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Optical second-harmonic generation in atomic vapors with focused beams
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Processes leading to second-harmonic generation when a single polarized beam is focused into neutral or partially
ionized atomic vapor are considered, including electric-field-induced third-order mixing, and quadrupole and

magnetic dipole processes. Estimates of the relative strengths of these processes are given. In addition, the
polarization properties given by the tensor susceptibilities are discussed in detail.

I. INTRODUCTION

Various nonlinear optical schemes for obtaining
second-harmonic generation (SHG), sum-frequency
generation (SFG), or difference-f requency gene-
ration (DFG} in isotropic media have been dem-
onstrated, despite the fact that X, the lowest-
order susceptibility describing such processes,
vanishes in the dipole approximation. These
schemes have typically utilized gases or vapors
as nonlinear media and have involved applying dc
electric fields and using the third-order nonlin-
earity, ' or producing quadrupole polarizations
which can radiate in a noncollinear geometry, or
applying a dc magnetic field to "rotate" driven
quadrupole or magnetic dipole moments, allowing
them, to radiate in a collinear geometry. ' Inter-
ference effects have been observed when combi-
nations of these processes are present, for ex-
ample, in quadrupole/dc electric-field-induced
SFG (Ref. 4) or quadrupole/magnetic-field-in-
duced SFG.'

More recently SHG was reported in several ex--
periments when a single beam was focused into a
metal vapor with no externally applied electric or
magnetic fields. Mossberg, Flusberg, and Hart-
mann attributed the SHG they observed in thal-
lium vapor (with two-. photon pumping on a, tran-
sition with no quadrupole moment) to a third-
order mixing with a radial dc electric field pro-
duced by three-photon ionization of the atoms in
the focused beam. In a subsequent letter, ' Miya-
zaki, Sato, and Kashiwagi (MSK} reported very
interesting experimental data on SHG in sodium
vapor. Their principal findings were the follow-
ing: (1) the generated light at frequency 2&v

emerges in a ring pattern, (2) the radiation is
radially polarized, (3) at high pump intensity the
2~ intensity is proportional to the square of the
density N, and (4) the observed intensity depen-
dence at lower pump intensities (I) is faster than
I . They attributed these results to a new mech-
anism. In their picture a spontaneous electric

field (E~) arises during the pump pulse, parallel
to the pump intensity gradient and independent of
the atomic density, resulting in SHG via third-
order mixing.

It is the purpose of this paper to describe and
estimate the strength of various processes lead-
ing to SHG from a focused beam in an i'sotropic
vapor with no externally applied electric or mag-
netic fields. In addition, simple physical argu-
ments are given to show that the spontaneous field
model proposed by MSK does not give a correct
description of the physics involved. The proces-
ses described in the present work fall into two

classes: those involving free electrons created
by photoionization and those which can occur with
only neutral atoms present. Within each of these
classes a second important distinction exists be-
tween processes relying only on the dipole-for-
bidden susceptibility y' to produce a second-
harmonic polarization which radiates at 2~, and
processes that in some way produce a slowly
varying electric field, which induces SHG via the
dipole-allowed third-order susceptibility X

' . In
this paper processes relying on ionization are
described in the second section while those in-
volving only neutral atoms are discussed in the
third section. Since in typical experiments, vis-
ible lasers with ~ -10"sec ' and alkali-metal
vapor densities of -10'6/cm are used, even if all
valence electrons are freed, the plasma frequency
co&-10' sec '«m, so that the incident beam is
nearly unperturbed by the plasma. In addition,
except in the immediate vicinity of an atomic
resonance line, the atomic refractive index is
small, so that the pump beam is assumed to
propagate through the cell undepleted and with a
fixed spatial mode (taken here to be lowest-order
Gaussian). The fourth section gives a more de-
tailed account of dc induced SHG, and both the
tensor properties and frequency dispersion of

are given. In the final section, estimates of
the strengths of all the various processes are
made in order to assess their relative importance.
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II. SHG INVOLVING FREE ELECTRONS

Bgf=V o-—
Bt

o = ——(E + B ) I + —(eEE + BB) .
Sn' 4m

(lb)

In the presence of high power pulses, multiphoton
ionization can occur quite readily in alkali-metal
vapors, and the free electrons produced can lead
in several ways to SHG. As a first possibility
the electrons can move after they are freed,
creating net charge densities and static electric
fields which induce SHG. The movement can be
due to either radiation forces exerted on the elec-
trons by the pump light, or due to the initial ki-
netic energy of the ejected electrons. A second
possibility is that the free-electron second-har-
monic polarization proportional to the dipole-
forbidden second-order susceptibility for plasma
can directly give SHG.

Consider first the motion of the free electrons
in response to the radiation forces. The radiation
force per unit volume on the medium, f, can be
written

&u~=4sne /m and n is the maximum photoelectron
density), and the time 7&-(2mR/f, ) ~ required
for the maximum cycle averaged radiation force
per electron, f„ to move an electron one beam
radius (R) starting from rest.

If 7~ is shortest, E~ increases to a strength
-f,/e. At that strength the outward radiation
force is balanced, and as E~ increases slightly
more, the outward motion is halted with E& at its
maximum value in a time -7~.

If vz is shortest, the density of electrons is in-
sufficient to give restoring electrostatic forces
strong enough to halt the outw'ard motion, and the
photoeleetrons are swept from the beam in a time

7 f. The electric field E~ saturates at a value
given by the positive-ion distribution with all free
electrons removed.

If 7', is shortest, the limits set by electrostatic
restoring forces and electron depletion of the
beam volume are not reached, so that the electron
displacements and the strength of E~ increase
quadratically in time, attaining values fx:7 f.

Quantitative estimates of the strength of Es for
all three cases can be made starting with the con-
tinuity equation, Gauss's law, and the force law
for the electrons:

Here 0 is the electromagnetic stress tensor, g
=(Ex 8)/4sc is the field momentum density, and
& is the dielectric constant, including both atomic
and free-electron contributions. The expression
for f can be rewritten as

Bne
e

'=-V'. n v

v X, = —4n e(n, —n,), (3b)

f =-,' XV(E') + )( —(E xB)
e Bt

(2a) dt Bt
+ (v. V)v = ( f —eE,)/m . (3c)

1BP=(P p)E+ ——x B,c Bt
(2b)

where g is the linear susceptibility (e —1)/4v,
including both atomic and plasma contributions,
and P=yE. The last form is recognizable as the
Lorentz force on a time varying dipole in an in-
homogeneous field. The force on the free elec-
trons is given by Eq. (2a), with yz,

' ——-n, e'/mar
(where n, is the free-electron density, m is the
electron mass, and (d is the optical angular fre-
quency). These free electrons will move radially
outward under the influence of the cycle average
( f ) of this force, building up a net charge density
and giving rise to an electric field E~ and electric
forces opposing (f ).'

In discussing the time development and maxi-
mum strength of E~, the charge separation in-
duced electric field, three regimes occur accord-
ing to which of three characteristic times is
shortest. These times are the laser pulse length
&„ the inverse plasma frequency v.

~
- u&~' (where

Here n, (r, t) and no(r) are the free electron and
ion densities, v(r, t) is the local mean electron
velocity, and f, is the cycle-averaged radiation
force per electron. For the cylindrically radial
motion of the electrons assumed here, no mag-
netic fields or forces are generated.

While in reality the ionization and charge sep-
aration processes occur simultaneously through-
out the laser pulse, to simplify the calculation it
is assumed here that (1) at time t =0 during the
laser pulse, equal densities [no(r)] of electrons
and ions are created by s-photon ionization; (2)
the electrons, initially at rest, are accelerated
by f, for the remainder of the laser pulse, as-
sumed to have constant intensity until it ends at
t =&,; and (3) the collisional damping time for the
electrons is longer than the time required for E~
to build up initially.

The laser electric field 8 is described by g = E
+ E*, where E=eE eOx (pik s-i&et-r /R ), and R
denotes the beam radius. The density no(r) is
taken to be n exp(-2sr /R ), and the transverse
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components of f, are given by the first term of
Eq. (2a) with E =2Eoexp(-2r /R }. The longitu-
dinal Ex B term in Eq. (2a) is neglected since it
does not give charge separation.

Equation (3) can be solved in successive powers
of t. For 'short times the change of electron den-
sity, &n, =(n, —no), and electric field E~ are
given by

nn, (r, t) =-v (nox(),

E~ = 4rp&pxg &

(4a)

(4b)

where x&
——f,t /2m. Thus the electric field built

2
up during a short laser pulse is E~ =-4menof, v', /2m,
which has a maximum of (&u&7, ) (f,/e) [4(s+ I)]
where f,= (2/We }(e'Eo/'m&u'R) is the maximum of

f,, and @=2.7818. . .
For the case where v& is shortest, the field

saturates when the electrons are swept out of the
beam completely, and only the positive ion den-
sity no(r) remains. Gauss's law then gives the
radial field, which has a maximum strength of
E& —= menRs . For electrons to leave the beam,
f~T~/2m =R, leading to v'&

-—m+R/eEO.
Considering now the high-density case where &~

is the shortest time, Eqs. (3) can be solved
through fourth order in t, thus including the elec-
trostatic restoring force. The maximum electric
field is then found to be E~ = ~ (f,/e), and it is
attained in a time r~=-&6/~~. If the radial plasma
oscillation were damped before the laser pulse
ended, a steady state would be reached such that
(-eEz) = -f,, and the opposing electrostatic and
radiation forces would be balanced at each point.
Note that in this high-density case E~ is indepen-
dent of n, and N, the electron and atom densities.

A crossover density n„which divides the re-
gime where charge separation is or is not limited
by the electrostatic restoring force, can be de-
fined by setting &~= ~& and solving for the electron
density. The result is ~, =EO/2m'& R =2Px10 /
mce'8', where P is the peak laser power in
watts. For wavelength 1.06 p.m and R =10 cm,
n, =230P (W). When the electron density is
greater than n„ the electrons are confined within
the beam by electrostatic forces.

Sample values of these parameters can be cal-
culated using, for example, parameters corre-
sponding to the experiment of MSK (R = 10 cm,
&o=2ve/1. 06 pm, Eo ——1.15x105 esu correspond-
ing to a beam power of 1 GW and an intensity at
focus of -6 TW/cm, and r, = 30 ps). In this case
&&

-—280 ps, n, -=2.3 x 10' /cm, and the limiting
field strength is given by ~a(f,/e) =0.44 esu=130
V/cm. The time &~ decreases as n ~, and has
the value 7~=280 ps when n=n„ the value &~=30
ps = 7, when ~ = 2x 10"/cm', and the value v~ = 0.42

ps when n=10"/cm'.
This picture can be contrasted to the spontan-

eous field description of MSK for free electrons.
In their description a spontaneous electric field is
introduced as an entity which is directly responsi-
ble for the force f in Eq. (2a) (with y = g&"). MSK
assume that no charge separation occurs, and
that the spontaneous field in the plasma case is
obtained by equating Ez ——f,/(-e). This expression
for E~ is similar to that obtained in the high-den--
sity case discussed above, but is opposite in sign
since the field E~ causes f, in the picture of MSK,
rather than arising from net charge density due
to electron motion induced by f, and giving an
electric force opposing f,. Fundamentally, how-
ever, there is no physical equivalence between
an electric force and the cycle averaged radiation
force, since as Eq. (2b) shows, the radiation
force arises because the electrons are vibrating
in space. The first term is proportional to the
field gradient and accounts for the local variation
of the electric field at different points along an
electron's path, and the second term is just the
magnetic force on the moving charge. The im-
portance of this vibratory particle motion, and
the inadequacy of the spontaneous electric-field
description of the radiation force, can be seen
from the inverse proportionality of f to the elec-
tron mass (since y&,

' ~ m '). If we imagine an
electron and a very massive particle with unit
negative charge near one another in space, they
would experience identical forces due to any elec-
tric field. But the radiation forces on the two
particles are in inverse ratio to their masses.
An infinitely massive negative particle would ex-
perience no radiation force because it could not
vibrate under the influence of the applied radiation
field. It is clear therefore that the radiation
forces in a nonuniform beam cannot be discussed
in terms of an equivalent electric field. Sirnilar-
ly, the response of neutral atoms to an inhomog-
eneous field is not equivalent to their response
to an electric field, as will be discussed in Sec.
IH below.

We next consider a second mechanism leading
to separation of charge which relies on the initial
kinetic energy of the ejected photoelectrons to
carry them away from the beam axis. Kinetic
separation of charge was recently suggested as
the mechanism leading to dc field induced SHG in
atomic thallium vapor with weak (-kW) I ns long
laser pulses. For these pulses the radiation
forces and equilibrium electric field are weak,
so that the electric field set up by the ballistic
motion of the electrons should dominate. The
strength and buildup time of these radial fields
can be estimated using the Boltzmann equation
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and assuming that photoionization produces at
t =0 an initial spatial density of photoelectrons
no, with velocity and energy s and E„and a uni-
form angular distribution. For short times
(vt &R and t &7~) the electrons move without net
forces on them and, it is assumed, without colli-
sions. In this case it can be shown that the elec-
tron distribution function fs(r, v, t) =fs(r —vt,

~

v ~,
0). Expanding in powers of vt and integrating
over v gives the lowest-order change in electron
density b, n, (t) = (vt)'V'n, /8. Gauss's law then gives
the electric field Ee =-6 4we(vt) Vno. As in the
case of radiation force driven charge separation,
three regimes occur depending on which of three
times is the shortest. Two of these, 7, and r~,
are the same as before, but now the beam escape
time r„=R/v replaces the time r&

For short laser pulses, we have simply E~
-=-6 4we(v~, )'Vn, . In the next case, where the
beam escape time 7'„ is less than r, and T~, the
maximum value of Z =-menRs ' is again ob-
tained when the electrons have left the beam vol-
ume in a time "7„.

The high-density case can be treated by assum-
ing the density change and E~ develop according
to the expressions above, until the electrostatic
potential energy is equal to the initial radial ki-
netic energy of the photoelectrons, at which time
the outward motion of the electrons is halted.
This energy balance fE~/8wd r = E„(wR n/3s)
leads to the time for maximum field buildup

r,(2/s) t', where the time T,=(T„r,)'t can be
called the kinetic separation time. The maximum
field is then

(-1 RE, =eev(veej~~ ——
Vee)~~vsn

with the maximum value Ee =(2/v 3 )wen(vr~)
(nE„4w) ~2. Th—e last expression reflects the

fact that the electrostatic potential-energy density
E~/8w has a maximum value approximately equal
to the maximum initial kinetic energy density nE„.

A crossover density can again be defined by
equating r~ and r„, with the result n, -=E„/e R .
The density n, has the same physical significance
as in the radiation force driven case.

The dc fields resulting from kinetic charge sep-
aration can be quite strong: for E„=1.6x10-"
erg (1 eV) and R = 10 cm, r„=170 ps, and the
crossover density n, =6.9@10' cm '. At that
density, the maximum field Ez -=1.18 statvolt/cm
(355 V/cm). For n=10' cm, v, is reduced to
-25 ps and E~ rises to 45 statvolt/cm (13.5 kV/
cm) .

While the mechanisms discussed above rely on
charge separation in a'focused beam to give dc

electric fields which induce SHG via the atomic
third-order nonlinearity, the free-electron sec-
ond-order susceptibility can give a second-har-
monic polarization which can directly radiate.
Unlike the dc-field-induced processes which re-
quire macroscopic motion of charge, this second-
order response requires only microscopic elec-
tron motion and should be effectively instantan-
eous. The 2& polarization for neutral plasma
with electron density n, has been given by Jha"
and can be written as'

P(2~)=y' (2~)i(E V)R+ —ExB +

where

(5a)

n 3

(5b)

P(2up) = g~, '(2&v)[-,'VE'+ 2E(E ~ V Inn, )/e~] . (5c)

The (E ~ V)R and Rx B terms of Eq. (5a) combine
to give the gradient term in Eq. (5c), a purely
irrotational polarization (having vanishing curl)
which cannot radiate in bulk media (although at
boundaries it can give a radiating dipole layer' ).
The second term in Eq. (5c) can radiate in a
nonuniform plasma. If in the present case (z&-1,
Gaussian beam profile) we assume no ~P, as
expected for s-photon ionization, the radiating 2'
polarization becomes

P(2 (u) = -8sgf,"(2(o)E(E ~ r)/R' . (5d)

Owing to the factor r in this expression the 2&
radiation will be emitted off axis at an angle ap-
proximately equal to the divergence half-angle of
the focused pump beam and will have no intensity
exactly on axis. For linear polarized pump light
the 2' radiation will have parallel linear polariza--
tion, and the radiation pattern will have two lobes
oriented along the directions-of +E. For circular

The first two terms in Eq. (5a) arise from the
variation of the E field along the electronpath, and
the magnetic force, respectively. The last term
is important in nonuniform plasma, where the E
field induces a net charge density at frequency ~,
giving a 2' current when multiplied by the velocity
component at frequency co. By using vector iden-
tities and Maxwell's equations to transform the
first terms, and the relationship V (a&E) =0 with
a~= (1 —&oem ) to transform the last term, Eq.
(5a) can be rewritten
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polarization the harmonic radiation will emerge
in a circularly polarized ring around the beam
axis.

III. SHG INVOLVING ONLY NEUTRAL ATOMS

The spatial nonuniformity introduced by focusing
a light beam into a homogeneous, unpolarized,
neutral atomic vapor, slightly disturbs the rota-
tional symmetry about all lines parallel to the
beam direction that rules out SHG or other sec-
ond-order processes for a plane wave (even if
higher multipole orders are considered). With
focusing, two mechanisms for SHG are possible.
They depend on the dipole-forbidden second-order
susceptibilities (quadrupole and magnetic-dipole)
of the medium, and they should be equally effec-
tive for picosecond or nanosecond pulses since

only microscopic electron motion is involved. In
the first effect, a nonuniform zero-frequency
polarization, quadratic in the applied field, gives
rise to a net bound-charge density. This in turn
gives rise to dc electric fields and leads to 2~
radiation via X . In the second effect, it is pos-
sible for the 2(d polarization quadratic in the non-
uniform applied field to radiate second-harmonic
dire. ctly.

In general, for either quadrupole or magnetic
dipole effects in isotropic media, the correspond-
ing susceptibility tensor has only one independent
component, ' so that the polarization properties
are independent of frequency. Thus, the polariza-
tions at the sum frequency for a pair of fields E&

and E2 can be written in forms that explicitly dis-
play their vector or tensor dependence on the in-
cident fields .'

Po((r&( ( 2) = x&((r&(, (d2) [-3(v E,)@.+ (V&,) &,+&, (v E,)]
+ Xo(u&, &o()[-—',(V R,)E,+ (VX,) 5, + E, (VE,)], (sa)

-)CO~ ~ -ZQP2 ~
P)&)((d&+(r&2)=x&(((r&&, (d2) B) xE2 +X„((r&2, (r&f) B2XE&

C C
(6b)

M((r&& + (r&2) X&(((d& (x&2)E( X E2

Q(+& ~2) IXQ(~&r ~2)][E&E2 E2E& 3 I (E1 ~2)] r

Pq=-v 9
= Xq((d&, (d2)[-(V ' E&)E2- (E& ' V)Ep —(V ' E2)E& —(E2 ' V)E& + 3V(E& ' E2)] .

(sc)

(sd)

(6e)

The expressions in (sa), (6b), and (6e) give the
dipole moment/cm due to quadrupole interactions
with the field gradients, magnetic dipole. interac-
tions with B, and the nonuniform field-induced
quadrupole moment/cm, respectively. The
atomic susceptibilities for alkali-metal atoms
are given in the Appendix. The induced magnetic-
dipole/cm in Eq. (6c) gives no 2(d contribution,
but can give a dc magnetization (essentially par-
allel to the beam) for circularly polarized beams.
Unlike a transverse magnetization, this magneti-
zation induces no appreciable SHG.

First, consider the zero-frequency polarization
from Eq. (6)

X'&"(0)=-X&(-~ ~)+X&(-~ ~)+X&(-~ ~)

(sb)

X.',"(o)= —3Xe(- ~r ~) —
X(& (-(dr (4 x (sc)

and use is made of the formula

(E* V)E+ (E ~ V)E = V(E* ~ E) — Im(E x B*).
C

(0)

Any static fields due to this polarization arise
from the net bound charge density

r(o)=x'. '(0)x'(E' x)+x',"(0)(
—rm(ExB ))

+x&'&(0)[E(v R*)+E*(v E)],

where

X g (0) = 2xo( (r&r (x&) —s X(a(
—4 r (r0)

(7)

(sa)

In a uniform neutral vapor the term xx:X(2&(0) in
Eq. (7) vanishes. While for plane waves both
terms on the right side of Eq. (10) vanish, in a
focused beam they are comparable. To study
quadrupole effects it is necessary to use vector



D. S.. BETH.UNE

where &
= (1+iz/z, ) ', z, = kR'/2 is the confocal

parameter (when z =z, the amplitude 1/e radius
increases by v 2 ), and R is the minimum ampli-
tude 1/e radius. The beam divergence half-angle
(field amplitude 1/e) is 8 =tan '(2/kR) -2/kR.
The wave function g is a correct solution of the
wave equation through terms of order O'. For a
linearly polarized beam (A ~~ e„)E and B to lowest
order in 8, are found to be

igxgE =Z,g e„— e, (12a)

& ~&(-, *@~ -, ) (12b)

where B,=nEO.
The charge density from E&l. (10) and corre-

sponding scalar potential P are then

F2"E'( y)' '"(0) i

2 )&( )0r (X -«)
XQ R2 (13a)

II'y2

&
= 2.~, I &I I2x&'&Ioi —x& ioi —

I,

(13b)

where gs = Re(g) =
~ f~

' = (1+z'/z, ') '. For the lin-
early polarized case, the polarization charge is
not cylindrically symmetric, and the dc fields
corresponding to the two terms will add along one
axis and partially cancel along the orthogonal ax-
is. For circular polarization the terms &xy&~@(0)

in E&is. (7), (10), and (13) vanish. We may com-
pare the strength of this static field to the field
induced by the radiation force for the high-density
free-electron case. The ratio of the static field
from the cylindrically symmetric term in E&i. (13)
to the static field for the free-electron case,
K z

=f, /e (independent of n for large enough n),
ls

4 (2) 0

A typical nonresonant value of l&&,"(0) for Na den-

electric and magnetic fields rather than the scalar
Gaussian beam used for most purposes. " Fields
satisfyingV ~ R=OandV ~ 5=0may be found by de-
fining a vector potential X =X,g and a scalar po-
tential P = V ~ X/ink (from the Lorentz condition,
with s the index of refraction) and taking for g the
scalar Gaussian beam wave function

r'
g= f exp~ ikz —f ——f&u$

sity 10"/cm' and 1.0 p, m wavelength light is
10 ", giving a ratio -10 '. This means that very
little ionization will overwhelm the bound charge
effect.

However, while the free-electron effect varies
slowly with frequency, resonant enhancements of
10'-10' in X&,"(0) are possible near resonant fre-
quencies. If e were tuned exactly to a quadrupole
transition, for example, one could obtain strong
resonant enhancement of the neutral atom re-
sponse with much less ionization than would occur
if ~ were near an allowed transition.

The description of the dc distortion of the atoms
and the resulting static electric field due to the
nonuniform field given above can be compared to
the discussion given by MSK for neutral atoms.
Considering just the cylindrically symmetric term
in E&i. (13b), the static field E~ = -4wy', "(0)VE+E
is proportional to the second-order dipole forbid-
den susceptibility X"'. In contrast, MSK argue
that the net force on the neutral atoms given by
f =X"'VE*E can be written in terms of a static
field E~ =f /(- eN) so that E8 = —(X"'/eN)VE*E.
Again the result obtained with the spontaneous
field model is not equivalent to that obtained by
considering the inhomogeneous field. The atomic
response is different in the two situations since an
E field mixes only states of opposite parity while
an inhomogeneous field mixes states of the same
parity. Thus, to describe the static distortion of
the atom induced by the nonuniform field, it is
necessary to use y'" rather than X"', even though
the net force on the neutral atoms can be found
from g"' alone.

Next, consider the possibility of direct SHG by
the 2+ polarization resulting from the dipole-for-
bidden second-order susceptibility. From E&l. (6),

P(2(u) = y&,"(2(u)VZ'+ )(&,"(2(u)(E V)E

x'&''(2~) =x(~ ~) —x&(»~) —xo(~ ~),

g',"(2~)= —3 go(~~ ~) —go~(~y ~) ~

(16b)

(16c)

Only the second term can radiate for a focused
beam in a bulk, uniform vapor, since the gradient
term of E&l. (15) is a purely irrotational polariza-
tion which cannot radiate, and the divergence term
vanishes for a uniform m'edium. If a beam is es-
pecially prepared, for example, by orthogonally
polarizing the two halves of the beam, the polari-
zation transverse to% will be proportional to 8,
the beam divergence half-angle. This is essential-

+ y &2&(2a))E(V ~ E),
where

X&,"(2(o)= —,'go((o, (u)+ —,'g„((u, (o)+ —,'go((o, ~), (16a)
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ly the geometry used for quadrupole sum-frequen-
cy generation by Bethune, Smith, and Shen. '
However, for a single Gaussian beam with linear
or circular polarization, it can be shown by keep-
ing terms in E and 8 through order 9', that the
transuerse part [ P, (2&v)] of the second-order pol-
arization P(2&v) will be smaller by a factor 8'. and
will have the same polarization as the pump beam.
For example, for a pump beam polarized along
e„, the transverse, radiating component of P(2&@)

is found to be

g)-&+ (a)

T
~ ~0-50

OJ

. a
A

I [ i

4d/2 —q —6p/2

5 (2(v) =X"'(2(o) e„—(E') .8$ 8

Since 8 will typically be-3x10 ', the intensity of
generated 2e radiation will be reduced by about
10 orders of magnitude from the case of near
collinear, but cross-polarized beams.

0-Ie

)0-25 (b)

~ N
4

OJ

I
'

I

Sp -4d/2
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IV. dc FIELD-INDUCED SHG IN A FOCUSED BEAM

The case of dc induced 2~ generation due to the
third-order susceptibility X' ', will now be con-
sidered in more detail. If we consider the second-
harmonic polarization resulting from a static
field Es and a field E(&c) with angular frequency
u&, it has the general form (neglecting spin-orbit
effects)

io-»

IO-
(c) N N OJCV

tot

P"'(2(u) = )i',"(2(c)E((u)[Es ~ E(&c)]

+X',"(2 )&s[E( )'«)].
The Susceptibilities )t'," and )i~" (defined in the
Appendix) have different dispersions, so that the
second-harmonic polarization character and angu-
lar distribution are frequency dependent.

Suppose E(&u) is linearly polarized along e„and
E~ is radial. Then it follows that

P"'(2&v)=y',"(2~)[(1+R„)cosPe,+R„singe„]E E'(&u),

(19a)

~

P"' (2&v)~'cc (1+ 2R„)cos'Q+R'„, (19b)

where P is the azimuthal angl, e about the beam
axis and Rz = y',"/X',". The quantities

~
X",'(2e)~',

~
)t&~"(2&@)[', and R„(ar), calculated for Na with

Ã = 1Ã'/cm', and including principal iluantum
numbers n =3-8, are plotted in Fig. 1. R„ takes
all values between - and ~, and approaches the
value 2 for co-0. The resonances in R„occur at
frequencies 2' = ~~ „,. where X~" has a two-pho-
ton resonance to an intermediate s state. At
these values one would expect perfect radial pol-
arization of the output beam. However, for R„
= —1 we expect y polarized light, for R„=O, x

-IC4
[

8
I t l

l2 l6

2v cu/c (63cm-')

I

20

polarized light, and for other values of R„, more
complicated polarization patterns. Only for R„

+~ or Rx= —2 do we obtain a uniform intensity
around the ring.

For circularly polarized E(&o), the second term
of Etl. (18) vanishes, while the first term gives a
polarization

FIG. 1. (a) The magnitude squared of the third-order
susceptibility ~)i't~(zu&)~t (esu), calculated using s, p,
and d states with n =3-8, for Na vapor with density 10 /
cm3. This susceptibility governs generation of 2' light
polarized parallel to E(~). (b) (X~~(2co)) (esu), for the
same conditions as in (a). This susceptibility governs
generation of 2' light polarized parallel to E&, the dc
field. (c) The ratio R„=X

& (2~)/X, (2~).
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e'~0'" (2u)) = y',"
2 (e„+ie„)E~E' (20)

leading to a cylindrically symmetric ring of cir-
cularly polarized second-harmonic light. In this
ease the s-state two-photon resonances disappear
since they occur only in y'~'&(2w), a result that
follows directly from angular momentum conser-
vation.

V. SUMMARY AND CONCLUSIONS

All of the mechanisms described here for SHG
in a single focused beam depend on the transverse
nonuniformity of the pump intensity. This is re-
flected in the fact that the second-harmonic pol-
arizations are proportional to components of the
transverse gradient of either the pump intensity
or the photoelectron density. The presence of
this gradient operator has the consequence that
the radiated power has a distribution ~~ Kr~',
where K~ is the component of the 2~ wave vector per-
pendicular to the pump beam axis. There is there-
fore no 2' light exactly on axis, and the output has
either off-axis lobes or a ring structure, depending
on the input light polarization and tuning. Since the
pump intensity and initial photoelectron density both
are cylindrically symmetric and have transverse di-
mension -8,, to first approximation the transverse
gradient operator V~ brings down a factor propor-
tional to r/R', whether it is applied to n, or to
E' With the. approximation n, ~E' (i.e. , s=1)
this allows us to factor out (V r E') from all of the
expressions for P(2+), leaving effective suscept-
ibilities which may be compared. These effective
susceptibilities contain various parameters which
are external to the atoms, namely, the atomic and
free-electron number densities, the pump power
(~E'), the energy E„of ejected photoelectrons,
the pump divergence half-angle 8 and the beam
radius 8, and these must be fixed to allow com-
parisons. In Table I the orders of magnitude of
the effective susceptibilities leading to the various
processes described here are given. The atomic
density is taken as 10"cm ', a value typical for
metal vapor experiments and in the middle of the
range (0.1-1Torr) used by MSK. The beam
radius and divergence angle are chosen to be ap-
propriate for a focal length -50 cm with 1.06p. m
wavelength, and are fixed at R = 10 ' cm and 8
= 3.4 mrad (z, = 2.94 cm). The photoelectron ener-
gy E„depends on the pump wavelength and the
ionization mechanism. For comparison purposes
the value E„=5x10 "erg (-0.3 eV) is taken
somewhat arbitrarily. This quantity appears only
in the case of kinetic charge separation, and in
that case y „~E„' '. Two values are taken for the
pump peak power and pulse length: The "low

dg
—(2(u) ~F(z)O'e "'~' (22a)

where O = (Kr/K) and the phase-matching function
F(z) would be

(zel K)2 (z )0)
F(z)=

( )
(22b)

with maximum value at ~=1. The factor S=-,'e '
= 0.068. These results also hold for second-order
polarizations ~go(R ~ V)R (as discussed in Sec.
III), except (assuming E along e„) the angular
distribution has an additional factor cos'P, S is
multiplied by —,', the second-harmonic is polarized
parallel to E rather than radially, and the effect-
ive susceptibility is g,~, =[y'~" (2')(8'/4)]. Values
for this susceptibility are given in the table.

For the third-order case (with E along e„) the
angular distribution and dependence on a are
given by

power" case (10' W, 5 nsec) is appropriate for
excimer or doubled-YAG laser pumped dye lasers,
while the "high power" case (10' W, 30 ps) ap-
proximates the highest power mode-locked pulse
used in the experiment of MSK. The free-electron
processes naturally are strongly dependent on the
density m. To give some feeling for the range in-
volved, the susceptibilities are given for a moder-
ate density (n = 10"/cm'), and for the case of
nearly complete ionization (n = 10"/cm'). The
expressions for the static fields E8 used with the
third-order susceptibilities are the peak values
of the field E~ for the given cases, as estimated
in Sec. II.

The actual powers radiated can be calculated
for second-order polarizations 5"&o- gyoVrZ' and
third-order polarizations P"' ~ y"'(VrE ~E)E'.
For a Gaussian beam focused into a medium of
length I.»s„ the second-harmonic power ean be
expressed as

4

P(2a)xl0 '=(2&)
I )( j P (&o)F(S&z )S

(21)

where P(2+) and P(v) are the second-harmonic
and input powers (in watts), K is the second-har-
monic wave-vector magnitude, gk = (2p -If),
F(b,kz, ) is a phase-matching function with maxi-
mum value 1, 8 is a numerical factor which de-
pends on the process assumed, and y „is an ef-
fective susceptibility (specific forms are given in
the table).

For a polarization ~gXzV'~g', the second-har-
monic beam would be radially polarized, and its
angular distribution and dependence on z=—~hap
would be given by
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c.(2+3»+n)'e '&' +"&

~ (2(o) ~ [(1+2R„)cos'y+ R'„]
n[f(a, »)]' (»&0)

(» &0)
(23a)

(23b)

where n = 20'/0' and
(m+ X)

/(a») = e'" "'g g: '
- (2+ m - f)

~=0 ™~=O

For large angles f(o, ») falls off approximately as a Gaussian in 8. The phase-matching function F(»),
exact for g ~ 0 and fit for g &0, is

()0997 "(1+»»+I»')(»&0)
1 168K (1 1 26») (» & 0)

(23c)

The phase-matching maximum occurs at g&

= —0.069. In this case $=0.0262. The maximum
in the angular distribution occurs at 8 = 0.640
for optimum phase-matching. The quantity

[y,"(2&@)(2+R„+R'„)''] should be used for )(t'&(2~)
in the table expressions for X ff.

The product (S'~'g,«) giving one second-har-
monic photon/pulse, at optimal phase matching
and & = 1.06 p, m, is -10 3 esu for the 1 GW pulse
and -10 "esu for the 1 MW/pulse.

In the table, the quantity 8' 'X is given for the
eff

various processes. , Direct quadrupole SHG in a
cross-polarized, two-beam geometry is included
at the bottom for comparison purposes with S
=7t '. The other combinations of susceptibilities
describe processes occurring in a single, polar-
ized, focused beam.

Inspection of the table shows that SHG in a pure
neutral vapor will be very weak. Direct SHG for
a single, polarized, focused beam is almost com-
pletely suppressed by the nearly uniform polariza-
tion of the beam, while the quadrupole and mag-
netic-dipole induced dc polarizations give very
weak static fields. The magnitudes given in the
table indicate that neutral-atom SHG will only be
observable (& 1 photon/pulse) in very resonant
cases. However, if the symmetry of the beam is
destroyed by cross polarizing one-half of the
beam with respect to the other, or equivalently,
using two noncollinear cross-polarized beams, a
dramatic increase in second-harmonic power by
nearly 10 orders of magnitude shouM result. "

When ionization is present, much stronger pro-
-cesses are possible, led by SHG induced by the
electric field arising when photoelectrons are
ejected from atoms with finite energy E„and fly
out of the beam. The electric field produced by
charge separation driven by radiation forces on
the free electrons gives dc induced SHG next in
strength, although only at high intensity does the
induced dc field driven by the radiation forces ap-
proach that arising from kinetic charge separa-
tion with modest initial electron energies, (0.3
eV is assumed in the table. )

It should be noted that in comparing the proces-
ses giving polarizations proportional to X"' to
those involving bulk charge separation for short
pulses, the former respond essentially instant-
aneously, while the field E~ buiMs up quadrati-
cally with time as the free electrons move. The
short pulse correction factors are given in par-
entheses in the table, and are used in calculating

ff where necessary. At high free-electron den-
sities, however, the kinetic separation time v,
can be quite short (-8.6 ps at n, = 10"/cm' for
example), and the time ~~ can be even shorter
(-0.2 ps atn, =10"/cm').

A comparison can now be made between the
characteristics of the various mechanisms pro-
posed and the principal features of the SHG ob-
served by MSK, namely the pump intensity de-
pendence, the radiation pattern and polarization
of the second-harmonic radiation, and the atomic
density dependence.

First of all, the extremely steep intensity de-
pendence at lower intensities [I(2+) -I'(&o)], to-
gether with the nonresonant laser tuning, seem
to rule out the neutral atom mechanisms, which
are very weak in this case and proportional to I'
or I'. The most reasonable explanation for the
strong intensity dependence is that multiphoton
ionization must be essential, and the free elec-
trons generated are responsible for the observed
SHG.

The radiation pattern and polarization proper-
ties (ring emission, radially polarized for direc-
tions parallel or perpendicular to E) seem to rule
out SHG solely due to the second-order response
of the nonuniform distribution of free electrons,
which would give two lobes along the +E direc-
tions, with the second-harmonic linearly polar-
ized parallel to E. However, at very high ioniza-
tion levels this mechanism should make some
contribution. The other two free-electron mech-
anisms (radiation force induced and kinetic charge
separation) presumably act in combination to pro-
duce a radial electric field E~ by depleting the
electron density at the center of the pump laser
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beam. The second-harmonic induced by E~ should
emerge in a nonuniform ring pattern, radially
polarized for azimuthal directions parallel or
perpendicular to E. These predictions are in ac-
cord with the observations of MSK, except since
for 1=1.06 p, m &„=0.63, the power around the
ring should vary by a factor of -6.7, and it is un-
clear why no noticeable nonuniformity was found.

Finally, the N' density dependence at high inten-
sity can be neatly accounted for by the radiation
force mechanism, since E~ in this case is inde-
pendent of N and n for high enough electron den-
sities. Since MSK measured the density depend-
ence at maximum power (-1 GW), quite high
electron densities were certainly present. MSK
suggest that under these conditions phase match-
ing is achieved independent of N, so that I (2+)
~N'. Under the same phase-matched conditions,
the nonuniform free-electron second-order pro-
cess should give I(2&v) ~n'. If it is assumed that
n ~N, this mechanism could also give an N' de-
pendence. The kinetic charge separation mechan-
ism described here gives l(2+) ~N'n, since the
field E~~n' '. This could give this mechanism a
somewhat stronger dependence on N [l(2+)~N',
for example, if it is assumed that n 0-N], but
without direct measurements of electron density
it is unclear how n depends on N for a fixed (high)
pump laser power. If I(2+) and n were measured

together it would be very helpful in trying to sort
out contributions made by the various free-elec-
tron SHG mechanisms. It is not possible to give
a reasonable account of the complete pump inten-
sity dependence here since this would require in-
clusion of both the ionization intensity dependence
and saturation effects.

In conclusion, this paper has described proces-
ses which can lead to SHG in a focused beam in
terms of charge separation produced electric
fields inducing SHG via X"' on the one hand, and
processes involving the dipole-forbidden second-
order susceptibilities on the other. Both types of
processes can contribute to SHG, but the former
are potentially much stronger when a highly po-
larized beam is used and even s~all amounts of
photoionization occur.

Note added in Proof. Dr M, .Matsuoka has pri-
vately informed me that his group has done experi-
mental and theoretical work on SHG in Li vapor.
They conclude that .ionization induced electric
fields are responsible for the effect.
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Adopting the convention

APPENDIX

8 = E + g E (~ )e ~i'+ E*(u& )e'"~' (A1)

O' = Po+ P w& e '~&' + P* & e'~z' (A2)

and defining the wave number frequencies v, =-w, /2 wc, the susceptibility yo in Eq. (6} can be written

(Ne'g4 )
(A

where' andB~ ~ refer to radial integrals of r .and r', respectively, "betweeri appropriate pairs of s-:, p-,
and d-state radial wave functions, (successive pairs of gs, n'p, np, and gs in the first sum, and gs, n'd,
np, and gs in the second, where g refers to the ground state). The symbols N, e, a„h, and c are the
atomic density, proton charge, Bohr radius, Planck constant, and speed of light, respectively, and elec-
trostatic units are used. The frequency factors are

f~(n', n, ~„,~,}=[(v„,~-v, -v, )(v„~ —v,)] '+ [(v„,~+ v,)(v„~+ v, + v, )] ',
f.o(n' n ~„~2)=[(v;. v,)(v.&+ v.}]-'+[(v. , - v, )(v., - v, - v.)]-'

+ [(v„,„+ v, )(v„,—v,)]-' + [(v„,, + v, )(v„,+ v, + v,)]-' .
Xo'(&„~,) is obtained by replacing f~ and f~ in Eq. (AS} with

f~o = [( „,~ + v, )(v„~ —v,)] ' + [(v„,~ + v, )(v„~ —v, )] ',
fuo [(v„e —v, —v, )(v„~ ——v,)] ' + [(v„,„-v, v, )(v„~ —v—,)] '

+ [(v„,~ + v, + v, )(v„~+ v, )] '+ [(v„,~+ v, + v, )(v„~+ v, )] '.

(A4a)

(A4b)

(A5a)

(A5b)
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For the magnetic dipole susceptibility,

(A6a}

f~(~„~.) = —E[(v., -v, -v2)(v., -vm)] '-[(v., + v.)(v., + v, + v.}l 9.1

I

Similarly,

(ASb)

xv(~, &2) =
I ~ 2

' ' -' 2 IR, I'f&(~„~.), (A Va)

2v~(v, —v, )
(Avb)

In the case of second-harmonic generation ur, = &o, and we must divide the right sides of Eqs. (Sa), (6d), and

(Se) by 2 to eliminate the redundant permutation. No 2& magnetic moment is induced since y (&u &) = 0.
The third-order susceptibility for atoms with s ground states has contributions from both s and d

second-intermediate states. For dc induced SHG:

P(») = X'."(»)E(~)[E(~) E~ ]+XP'(2~) E~.[E(~)~ E(~)],
where

4 4 ™ RR „,R„,„„R~.„R„gR „R„„R„„R~

(AS)

(AQ)

4 4
&&'&(2»)= " Q " "'" "'" (-2f +sf +Sf )+ Q " "" "" (f )).(A10)

The frequency factors are

f o
= [(v» ~

—2v)(v» —2v)(v» —v)] + [v»t(v» 2v')(v v)] + [(v„+v&)(v» + 2v)v ]
+ [(v„, + v)(v„» + 2v)(v„+ 2v)] ',

f, = [(v„,- 2 v}(v„—v}(v„-v}] '+ [(v„,+ v)(v„» —v)v„] '+ [v„,(v„» + v}(v, -v)] '

+ [(v„, + v)(v„» + v)(v„+ 2 v)] ',
f, = [(v„,- 2 v)(v„—v)v„] '+ [(v„,+ v)(v„„-v)(v„—v)] '+ [(v„, + v)(v„„+v)(v„—v}]-'

+ [v„,(v„+v)(v„+ 2 v)] ',

(Alla)

(A11b)

(Al lc)

~ X(3) — 3 X(3) —X(3) —X(3)4 XIIII 2 XI122 X1212 X1221 &
(A12)

and the indices n' and n refer to p states, and
n" refers to d states in the first sum and s states
in the second sum. The vector form given in Eq.
(AS) and the following equations, (A9), (A10), and

(All) are derived using the basic relations between
the tensor components given by group theory (see,
for example, Yuratich and Hanna" ). For Cartesian
tensors, if only d second-intermediate state contri-
butions .are included,

I

and similarly, if only s second-intermediate state
contributions are included,

(3) —, (3) —0X 1111 X 1122 X1212 X1221 (A13)

Note that for a given set of intermediate states,
f,-f, -fm as ~-0, so that X(3&(0) = 2X~3~(0). Also,
it can be seen that X~3~ (2') has two-photon reso-
nances to intermediate s states (in f,) not present
in y~~~(2u) (in f, or f,).
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