& O(k'); from statement (I) it fol-
lows that C(t) and K„(t) are regular at the origin
t =0. For 0' sufficiently large we calculate

1
lim

1 1/
=1.

Since f»&0 for all k it follows from (48} that

limf»=~.
k~~

(48)
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If we compute the ratio of the first line of (43)
(with h+ 1 in place of h) to the second line, we ob-
tain

limg»/(X, »„g~, /X, ~») =1 .

The analog of (47} is found from (44b) to be

g»+1»»+2 g»/ 2»+1 '

Therefore,
lim (1 —I/g~, ) = ]. ,k~~

which implies that

In summary, we conclude the following.
Statement (VII). If the ICFR of C(s) converges

then a necessary condition for 0&D& ~ to hold is
that both f» and g» diverge as h- ~.

Define the numbers n, by

o. , =—ln(X„, /A. ,),
and suppose that

Then there exists an integer I. and a real number
p, such that

Q2g, ]- pl+0, l+L, ~

Then, for h&L, we have from (44a)
k k

f,=1+ P exp Fn„,) +U jk),
j= /pl l=j

where
L k

U w-=+exp Qn„.,) .
j-1

(49)

However, we have shown earlier that (27) is a
necessary condition for the convergence of the
ICFR of C(s), which we have assumed. Thus,
(50) must be amended to read

(51)

From (49) it follows that U~(h) is a monotonically
decreasing function of k for k &I,. Therefore,

0 & Ui(h) & Ui(L), h & L .
Since exp(n„.,}~ exp(t»), l & L, we conclude that

1&f,&U (L)+ [1 —exp(}i)] ', h&L,

and consequently that f» is bounded. By a parallel
argument we conclude that gk is also bounded.
Summarizing these results, we see that a neces-
sary condition for the divergence of f» and g, is

(50)

and we conclude finally the following.
Statement (VIII). In the case of at most a single

accumulation point in A (52}is necessary for
the existence of a finite, positive transport inte-
gral.

We emphasize the "one-way" nature of state-
ment (VIII), i.e. , (51) is not sufficient to guarantee
the positivity of transport coefficients. For ex-
ample, in case A»=2h —1 and A»„=2h+1, (51)
holds and the ICFR of C(s) converges, yet D= 0 by
direct calculation from (43).

Finally, consider the following special case of
multiple accumulation points in A:

g, k even

b, k oddk
~~

tt ~ (52)

Since X» is bounded, the ICFR of C(s) converges.
From (44) and (45) we compute

d = (a/b)'a '"
=(a/b)»b-~~»

f, = [1 —(b/a) ~'] /(1 —b/a),

g„= [1 —(a/b) '] /(1 —a/b) .
If a&b, D diverges to ~ as (a/b)»~' When a. &b,

D diverges to zero as (a/b)"". Since one of f„or
gk converges if g wb, it is reasonable that D is
either zero or finite. Note that (52) is a special
case of (31).

VII. SUMMARY AND DISCUSSION

This article has reached two principal results.
The first is relation (5) between the lowering coef-
ficients of the TACF C(t) and its associated iVth

Schmidt memory function K~(t), which is itself
the TACF of the variable g„evolving under the
projected Liouville operator [see (4c)]. Since
TACF's are functionals of their moments, or
equivalently, of their lowering coefficients, (5)
relates the analytic properties of C(t) and K~(t)
if only implicitly. Indeed, we derived some of
these properties depending only on the asymptotic
behavior of the A. 's. Thus, we showed in Sec. III
that the Maclaurin expansions of C(t) and K„(t) are
regular at the origin if A.&- 0(j ), and in Sec. IV
that the infinite continued-fraction representations
(ICFR's) of the Laplace transform of C converges
if, and only if, that of K„(t) does. In addition to
yielding these rather formal results, (5) also
facilitates the numerical calculation of TACF's. '

Our second main result is statement (VIII). That
is, in order that the transport coefficient (-D} be
positive and finite, we must require

(53)
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Unfortunately, (53) is not sufficient to prove that
0&D&~, as emphasized by an example given in
Sec. V. Nonetheless, (53) can be of considerable
value in analyzing the TACF semiempirically.
For instance, suppose the first several even mo-
ments are known along with the transport coeffi-
cient. Then it may be possible to extrapolate the
behavior of the A. 's by means of a functional form
consistent with the given data and (53). Such a
procedure eliminates much of the arbitrariness
inherent in many modeling studies.

The fact that the analytic properties of the TACF
and its memory function should be related is, of
course, not a novel idea. Corngold, "for example,
has shown that in certain circumstances the ampli-
tudes of C(t) and K,(t) are proportional in the limit
of large t. Since C(t) and K,(t) bear the same
relationship to one another as do K„(t) and K,(t)
for all n [see relation (5)], it follows that K„(t)
has the same asymptotic (t -~) amplitude as C(t)
for all n, provided that C(t) satisfies Corngold's"
criteria. This result again shows the usefulness
of relation (5) in extending certain analytic results
for one C/K„pair to a whole heirarchy of pairs
such as C/K„&„and K /K„~.

The notion that the A. 's may have regular proper-
ties is not new and, indeed, has formed the basis

of at least one previous study" of TACF's rooted
in continued-fraction theory. The general results
we have pointed out seem not to have been pre-
viously obtained explicitly. Indeed, it has been
suggested' that the behavior of the lowering coef-
ficients may be hopelessly complex. This view,
however, seems to be supported neither by known
specific cases, ' nor by the more general results
reached here. The positivity of transport coeffi-
cients would seem to preclude purely random
(positive) X's, for example.

The relevance of our results to practical calcu-
lations of TACF's requires some knowledge of the
lowering coefficients (or moments). Such infor-
mation is available for harmonic solids' and,
vip molecular dynamics, is becoming increasing-
ly more accessible for dense fluids. ' " Given a
limited number of X&'s, we may be able to extra-
polate (as a function of j) their behavior to find
the "order of infinity. " For all but the simplest
systems, it is certain to be simpler to estimate
the order of infinity than actually to obtain the X's.
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