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In this work a promising new electron cyclotron maser oscillator is proposed and analyzed. The configuration
utilizes an open resonator cavity containing a gyrating electron beam which translates along an external magnetic
field. The magnetic field is directed perpendicular to the axis of symmetry of the open resonator. Because the wave-
particle interaction volume is extremely large, the total input electron beam power can be high and the power
density low. This configuration has a number of potentially very attractive features. Among them are (i),high
operating radiaion power levels (p MWs); (ii) high eificien'cy operation (&45%); (iii) naturally suited to short
wavelength operation {2, & 2 mm); (iv) operates efFiciently at low electron beam voltage {10-100keV); (v) natural
transverse mode selectivity; {vi) moderate insensitivity to beam temperature effects. The nonlinear interaction
between the electrons and resonator field have been analyzed and an expression for the steady-state efficiency
obtained; The expression for efficiency has a rather simple analytic form when the amplitude of the resonator fields
are small, i.e., small-signal regime. In this case, the efficiency is an essentially odd, nonoscillating function of the
frequency mismatch (difference between resonator frequency and relativistic cyclotron frequency). For a uniform
external magnetic field, total efFiciencies in excess of 30% can be realized. We have considered enhancing the
efficiencies by spatially contouring the magnetic field. Appropriately contouring the magnetic field across the
resonator by -5% increases the efficiency from -35 to -45%.

I. INTRODUCTION

At the present time, two classical radiation
mechanisms, i.e. , the free electron laser' '
(FEL) and electron cyclotron maser'~ts (ECM),
are under extensive study because of the great po-
tential they show as new classes of coherent radi-
ation sources. Experimental results on the FEI
(Refs. 20 and 21) and ECM (Refs. 22-25) have
been very encouraging.

In free electron lasers the active medium is a
beam of relativistic electrons. Such sources have
the potential for generating coherent radiation
ranging from the millimeter to the optical regime
and beyond. They are frequency tunable and in
principle extremely efficient generators of intense
radiation.

The electron cyclotron maser in its present form
has reached a far more mature stage of develop-
ment than the FEL. In the millimeter regime,
electron cyclotron masers have generated power
levels substantially higher and more efficiently
than the more conventional radiation sources. Ex-
perimental efficiencies are impressive, e.g. , '22%%u~

efficiency at A. =2 mm with a CW output power of
22 kW.

In this paper we propose and analyze a new elec-
tron-cyclotron-maser oscillator configuration,
which utilizes an open resonator cavity. Our
quasioptical cyclotron maser has a unique poten-
tial for becoming a new type of coherent radiation
source. In principle, the device is capable of
generating coherent radiation in the millimeter to
submillimeter regime, at power levels in excess

of megawatts, with efficiences exceeding 50%.
The basic structure consists of an open resonator
containing a beam of electrons gyrating about, as
well as streaming parallel to, an applied magnetic
field. The magnetic field is directed transverse
to the axis of the open resonator, which consists
of two or more appropriately curved mirrors.
Moderately low electron beam energies can be
used, i.e. , 10-100 keV, evell though the wave-
particle interaction mechanism is due to relativ-
istic effects. This configuration has a number of
distinct advantages over the more conventional ra-
diation sources. Some of these advantages are the
following: (i) extremely high operating power
levels, (ii) high operating frequency, (iii) high
efficiency and, (iv) natural transverse mode sel-
ection. Since we utilize an open resonator, and,
thus, have a large interaction volume, the input
electron beam power can be extremely high while
the power density can be kept moderately low.
The usual limitations on beam power imposed by
space charge effects can therefore be overcome.
Since the wave-particle interaction is fairly effi-
cient (-50%), high radiation power levels can be
achieved. The operating frequency is limited
solely by the external magnetic field and is inde-
pendent of the dimensions of any physical struc-
ture. Favorable coupling between the electrons
and radiation field occurs near harmonics of the
relativistic cyclotron frequency.

A quasioptical resonator has many modes which
in principle can experience gain, producing a mul-
timode output signal. The fundamental transverse
resonator mode can be preferentially excited in
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the open resonator. If the mirrors in the open
resonator are made large enough to intercept a
large fraction of the flux in the fundamental mode,
we may expect this mode to have a large Q. The
higher order modes can be expected to have a sub-
stantially smaller Q since they suffer from dif-
fraction losses. This is an advantage over a
closed cavity, where all modes would have com-
parable values of Q. Longitudinal modes in res
onance within the resonator can undergo gain and
produce a multimode output signal, unless they are
suppressed. Longitudinal mode selection can be
achieved by employing a mode selection; one such
selector is the Smith-Fox interferometer. "

This new maser configuration, like the conven-
tional electron cyclotron maser (gyrotron), has a
wide range of practical. applications. These appli-
cations range from electron cyclotron heating of
fusion plasmas to advanced radar and communica-
tions systems. Because of the high field level,
short wavelength, and extended interaction vol. -
ume, the quasioptical maser may be a natural el-
ectromagnetic pump source for a free electron
laser. In this application a second highly relativ-
istic electron beam propagating along the axis of
the open resonator would interact with the resona-
tor field and induce high-frequency radiation. The
frequency of the scattered radiation would be
-4y„z, where y„ is the longitudinal gamma factor
of the second relativistic electron beam and & is
the frequency of the quasioptical maser.

The possibility of ECM interaction in the open-
resonator configuration of Fig. 1 has been pointed
out in Ref. 27. The analysis and results of that
work have several significant limitations, making
a comparison with our work impossible. Most
important among these limitations in Ref. 27 are
the following: (a) The resonator fields are as-
sumed to have no spatial dependence in the direc-
tion of the beam propagation. Such fields cannot
be realized in practice. Our analysis is based on
the realistic Gaussian spatial variation of the field
amplitude. (b) The mildly relativistic limit is
considered. Associated with this assumption are
-inaccuracies, which are avoided in our fully rela-
tivistic treatment. (c) The linear theory and the
possibility of efficiency enhancement are not in-
vestigated.
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FIG. 1. Schematic representation of the quasioptical
cyclotron maser. The electron beam propagates along
and rotates about the s axis and the radiation beam axis
coincides with the y axis.
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ponents of this mode are

E„(z,y, z, t) =E(z, y, z)sin[@,y+n(x', y, z)Jcoswt,

(la)

B,(s,y, z, t) =E(z, y, z) cos[k„y + n (z, y, z)] sin~t,

(lb)

where k, =or/c, E(x,y, z) =ED(ro/r, (y))exp[-(z
+z')/r, '(y)1, n(z, y, z) =R '(y)(z'+z')((o/c)/2 —tan '
(y/y„), ~ is the radiation frequency, E, is the field
amplitude at the origin, yo is the minimum spot
size at the plane y= 0, r, (y) =r,(1+y'/y'„)'~' is the
spot size.at the plane y, y„=ra&a/2c is the Rayleigh
length and B(y) =y(1+y'„/y') is the radius of curva-
ture of the spherical wave front at y. The y com-
ponents of the field are E„=-(c/~)sE„/Bx and
B„=-(c/~)aB,/sz. N«e t»t!E„l, IB, I "IE.I

IB,I. One can show that the E'and 8 fields satis-
fy the appropriate boundary conditions on the mir-
ror. This is equivalent to saying that the mirror
radius of curvature equals the wave-front radius
of curvature.

II. NONLINEAR ANALYSIS OF QUASIOPTICAL
MASER

The quasioptical cyclotron-maser configuration
is depicted in Fig. 1. The lowest-order mode is
the well known TEN„Gaussian radiation beam
(see Fig. 2). For the electric field vector pri-
marily polarized in the x direction, the field com-

FIG. 2.. Schematic representation of the trajectory of
a sample electron as it crosses the radiation beam. The
width of the electron beam is L&.
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E,(y, z, t) =E(z) sin~ —y cos(+t),~(d
(2a)

E (y, z, t)=E(z)cos y ~sin(art),
GO ~

c j (2b)

where E(z) =E,exp(-z'/ro) and E,=B,=0.
We now express the particle momenta p and

transverse position (x, y) as functions of Lagran-
gian independent variables. In general, a conven-
ient set of Lagrangian independent variables for

The intermode frequency spacing is 5&u = mc/L
where I- is the separation between the mirrors
and the diffraction angle of the radiation is ~~
= A/mr, where X= 2mc/ar is the radiation wave-
length.

Other orientations of the external magnetic field
and, hence, the gyrating electric beam are pos-
sible. Careful analysis, however, shows that
these other configurations may not be as straight-
forward to implement. For example, another
possible configuration is where the magnetic field
and the streaming electrons are directed along the

y axis. It can be shown that to maintain wave-
particle coherence the thermal spread in the y
component of electron velocity must satisfy 5v, /
v„«X/2mL. For long resonators this condition
places a rather stringent requirement on the elec-
tron-beam quality.

In Fig. 1, the gyrating beam electrons rotate in
the x-y plane and stream along the external mag-
netic field Bo which is directed along the z axis.
For convenience we locate the sheet electron beam
of width I

~ on the y-z plane, as shown in Fig. 1.
Furthermore, for reasons of analytic simplicity,
we take the guiding centers of the electrons, upon
entering the resonator fields, to lie on the y-z
plane. Also the electrons, upon entering the re-
sonator, are assumed to have the same transverse
and parallel velocities.

Strong coupling between the electrons and re-
sonator field mill occur at frequencies near mul-
tiples of the relativistic electron cyclotron fre-
quency. Let us consider the fundamental cyclo-
tron interaction, ~ = Q,/y where 0, =

~
e ~BO/moc,

y= (1+p p/mac )'~z, and p is the electron momen-
tum vector. The electron Larmor radius is in
general much less than the radiation wavelength,
i.e. , w~ =yv, /0, = P,X/2m«A, , where v, =cP, is
the transverse electron velocity. The minimum
radiation spot size is much greater than the I ar-
mor radius, yo + X» f'g Therefore, by choosing
the width of the electron beam to be somewhat less
than the Rayleigh length, I-, &y» the resonator
fields in (1) felt by the electrons can be accurately
approximated by the plane-wave fields,

this problem is the z position of the particles, the
initial momentum-space angle e„ initial trans-
verse coordinates of the guiding center x„and y„
and the particle entrance time into the resonator
field t, . Since the resonator fj.elds fall off as
exp(-z /ro), the entrance position of the sheet
beam z, can be taken to be a few spot sizes away
from the y axis, ~z„~ »x, . In our present analy-
si's, x,= 0,

~ y„~ ~ L, and to is the time the parti-
cle crosses the z =z,„plane. The functional de-
pendence of the particle momenta vector and
transverse coordinates is p =p(z, y„,e„t,), x

The orbit equations for the electrons are

'dz ( ' " c (Sa)

(Sb)

+d,
dz

(3c)

where the fields E„and B, are given by (2), with t
replaced by the Lagrangian time variable

and

v(z, y...e., t, ) t. +f'az i=v,
~in

v, =p, (z, y„,e„t,)/y(z, y...e„t,)m,

is the longitudinal particle velocity. Note that p,
is a constant of the motion denoted by p, , hence,
e t0 unless p, =0. The Lagrangian time variable
v is the time it takes a particle to arrive at z if it
crossed the z=z„plane at time t, with a momen-
tum-space angle 80 and guiding center position
(x,=O, y, =O). Since we are considering only the
fundamental cyclotron interaction, ari appropriate
representation of the solutions of the orbit equa-
tions in (3) are

p„(z) =p„,(z) +p, (z) cos(~~+e),

p, (z) =p„(z) +p, (z) si.n((o ~+e),

(4a)

(4b)

where p „p„are the components of momenta
associated with the guiding centers, p, is the
transverse particle momentum, and ~~+8 is the
particle-momentum-space angle. In (4) the de-
pendent variables p„„p„p„and e are assumed
to be slowly varying functions of z as well as
functions of y„, 6„and t, . By "slowly varying"
we mean that the quantity has no high- (cyclotron)
frequency Fourier components. The variables
p„, p, p„and e are not functionally independent
of each other. In fact, by requiring that they be
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slowly varying functions of z, we will derive four
separate but coupled equations which uniquely de-
termine them. The field amplitude E(z) defined
in Eq. (2) denotes the profile of the radiation beam
and is a slowly varying function of z since the el-
ectrons undergo many cyclotron orbits while tra-
versing the resonator fields. The initial values of
dependent variables upon entering the open-reson-
ator fields are p„,(z=-z„)=p„(z=z„)=0,p,

(z=z„)=8,. Furthermore, it will be shown that
the guiding center drift momentum of the particles
is much less than the transverse momentum, i.e.,
lp., l I p„l "p' Noting th«orm f» p„ in (4b),
we see that the dependent variable y can be ap-
proximated by

y = y, — cos(&v ~+8),Pl.

motto

where y, is the slowly varying y position of the
guiding center, hence, p =p, ,dy /dz and p,/m, Q,
=y~ is the electron I armor radius.

We now substitute (4a) and (4b) together with (5)
into the orbit equations (3a) and (3b) and carry out
the appropriate operations. Keeping in mind that
E(z) is a slowly varying function of z we equate
rapidly varying terms and slowly varying terms
and discard all frequencies of order 2Qo. These
manipulations yield four interrelated self-consis-
tent nonlinear equations describing the spatial ev-
olution of p„9, p„, and p„. When z~ «A. , these
equations are

dpi —
I el Eym, . (~ l ((o ) (p„g p g

dz 2p,o I, c ~) (c ) (mac moc j
'

sin~ —y, (cos8+cos~ —y, ~~

*' cos8+ "' sin8[

—= (0 —@co)m /p„+ " sin —
y [sin8 —cos( —

y )l
" sin8 — ' cos8[

(6a)

(6b)

lelEp, (o
p, = ' cos —y, ~sin8,

200moc c

tel FP, ( ~pl (+
2+ SZoc I ~0~ Ic ]

(6c)

(6d)

wheredy~/dz =p„/p„and y = [1+(p',,+ p,')/m, 'c'j'~'.
Equations (6) completely describe the nonlinear
steady-state particle dynamics for the fundamen-
tal cyclotron interaction. Since ~E/B, ~«1, it is
noted from (6c) and (6d) that (p ~, ~p («p„
justifying the corresponding earlier assumption.
The trajectory of each electron is described by
the set of equations in (6). The initial conditions,
however, are different for each electron, as re-
quired by the input distribution. . For an entering
cold unbounded electron beam, the initial condi-
tions are such that at z=z,„,p„=0, p, =0, p,

p Jo p p 0 8 =e„where 90 ranges from 0 to
2m, and y, =y„, where y, ranges from -L,/2 to
L~/2, while p„and p~ are the same for all elec-
trons.

The equations in (6) can be considerably simpli-
fied by noting from (6c) and (6d) that p„,/m, c =0
(yg, E/2Bo) «1 and p„/mac =0(p„,&(o/m, c(o).
Hence, the second and third terms in the brackets
on the right-hand side of (6a) and (6b) can be neg-
lected and y in (6a) and (6b) can be replaced by y,.

I

The resulting equations are

dp, ~ 81&pm,
dz 2p„ ic

' sin~ —
y

~

cos8, (7a)

d8 (0„—yu&)m, ~e~Erm,' sin —y„sin8 .p„2p,J', Lc
(Vb)

These equations are very similar to those analyzed
in our initial studies" of the nonlinear behavior of
the cyclotron-maser instability.

In a temporal steady-state oscillator the effic-
iency of converting beam power to radiation power
is given by

(8)

where I'b „and P, ,„, is the total electron beam
power flowing into and out of the open resonator in
the z direction. For the cold beam distribution
presented earlier, the efficiency, as defined in
(8), can be shown to give

—I el

y, (y, —a)e.,m,'c'
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Using (2a) and (4a) we find that

Ep,Ep„= '
sin~' —y„(cos8,

where we have used the approximations y =y, and p„, .=0. Substituting (10) into (9) and noting that E„p„ is
independent of to we obtain for the efficiency the expression

—
I el&a ~' ~ & 'dy„~d8, . t'&o

dz &"
2

'E(z)p, (z, 8„y,.) sin~ —y„~cos8(z, 8„y„).
4vy, (yo —' 1 v,m, c'

in

The expression in (11}gives the full nonlinear steady-state operating efficiency. Before solving (11) in
the fully nonlinear regime it is illuminating to first solve the orbit equations in the linear regime and
thereby obtain the analytic form for the efficiency. The orbit equation in (7) can be linearized by setting
p, =p,'"+p,'" and 8=8'"+8"', where p,'" and 8'" are zero-order quantities in the field amplitude F. ,
and p,'" and 8'" are first-order quantities. Solving (7) we find that

p"=p (12a)

8'"(z) =8, — "
(z —z,.„),

SO

z

p,'"= sin~ —
y„~~ dz'E(z')cos8'",

(12b)

(12c)

8'"= ",sin~ —y„~ dz' dz" E(z")cos8'" (z") +— (12d)

where &a& =&a —0,/y, is the frequency mismatch.
Now substituting (12) into (11) and performing the y, integration we arrive at the following expression

for the linear. efficiency:

q= ' dz dz' E(z)E(z') cos —(z' —z)
-(I e I /m, c')' "~ ', , &o, &(o/(o&

&0&0 &0. 2 c p„&

+ P'„dz"E(z)E(z")sin —(z" —z)
(o/c ii

ZO E c P, iz ' (13)

where E(z) denotes the profile of the radiation
beam. In the present case the radiation beam has
a Gaussian profile given by E(z)=E,e x(p- z/r', )
Substituting this form for E(z) into (13}and taking
the beam entrance and exit planes to be, respec-
tively, z,.„=-~and z „,=~, the integrations over
z, z', and z" can be performed analytically. The
overall expression for the linear, small-signal.
efficiency takes the rather simple form

where ],= (x,&u/c)/P„Unlike t.he case of a beam
propagating along the z axis, the structure of q is
nonoscillating in, say, x,. The reason for this is
that the radiation field is a smooth function of z
and has no abrupt change in behavior at the entry
and exit points of the electrons. From (14) we
see that the efficiency is positive when 4~/~ & 2/
p„g,)', hence, the output frequency is always
slightly higher than the relativistic cyclotron fre-
quency. For typical choices of parameters, the

term p„(20(Ew/+)/2 is much greater than unity.
In this case the linear efficiency maximizes when
the frequency shift is &a& =~/g, .

Appendix A contains a derivation of the small-
signal efficiency at the fundamental as well as at
all cyclotron harmonics using the linearized
Vlasov equation. In this appendix the linear-ef-
ficiency expression is derived for the cases where
the electric field of the radiation beam is polarized
in the x direction, i.e. , polarization considered in
the body of this paper, as well as in the z direc-
tion. The former polarization of the electric field
is shown to result in substantially higher linear
efficiencies compared to the latter polarization.
In conventional electron cyclotron masers the par-
ticle interacts with the TE mode of the structure.
This corresponds, in our present configuration, to
the electric field polarized in the x direction.
Polarization of the electric field in the z direction
would correspond to a TM mode interaction in the
conventional configuration.

In order for the system to operate in the as-
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(15)iiPp;, „4%tot d/Q t

where h„„„=p (Ep/8v)vr, L is the stored field en-
ergy. To obtain the threshold electron-beam
p owe r, necessary to start the resonator, we us e
the small-signal efficiency in Eq. (14). Substitu-
ting the maximum small. -signal efficiency, i .e.
when (p«o/at =1, into (15) we find that the product
of the beam power and resonator Q needed to start
the os cill.ations is

sumed steady state, there must be loss es which
just compensate for the power loss of the electron
beam . These losses are composed of both the
output radiated power, and the real losses due to
diff raction or dissipation in the mirrors . All of
these losses are characterized by the Q of the cav-
ity so that the total power out of the resonator is
P,„t=ppg„„,p/Q, where gstored is the energy stored
in the cavity, which is proportional to E0 ~ Since
linear theory shows that power lost by the beam
is also proportional to E2„ the operating field am-
plitude cannot be determined by linear theory
alone. Thus, the oscillator, unlike the amplifier,
is an inherently nonlinear device .

As will be shown in Sec. IO, where the nonlinear
electron dynamics are calculated, the power lost
by the beam ultimately levels off as E20 increases ~

Thus the actual operating point can be calculated
from the intersection of the graphs of power loss
by the beam, and power lost by the cavity, as
functions of E„shown schematically in Fig. 3. It
is apparent that the steady state can be achieved
only if the losses are small enough so that the two
curves intersect. Also, for the optical cavity con-
figuration, we find that the power lost by the beam
never becomes negative as E', increases . Thus
steady-state operation is not possible without
power loss by the cavity .

The threshold condition for starting the oscilla-
tions in the resonator is

P»„Q ~ 4.6 x10'—~p(yp —1)p,gpp„(watts) . (16)
0

Throughout our anal. ys is on the quasioptical ma-
ser we have made the tacit assumption that the en-
ergy lost by the electrons goes into supporting the
assumed Gaussian radiation beam . This assump-
tion is common to all conventional oscillator prob-
lems and has been proven valid experimentally .
Although we have not rigorously proven this point,
concerning our present configuration, we have as-
sumed it applies here too .

III. NUMERICAL RESULTS AND ILLUSTRATIONS

A. Efficiency of maser in uniform external magnetic field

As an illustration of the potential operation of
the quasioptical maser we choose a 60-kev (yp
= 1.118) electron beam having initial velocity com-
ponents P„=0.4 and P, =0.2. The location and
curvature of the mirrors are chosen so that the
radiation spot size is 5 .9 wavel. engths, i.e . f p=5.9X. The linear (small-signal) efficiency given
by (14) is shown in Fig. 4 for various values of the
normalized field amplitude, Ep/Bp. The linear ef-
fic iency has a single positive maximum when
(p&ptt/at = 1 which corresponds to the frequency
&tt . = (1 —1/fp) ~&p/zp The .intermode frequency
separation of a resonator of length L is 6ptt = ttc/L.
Therefore, a spectrum of natural. modes can exist
within the resonator separated in frequency by 5& .
%hen the oscillator is first started up, the mode
frequency closest to ~,„mill be excited first and
grow to a level where it suppress es the slower
growing natural modes further away from &,„ It
turns out that the maximum nonlinear efficiency
occurs at a frequency slightl. y higher than
i.e. , for ]pA&o/at somewhat larger than unity.

In the absence of longitudinal mode selection or
equivalent scheme, it would not be possible to take
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FIG. 5. Nonlinear efficiency g vs normalized field
litude E /B at the frequency mismatch of optima

linear operation fpb"/a&=1. 0 (dashed line). The other
parameters are the same as in Fig. 4.

FIG. 6. S atial variation of the nonlinear efficiency qF ~ ~ pa
across the resonator for the parameters of Fig. 4 at the
optimal nonlinear point, Ep/Bp=2. 25X 10 2 and ~p'cg/cu
=7.0 (solid line), as well as for $phg/co=6. 5 (dashe
line) and )pAQ)/(d =7 5 (dotted line). The radiation field

f 1 h wn for reference on an arbitrary scale.

advan age od t e of the higher nonlinear efficiencies oc-
curring at frequencies greater than &,„. To sup-
press these unwanted modes near ~,„and operate
the maser at the frequency of maximum nonlinear
efficiency, we will assume that a longitudinal mode
selector" is employed. Another approach seems
possible: we can start the oscillator at the natural
operating frequency &,„. When t een the mode satur-
ates, the external magnetic field can be decreased
slightly so that gp4&g/co &1 has the appropriate val-
ue to maximize the nonlinear efficiency. We will
assume that, by using either of these approaches,
the operating frequency can be freely chosen.

The nonlinear efficiency defined in Eq. (11) is
evaluated by following numerically the particle
trajectories according to (6). For s icien y
small field amplitudes, the simulations reproduce
very accurately the linear efficiency in (13 . The
beam entry and exit points were taken at +2r, and
the electron orbits were integrated using a four-
point Bunge-Kutta integrator. Figure 5 demon-
strates the higher nonlinear efficiencies achievable
at larger values of gp«o/ru. The efficiency in this
figure is obtained by solving (11) as a function o
Ep/Bp for various values )paulo/Ql A mRxlmum ef-
ficiency of 33/o is obtained for $, e/ra =
B,=2.25x10 '. Figures 6 and 7 show the spatial
variation of the efficiency within the resonator for
various values of the normalized frequency shift
p'&o/" and normalized field amplitude Ep/Bp.

The spatial oscillations in efficiency within the
resonator are due to the oscillations of the trap-

fped particle distribution. The Gaussian profile o
the radiation beam is also shown in Fig. 6 for
reference purposes.

The examples presented so far should not lead
to the impression that good performance is neces-

0.4
Eo/Bp 2 25X10

Oz 02
LLI

LL
LL
LLI

-2.0 0 2.0

NORMALIZED TRANSVERSE DISTANCE, z/ro

FIG. 7. Spatial variation of the nonlinear efficiency g
acrossss the oscillator for the parameters of Fig. 4 at the
optimal nonlinear point, fp'co/&=7. 0 and Ep/B p=
x 10 2 (solid line), as vre11 as for Ep/Bp= 2.55 x 10 2

(dashed line) and Ep/Bp=1, 95 x 10 (dotted line).

sarily associated with frequency mismatches sig-
nificantly larger than the values corresponding to
maximum linear gain. For example, for a beam
with $„,=0.1 and 8„=0.2, corresponding to &0

=1.026 (13.3 keV), the nonlinear efficiency is
plotted in Fig. 8 against the radiation field ampli-
tude for various values of the ratio ro A, . In all
cases the frequency mismatch was taken to cor-
respspond to the maximum linear gain va ue, ob-

8tained from Eq. (14). As can be seen in Fig.
a peak efficiency of 20+ is obtained for rp/A. 2 5,
while the values of q = 17.5/p are obtained for
r /%=1. 6 and 3.2. For these cases, the frequen-
cy mismatch is given by ~~/~ =0.75 1x 0 130
x10, and 0.58X10 2, respectively, and corres-
ponds to optimal linear gain value.
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NORMALIZED. FIELD AMPLITUDE EplBp

FIG. 8. Nonlinear efficiency g vs normalized field
amplitude Eo/Bo for P~o= 0.2 and P,o= 0.1 for operation
at the point of optimal linear operation, when (a) ~0/X
=2.5, 6~/to = 0.75% (solid line), (b) rp/X = 1.6, 4(o/co
=1.30% (dashed line), and (o) xo/X= 3.2, b,a&/a&= 0.58%
(dotted line).

B. Efficiency enhancement by contouring external
magnetic field

It is possible to enhance the nonlinear operating
efficiency of the quasioptical maser by either pre-
bunching the electron beam in momentum-phase
angle (ru7 —8) or by appropriately contouring the
external magnetic field. Prebunching the electron
beam, by utilizing a two-open-resonator Klystron-
type configuration, is in principle straightforward
and results in extremely high efficiencies. How-
ever, depending on the. length of the ballistic
phase-bunching region (distance between the two
resonators), electron-beam thermal effects may
present a problem at high frequencies. Contour-
ing the magnetic field appears to be the simplest
method for enhancing efficiency. By slightly con-
touring the magnetic field, as a function of z, a
more advantageous momentum-phas e distribution
of the electrons canbe realized with a single res-
onator. A significant improvement in efficiency
over the already highly efficient uniform magnetic
fieM case can be realized in this way. Figure 9
shows the spatial evolution of efficiency with and
without magnetic field contouring. The magnetic
field in this case was decreased linearly by 5/o
between the points z = -2' and z =2yp. For this
variation a final total efficiency of 45'fo was
achieved.

C. Design examples

We conclude with two specific detailed design
examples, which will demonstrate the potential of
the configuration we have analyzed. In the follow-
ing examples the steady-state performance of the
maser, operating at 150 6Hz (1.=2 mm), is
analyzed. The electron beam is taken to be gen-

-2.0

NORMALIZED TRANSVERSE DISTANCE, z/fp

FIG. 9. Spatial evolution of the nonlinear efficiency g
across the oscillator for the parameters of Fig. 4 and
for gpEM/&=7. 0 and Ep/Bp=2 1 X10 (a) when the ex-
ternal magnetic field is decreased by 5% over the dis-
tance 4rp (solid line) and '(b) when the external magnetic
field is uniform (dashed line).

crated by a diode with a current density of 10 A/
cm . Within the oscillator, the electron beam has
a rectangular cross section, ' with area A. = 2Ypyg,
extending from x=-ro/2 to x=+x,/2 and from y
= -y„ to y=+y„, where yp is the spot size and y~
is the Rayleigh length.

The first example deals with the 60-keV beam
with P,0=0.4 and P„=0.2, for which the efficiency
is shown in Fig. 5. For x,/X=5. 9, the beam
cross section is A =52 cm', giving a beam current
of 520 A and an input beam power of 31 MW. Ow-
ing to the slight va.riations of the radiation field
amplitude across the beam, the conversion effi-
ciency has to be appropriately averaged. For a
radiation field of magnitude E,/B, =2.4&10 at the
center of the beam, this weighted average effic-
iency is q = 28%, hence the radiated output power
is P„,=8.7 MW. For such performance, a nor-
malized frequency mismatch f,&~/v =7 is re-
quired, hence n«o/+=3. 77% and ur/0, =0.93. For
A, =2 mm (&v =9.4X10" sec '), a magnetic field of
Bp 5 8 ko is required . In addition, by appropri-
ately tapering the external magnetic field the out-
put power can be increased to P„,=12 MVf. Fin-
ally, if either of the above illustrations (with or
without the external field taper) is to be achieved
by initially adjusting the external magnetic field to
the value corresponding to maximum linear gain of
the operating frequency, then for a 44-cm-long re-
sonator (i.e. , equal to 2ys), the value of Q ob-
tained, from (16) must exceed the 180, while the
operating value of Q is 40000.

- In the above example the frequency mismatch
was substantially higher than the value required
for maximum linear gain. The highly impressive
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performance associated with the adoption of such
a condition warrants its implementation. The
realization of such a large frequency mismatch
wouM require a mode selector or an external
source to set up the radiation field. However, if
such complications are to be avoided, excellent
performance can be achieved as will be shown. In
the second example we consider a 13.3-keV beam
with P, ,o ——0.1 and P„=0.2, interacting with a ra-
diation beam of X =0.2 cm and r, /X =2.5, at the
frequency mismatch associated with maximum lin-
ear gain, i.e. , «o/ra=0. 75%%up. In this case, the
cross-sectional area of the beam is A =4 cm'.
Assuming that the diode current density of 10 A/
cm' can be compressed to 50 A/cm', the input
beam power is 2.7 MW. For Eo/Bo =2.3x10 z,
the average efficiency is 18% hence the radiation
power is I'„,=0.50 MW. The required value of
the external magnetic field is B0=54.5 kG. For
this case, the linear threshold condition (16) is
not restrictive, since it simply requires that the
nonlinear efficiency be smaller than the linear
value, which is the case. Assuming an oscillator
length equal to 16 y„=63 cm, the operating value

Q is 1560, larger than the threshold value of 150,
required by (16).

APPENDIX A

Here we work out the steady-state linear theory
for the energy loss of the electron beam as it
traverses the wave fields in the open resonator.
In steady state, the energy equation for the beam
is

a =E J
ag fl

where Wf, is the beam energy flux and J is the
beam current. The configuration is as shown in
Fig. 1. The change in beam power as it crosses
the resonator then is f dsr E J, so the main prob-
lem is to calculate an expression for the perturbed
beam current density J.

I

This can most easily be done by analyzing the
linearized Vlasov equation

I elpx 8, B &,-in+ v ' —f'"
ym, c Bpj

where a time dependence 8 '"' is assumed. The
quantity f' ' is the unperturbed distribution func-
tion, that is, the distribution function at z = -~,
and f'" is the perturbation to it induced by the
fieMs in the resonator. Instead of using indepen-
dent variables r, p, it is more convenient to use
as independent variables the quantities Q„y„z,p„
Q, p,) where

and

n.m,p.=p, cos ' 'z+4jl,

a,m,
p, =p, sin ' 'z+ pl,p.

n,m,
p sin z+ Ql

p j
x —x +

omo

a,m,
p, cos ' 'z+ plp.

g0 0

(A3}

(A4)

-f~+ ' lf'" =
I
—e

I
5@+

ymo Bzj ymoc j Bp

(A5)

and assuming that f'o' is independent of p, Bf'0'/
Bp reduces to

where 00 is the nonrelativistic cyclotron frequen-
cy. These have the advantage of being constant in
the absence of the radiation fields in the resonator.
In these new variables, the Vlasov equation re-
duces to

There are two possible polarization for the radiation. The first is

6E=E(z)cos(ky) e '"'e„+c.c. ,

58= E(z)sin(ky) e '"'e + cc.ikc
(d S

which we call TE since it has 5E &80. The second polarization

BE =E(z) cos(ky)e '"'e, + c.c. ,

-ikc58= E(z) sin(ky)e '"'e„+c.c.

(A7)

(A8)
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is TM since 6Bi Bo.
For TE polarization, the

)(Qmp&d) &g) rmp
az p, P,

linearized Vlasov equation reduces to

cos ' ' +y~ f'"+(k--k)=G(z).
ymoQomo p ] B~

The perturbed distribution function then is

PZ 'o PZ

The quantity we are interested in is f 5E* 5Jd'r which is

—
( e~fPdddddpdzdp dz(P)yze ) eee(II zeziP, e d)IIE f'" .

(A9)

(A10)

In evaluating this integral, exp(iky), which appears in the expression for 5E must be written as
exp[ik [y, —(p,/Q, m, ) cos(Q,m,z/p, + &t))]) which is equal. to

Then 1 E* J d'r is given by

d'rE*.J= ~~ dx, dy dzp, dp, d&t)dp, E*(z)g J~ &
' exp in' ' ' + &—t) —

2l . , Am, z m

0 0 Z

.ym, co z -z' I'-
I e I'

L in, m, z (n,m, z i a & )l
&& —'cos( ' ' +P/cos] ' ' +&t) /2~,

+ (k —-k) +c.c. , (A11)

where we have assumed that elf &0)/8y =0, that is, the distribution of guiding centers is uniform in the y
direction (actually the dimension of the beam in the y direction is very long compared to a wavelength),
and also have exploited the fact that no quantity except f'0' depends on x, so the Bf(0)/&)x term integrates
to zero. Since f'" is independent of Q, the only term which does not integrate to zero over P is the zero
Fourier harmonic. This collapses the double summation over m and n into a single summation, so that

~
~ ~

t'kp ' . ym, &d n,m, & i)' &)
'"

d'rE* $=2vlel dx dy dzp dp dp, E*(z)g J„'(
&

dz'exp i ' — ' 'I(z-z') ~ &, +c.c. ,

(A12)

where the (k- -k) has now been explicitly included.
The next problem is to evaluate the zz' integral. Assuming E(z) has the form E,exp(-z'/r', ), this in-

tegral is of the form

dz dz'exp —
(
—.

)
e —

)
e(e(z —z') }&.)

whe~e n =(ym, ~ -nm, Q,)/p, . By completing the square, the z' integral can be evaluated in terms of
error functions so it reduces to a single integral

)

M1T 2 ~2E2roe " 2 du exp[-(u+ior, ) ](1+2erfu) .
& QQ

Since the error function is an odd function of u, the integral of the term containing the error function is
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i-sin(2nr, u)e" erfu,
~ ~

ec

which is purely imaginary and sums to zero upon adding the complex conjugate. Thus only the unity in
the parentheses contributes to the integral and the total result is —2nr,'exp(-o. 'r,'/2). Hence the total result
18

e
r2 nm Q12r2- y 2 26 &0)

d'rE* i =-(e('—' dx,dy, dp,'dp. Q Z,'r,'exp — )y '" " '"'I -a Z„„p'
~

p—''f, .

(A12)

This is the final result for the power loss of the beam as it traverses the fields in the open resonator. To
progress further, assume the distribution function

f'" =2 &(p,'—p'„)6(p, —p„)6(~,),

where o is the surface charge density of the sheet beam. The incident power is

(A14)

(A15)W~, L(r(y ——1)p,—cs/y .
Assuming n=1, + =Q,/y, and J,Q) =x/2 (i.e. , kp, «Q,m, the integrals can easily be done and Eq. (14)
can be recovered for the efficiency. For a=2 one can also show that the efficiency has the same basic
form as Eq. (14), but it is multiPlied by an overall factor of —,

' (O' Pm/mscQcs), which is much less than unity.
Thus an interaction at the second harmonic exists, but it is weaker.

For the TM mode an analogous calculation gives the result

d'rE* J = '
2 d'dy p'dp 'exp

2

„,, (ap, 1( nQ~ a nQ, 6

"IQcmc 2 ( y(o i 8P, ymcP'8P, (A16)

At each harmonic, the power loss of the beam is smaller by a factor of order (kp, /Q, me)' from what it was
for the same harmonic with TE polarization. Thus the coupling of the TM.mode with the radiation in the
optical cavity is much weaker than for the TE mode.
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