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Dynamical effects at avoided level crossings: A study of the Landau-Zener effect
using Rydberg atoms
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We present a study of the dynamics of traversing an avoided energy level crossing. A pair of Stark levels of
Rydberg states of lithium are used. as a, test system for measuring the diabatic transition probability. The
experimental conditions are close to those assumed by the Landau-Zener theory. Possible corrections to the Landau-
Zener theory are analyzed, and applications of the results to pulsed-field ionization are discussed.

I. INTRODUCTION

Nonadiabatic transitions at avoided crossings
between potential curves have long been known to
play a fundamental role in inelastic molecular
collisions. The most elementary case—transi-
tions at an avoided crossing of two levels which
are traversed linearly in time —was analyzed in
the early days of quantum mechanics by Landau'
and Zener, ' and is known as the Landau-Zener
e t. Their calculation has served as the start-
ing poi or studies of phenomena such as energy
exchange, charge exchange, and predissociation
and associative recombination. ' The Landau-
Zener effect can also be important in atomic sys-
tems. For instance, adiabatic rapid passage of a
two-level system is accurately described by the
Landau-Zener theory. " It has also been esta-
blished that nonadiabatic transitions between Ryd-
berg states in a rapidly rising electric field can
influence the threshold behavior exhibited in
pulsed-field ionization. '

We present here an experimental study of the
Landau-Zener effect carried out with Rydberg
states of lithium in a strong electric field. In
contrast to the case of molecular collisions, all
the parameters can be controlled accurately, and
the system comes close to the idealization of the
basic Landau-Zener theory. Thus one has the
opportunity to demonstrate quantitatively a basic
dynamical process. The research 'is also moti-
vated by the need to understand the experimental
and theoretical systematics which govern field
ionization in many applications. In the following
sections we will discuss in turn the elementary
Landau-Zener theory, corrections to the theory,
the energy level structure of the test system
{lithium), the experimental details, and our re-
sults.

II. THEORY OF NONADIABATIC TRANSITIONS
AT AN AVOIDED CROSSING

A. The Landau-Zener effect

Before discussing dynamical behavior at an
avoided crossing in detail, it is helpful to recapit-
ulate the important features of the theory. We are
concerned with a system whose Hamiltonian de-
pends on some variable parameter q, such as the
internuclear separation between two atoms or the
amplitude of an applied electric or magnetic field.
Of particular interest are two eigenstates of the
system whose energy levels, to first approxima-
tion, cross for some value of q, as in Fig. 1(a).

FIG. 1. Energy of the two-level system as a function
of the parameter q. (a) Unperturbed energies. (b)
An avoided crossing.

3107 1981 The American Physical Society



3108 RUBBMARK, KASH, LITTMAN, AND KLEPPNER

If the Hamiltonian is perturbed by an interaction
'V which couples the levels, the degeneracy at the
crossing is broken. The levels repel, as in Fig.
1(b), in accordance with the "no-crossing" theo-
rem. '

Consider a system initially prepared in state
I2) of Fig. 1(b). If q then increases in time,
sweeping the energies through the avoided cross-
ing, will the system emerge in state I2 ), or in
state Il )? For the simplest case, where the un-
perturbed energy separation E= F-, —E, varies
linearly with q, as in Fig. 1(a), and q changes
linearly with time, then the probability that the
system will undergo a transition to I2 ) is
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FIG. 2. Energy of the two-level system as a function

of the parameter q. The dashed lines are the diagonal
energies of II, and the solid lines are its eigenergies.

Here 'V» is the matrix el.ement of 'V connecting the
two states, and dE/dt = (dE/dq)(dq/dt) is the slew
rate. It is evident that the behavior at the avoided
crossing depends on the slope of the energy levels
and the rate .at which q changes compared to I'0» I.
In the limit'U»-0, I'-1, and the crossing is said
to be traversed diabatically. In the opposite limit
where I'0» I'/@ is very large compared to the slew
rate P-0 and the avoided crossing is said to be
traversed adiabatically. Of more general interest
is the intermediate case in which the behavior is
neither purely adiabatic nor purely diabatic.
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B. Dynamical equations

We consider a two-level system governed by a
Hamiltonian WHO(q) which depends explicitly on a
parameter p. Denoting the eigenfunctions of @00
by I 1), I2), and expressing energies in frequency
units, we have

e,(q) I1)=a, (q) I1),

H, (q) I2) =Q, (q) I2),

(2a)

(2b)

where Q, , (q) are the eigenenergies. We assume
that the eigenvectors Il), I2) do not vary with q,
and that &,(q) possesses a symmetry which per-
mits degeneracy of the energy levels at some
value of p. In the vicinity of the crossing, the
energy l.evels are taken to vary linearly with q,
as shown by the dashed lines in Fig. 2.

Next we consider the effect of a perturbation V
which lacks the symmetry of Pp and breaks the
degeneracy at the crossing. The total Hamiltonian
is

We assume that V is independent of q so that up
is a constant. The diagonal matrix elements of V
shift the location of the crossing but do not affect
the dynamics of the system.

The eigenenergies of & are

~.(q) =.-'{(~,+ ~.) +{~(q)'+~'.] '"),

&u, (q) = —,'{(&o,+u&, ) —[v(q)'+&@0] ' '),

(6a)

(6b)

where &u(q) = ~, —~,. The "crossing value" of the
parameter, q„ is defined by a&(q,) =0. The ener-
gies (in frequency units) are shown by the solid
lines in Fig. 2. The avoided crossing can be char-
acterized by its separation, ~„and its width qp
defined by

(d(ui

e,

The eigenfunctions of II are conveniently written
in terms of the phase angle P [Eq. 5(d}] and the
parameter 0 defined by

@II=@II,+@V.
The matrix of P in the ordered basis {II), I2)) is

tan8(q) = ', 0 ~ 8&x.
w(q)

'

A set of orthonormal eigenvectors is

(8)
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stant, then Eqs. (13) can be solved. ' The prob-
ability is most conveniently expressed in terms
of the parameter

I!I Il 12&l'

(dc' d cd

Edt dt

(15)

where the derivative ss evaluated at the crossjng.
In the limit t~- —~, tz-+~, the result is given
by Eq. (1):

~l@(t)&,. I ()&
at (10)

may be solved by taking

t
le(t»=C, (t&exp~ —i re,rtt')ll&

p

t
+C, (t) expl —i ~,dt'II2).

i

la(q)) and lb(q)) have energies co, and &o», re-
spectively.

Now let us examine the effect of time variations
in q. The time-dependent Schrodinger equation

p e-2r T'

C. Corrections to the Landau-Lener formula

The conditions assumed for the Landau-Zener
theory are never fully satisfied in practice. In
order to investigate corrections to the Landau-
Zener formula, we have obtained solutions to
Eqs. (13) by numerical integration. This permits
us to impose arbitrary initial conditions, and to
allow q(t) to vary as pleased. Although the cor-
rections required by our particular experimental
system will turn out to be negligible, some in-
sight can be gained by investigating their nature.
Equations (13) can be integrated by making the
substitutions

t
ic, =,'~,e-'e expl i (ddt'IC, ,

o
(12 a)

Substituting Eq. (11) into (10) and using (5) results
in

C, = ir, exp~ — rept ),(2 p

C, = U, exp I
—— &u dt I.&20

(16a)

(16b)

iC, = ~ e'~ expl —i &ddt C .

These may be decoupled to yield

2

C, —i(u(t)C, +~C, =0,

(12b)

(13a)

After some rearrangement, we obtain

U, + ~ (sf~+ 2i7b + &e') U, = 0,

U, + —,'(&o', —2i&u+e')U, =0,

(1Va)

(1Vb)

2

C, + i&a (t)C, +—a C, = 0. (13b)

For a particular initial state, initial values of C,
and P, are determined by Eqs. (8), (9), and (11),
and values of C, and C, are given by Eqs. (12).

rWe are concerned with the behavior of the sys-
tem over an interval starting at time t& and ending
at time t&, during which the parameter g changes
from q& to g&. Assume that the initial state is
lb, ), where b, =b(q, ). The probability that the

final state is Ia~&, i.e. , that the system has
"jumped" or made a diabatic transition from lb)
to la), is

which can be integrated by a modified Numerov
method, as described in the Appendix.

In our experiments, the relative slope of the
energy levels dv jdq is very nearly constant. The
time dependence of q, however, differs signifi-
cantly from the assumed linear variation over all
time. In practice, q sweeps through the avoided
crossing linearly, but is effectively constant out-
side of some time interval 7. Figure 3(a) shows
how q and the energies vary in the Landau-Zener
case. Figure 3(b) shows their variations for an
idealized fast pulse situation, and Fig. 3(c) shows
their variations for a more realistic fast pulse.

A good approximation to the behavior of ~ is

& =
I (+(t ) la &

I'. (14)

1
4&(t') = u&7

[I+ exp( —4t/w) j
(18)

If q varies linearly in time, so that d&u/dt is con- which has the properties
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(20)

which is essentially the ratio of the level separa-
tion to the spectral width of the parameter g'. A
third related parameter is

(b)

I

s time
I

s s 2NT

I (21)

time time

which is twice the ratio of the total change in en-
ergy during the sweep to the separation at the
avoided crossing. For d- ~, we have the Landau-
Zener case. In general, we can write the transi-
tion probability as P(I', d), with

P(r, )=e (22)

time time

FIG. 3. Possible time variations of q and the corre-
sponding eigenenergies. (a) q (t) linear and extends over
all time; the Landau-Zener case. (b) q(t) linear over a
finite range; an idealized "fast pulse". (c) q(t) for a
more realistic fast pulse; the corresponding cu(t) is
given by Eq. (18).

]—nT
2

cu(t) = ( nt,
/
t f

«T
+1—CV T,
2

(19)

Note that the slew rate through the avoided cross-
ing des/dt = o. is independent of the length of the
sweep T. The transition probability now depends
on the parameter I'= uPO/(4o), which characterizes
"how adiabatically" the avoided crossing is tra-
versed, and a second parameter

Values of P(1,d) obtained by numerical integration
are displayed in Fig. 4. For d -20, the diabatic
transition probability generally agrees with the
Landau-Zener result. It is interesting to note
that for s-1, P(I', s) displays a Iluasiresonant be-
havior, as shown in Fig. 5. The maximum can
exceed the Landau-Zener value by 0.05, which in
some cases represents a factor of 2 enhancement.

D. Resonance transitions at an avoided crossing

Experimental verification of the dynamics of
traversing an avoided crossing requires, among
other things, determining the level separation ~,.
Resonance spectroscopy of the level structure is
by far the most accurate way to accomplish this,
assuming that the parameter q is an applied elec-
tric or magnetic field. In this section wq discuss
the systematics of resonance: the behavior of an
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FIG. 4. Diabatic transition probability P as a function
of I' for various values of d. The thin line is the Lan-
dau-Zener result (d =~).

FIG. 5. Diabatic transition probability as a function
of s for I'=0.5. The thin lines are the Landau-Zener
prediction. (a) q(t) given by Fig. 3(b); the "sharp cor-
ners" in q(t) produce oscillations. (b) q(t) given by
Fig. 3(c).
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avoided crossing system under a periodic pertur-
bation.

We wish to predict the response of the system
to a sinusoidally varying field q(t) centered on the
crossing value g,:

q(t) =q, +q„costs,t. (23)

In the vicinity of the avoided crossing, the Hamil-
tonian can be written

H = H(q, ) + (q —q, ) V . (24)

It is convenient to represent the matrix of H in a
basis which diagonalizes H(q, ). From Eqs. (6)
and (9) we have

+~=~a(qc) ~ &a=&s(qc) ~ (25a)

I»= l~(q.)), I»= l5(q.)& (25b)

/(d & + L cos(d~f elf cos&d~t

M costa, t ~s + L cosv, t)
(26)

where

L='-q. (sisq)(~, +~,) I. ,

~& = —z'q. ('/Bq) (~ —~.) I.,

(27 a)

(27b)

For the case of a symmetric avoided crossing,
say as in Fig. 2, then L =0, and the problem re-
duces to resonance in a standard two-level sys-
tem. With the condition of small amplitude q„ I« lqo I, the eigenstates of H are essentially A)
and I», and the Rabi formula follows.

Resonance at an avoided crossing exhibits two
pecularities which must be borne in mind. The
first is that the oscillating matrix elements can
easily be so large that the rotating-wave approxi-
mation breaks down. The second is that the
states Ia(q)) and lb(q)) themselves vary if the
field is swept, so that there is a real physical dif-
ference between sweeping the field and sweeping
the frequency. Analysis of the behavior for fields
not centered on the avoided crossing, omitted
here, is straightforward.

The numerical methods described in the last
section are quite general and can also be applied
to the case of an oscillating field q(t) of any am-
plitude. We have confirmed that at low-field am-
plitudes the transition probability obeys the Babi
formula as expected.

The matrix elements of V are determined from
the asymptotic slopes of the avoided crossing. '
The Hamiltonian represented in the ordered basis
{I&),i&A is

III. AVOIDED CROSSINGS IN STARK STATES OF
OF LITHIUM

Stark states of highly excited (Rydberg) atoms
display a multitude of avoided crossings, many of
which provide excellent test systems for observing
the Landau-Zener effect. The Stark structure of
Bydberg alkali-metal atoms has been analyzed by
Zimmerman et al. ', we summarize here some of
the relevant results.

The Stark structure of hydrogen can serve as
the starting point for understanding the Stark
structure of alkali-metal Rydberg atoms. The
electronic Hamiltonian, neglecting spin and rela-
tivistic effects, is

Ho= —z V' —1/x+ Fz,
where the applied field is Fz and atomic units are
used (5=m = e = 1). Angular momentum along the
z axis commutes with H, and is a constant of mo-
tion. There is a second constant of motion, a
generalized Lenz-Pauli vector, ' which also com-
mutes with &p The existence of this constant of
motion has several consequences: The problem
is separable, the states display a first-order
Stark effect (i.e. , they possess permanent dipole
moments), and degeneracies between levels are
allowed, even for the same value of rn. When

considering a map of the energy levels, this last
property permits the Stark levels of hydrogen to
cross.

The eigenvalues of &, are

(28)

E(n, n„n2, re) = —,+ zn(n, —n, )F +0(& ), (29)

where n is the principal quantum number and cy

and n, are the parabolic quantum numbers which
satisfy n, +n, + Im I

+1 =n The hi.gher-order
terms, which arise from mixing between principal
manifolds, do not affect the symmetry of the
problem. These contributions alter the eigenfunc-
tions, but their effect is small and we can treat the
eigenfunctions as constant in the limited field
range of interest near a specific crossing.

The generalized Lenz-Pauli vector is a constant
of motion only if the central potential varies ex-
actly as -1/&. If the Coulomb potential is slightly
perturbed this dynamical symmetry is lost, the
problem is no longer separable, and the sharp
crossings are converted to avoided crossings. If
the perturbation is small, however, the size of
the avoided crossings is small, vanishing as the
perturbation approaches zero.

A natural way to characterize short-range per-
turbations to the Coulomb potential is by intro-
ducing a quantum defect 6, into the eigenenergy of
a particular zero-field angular momentum state,
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FIG. 7. Schematic diagram of the experimental sys-
tem. A and 8 are field plates, C is a ground plane, andI is an insulating Mylar film.

the interaction region with a mean speed of 1..6
mm psec '. The atoms were excited by pulsed
tunable dye-laser light directed perpendicularly
to the atomic beam. A three-step excitation
scheme was used: 2s-2P (671 nm), 2P —3s (813
nm), and finally 3s - Rydberg state (626 nm). The
polarization of the final laser was perpendicular
to the electric field so that only ~m j

=1 states
'were excited.

The pulses from the first two dye lasers were
simultaneous, but the final pulse was delayed un-
til the initial pulses were extinguished. The dye
lasers were of the "grazing-incidence" type", the
initial two lasers had a linewidth of about 0.4 cm '
and the final. laser, which used a double grating
configuration, had a linewidth of about 0.1 cm '.
The dye lasers were pumped by harmonics of a
Quanta-Ray DCRla Nd: YAG laser and produced
peak powers of a few kilowatts.

The excitation region was centered between two
parallel electric-field plates which were separated
by 4.95(3) mm. . The Rydberg states were prepared
in a dc field, I"„about 15-20 Vcm ' below the
crossing fieM F, =1008(1) Vcm '. This field was
supplied by a well regulated high-voltage source
connected to the upper-field plate.

The excited atomic states were swept through
the avoided crossing with a fast voltage pulse
starting 100 nsec after excitation. The popula-
tions of the final states were analyzed by selective
field ionization. The ions were accelerated by the
field and passed through the lower plate via a
number of small holes to an electron multiplier.

C. Pulsed electric field

A two-step pulsed field was generated with two
independent supplies. The first step, the "fast
slew" pulse, carried the system through the
avoided crossing with an accurately controlled
slew rate which could be varied between 7 and 40
kVcm '

p.sec '. In order to prevent traversing a

second avoided crossing, the amplitude of the fast
slew pulse was limited to 40 V cm '. The second
step, the ionizing pulse, increased the field to 3
kV cm ' in a time of 3 p.sec. This pulse carried
the system across the field-ionization threshold.
About 100 V cm ' below the threshold its slew
rate decreased to approximately 50 Vcm '

p. sec '.
The fast slew pulse was generated with an ava-
lanch transistor pulser. " The signal was coupled
out through a Hewlett-Packard 355 CVHF variable
attenuator which allowed the amplitude to be
varied without altering the pulse shape.

The field-plate structure shown in Fig. 7 was
adopted in order to provide continuous monitoring
of the slew rate and to avoid reflections or un-
necessary loading of the fast slew pulse. The
pulse was applied to the lower plate A across a
matched load connected to the ground plane C.
The matched load was a 50 ohm transmission line
leading to a sampling scope (Tektronix 7904, 7T11,
and 7S11 sampl. ing units, S6 head).

The ionizing pulse and dc bias voltage were
coupled to the upper-field plate B. This plate was
capacitively coupled to the ground plane through a
thin Mylar sheet. The capacitance was large
enough to transmit the fast slew pulse, but small
enough to permit application of the much slower
ionizing pulse.

Uncertainty in the slew rate was one of the
limiting errors in our measurement, and jitter in
the triggering of the sampling scope was a princi-
pal contributor to this error. Jitter was mini-
mized by triggering the scope directly from the
fast slew pulser. This required a 50 nsec delay
line between the pulser and the field plates, which
attenuated the signal and limited the rate. Over
the range available with this method, however,
the slew rate could be determined to 4%. To
achieve the higher slew rates, the scope was trig-
gered ahead of the fast slew pulser. The esti-
mated uncertainty by this method is 10%. Data
taken by both methods are identified in the final
results (see Fig. 10).

D. Structure of the avoided crossing

The energy level slopes in lithium near the
avoided crossing d&u/dE were calculated using the
methods of Zimmerman et al. ,

' and were also
measured by experimentally mapping the Stark
structure. The result is du/dF = 3.47(1) x 10 '
cm '/Vcm '). The size of the avoided crossing
is far more difficult to calculate than the energy
level slopes, depending as it does on high numeri-
cal precision and accurate input data in the form
of quantum defects. Using the quantum-defect
data of Johansson, "we obtained ~, =7.7(1) x10 '
cm '. Since this value was not sufficiently accu-
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FIG. 8. Resonance curve for the avoided crossing;
signal proportional to rf transition probability vs fre-
quency.

rate for our purpose, we measured the separation
directly by radio-frequency (rf) spectroscopy.

A single level was populated at the avoided
crossing field F,=1008 Vcm '. Although the
pulsed dye laser was too broad to resolve the
level's, the oscillator strength for the optical
transition at the avoided crossing is concentrated
in the lower level so that only the lower level was
excited. Transitions to the upper level were in-
duced by an rf voltage applied between the field
plates. The resonance signal was monitored by
measuring the relative population of the states.
The oscillator strength for the rf transition is
large, f=0.1, and a power of -10 ' W was adequate.
The power was supplied by a Hewlett-Packard
86290B signal generator, and the frequency was
monitored by a counter.

Figure 8 shows a typical resonance signal. The
asymmetry is due to field inhomogeneities and the
quadratic dependence of the level separation on the
field near the avoided crossing. In spite of the re-
latively poor line shape and signal-to-noise ratio,
the avoided crossing separation was determined to
an accuracy- entirely adequate for our purpose.
The result from seven independent measurements
is no = 7.6820(12) x 10 ' cm '.

E. Systematics pulsed-field ionization

Selective ionization with a pulsed field was used
to analyze the populations of the two levels after
the avoided crossing was traversed. This tech-
nique requires a one-to-one mapping between each
energy level of a Rydberg atom at low and high
electric field, and a unique threshold field for
ionizating each level. A number of assumptions
underlies the application of this method, and these
warrant some discussion.

The threshold field for ionization is F= W'/4,
where 5' is the energy of the level in the field. "

(The threshold region shown in Fig. 6 is given by
this expression. ) Although the concept of a
threshold field has been widely accepted, it is im-
portant to recognize that it applies only to the en-
ergetics of ionization and provides no information
about ionization -rates. For atoms with an unper-
turbed Coulomb atomic potential, the ionization
rate can be negligible at fields well in excess of
the threshold field. In the case of low ~m

~
states

of the alkali-metal atoms, however, the ioniza-
tion rates are generally observed to become large,
typically greater than 10' sec ', abruptly at the
threshold. Nevertheless, in applications where
the applied ionizing field increases rapidly in
time, the effect of a finite (and nonmonatonic)
ionization rate can significantly alter the observed
signal. If the goal is only to monitor the occur-
rence of transitions between states, as in micro-
wave resonance spectroscopy of Rydberg states,
then any alteration of the i.onization signal can be
used as an indicator and effects due to finite ion-
ization rates may not be important. If the need is
to measure transition probabilities quantitatively,
however, effects due to the fieM dependence of the
ionization rates must be taken into account. One
way to minimize these effects is to traverse the
threshold region slowly by introducing a "break"
into the ionization field slew rate, as described
in Section IV C.

A second consideration in determining final-
state populations is that their threshold fields
must be well resolved. For adjacent levels there
is no simple way to predict this. Inspection of
Fig. 6, for instance, reveals that the levels are
by no means uniformly spaced on the threshold
curve. Determining whether any given pair of
adjacent levels can be resolved requires either
careful computation of the level structure, or an
experimental survey of the region.

The fundamental question of pulsed-field ioniza-
tion, however, is whether the initial, state evolves
adiabatically or diabatically to the high field re-
gion. For a hydrogenic atom the level crossings
are so sharp that diabatic traversals are the rule;
for low ~m

~
states of the alkali-metal atoms all

crossings are avoided, and the repulsions are so
strong that the traversals are almost invariably
adiabatic. Unfortunately there is no simple rule
of thumb for connecting high- and low-field states.
Any particular case, however, can be analyzed
by investigating the Stark structure of the system.

The energy level routes followed by the states
of interest in this experiment are shown in Fig. 9,
which is blown up from Fig. 6. The size of the
avoided crossings can be reliably estimated from
the drawing, and it is apparent that during the
ionization process the levels undergo a large
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FIG. 9. Details from Fig. 6 of the adiabatic paths followed by the states during pulsed ionization. The avoided cross-
ing sizes are authentic. The circled feature near the ionization limit is discussed in the text.

series of avoided crossings comparable in magni-
tude to the one under study. A typical avoided
crossing in this region has a separation of 0.07
cm '. The Landau-Zener parameter for the tran-
sition is calculated to be I =1.7 and yields a tran-
sition probability P 10 '. This indicates that
branching to unwanted levels is not likely to be a
serious problem.

An unusual feature occurs very close to the
threshold: a weakly avoided crossing shown cir-
cled in Fig. 9. Although this crossing does not
cause any branching in our experiment, it is im-
portant to realize that "sharp" crossings such

as this can occur sporadically and can lead to a
branching of paths in the threshold.

F. Determining the diabatic transition probability

The final-state populations, n, and n„were
measured with two gated integrators that were
triggered from the ionizing voltage so that the
gates were centered about the threshold field for
each state. The signals were digitized and the
transition probability P = n,/(n, + n~) was evaluated
at each cycle of operation. This procedure re-
duced much of the effect of fluctuations in the
laser intensity.
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FIG. 10. Diabatic transition probability P as a func-
tion of the fast pulser slew rate. Data taken with and
without the delay line discussed in Sec. IV C are shown
by 0 and X, respectively. The solid line is calculated
with no adjustable parameters.

The major source of systematic error was un-
equal ion detector efficiency for the two states
due to the effects of motion in the atomic beam
across the positions of the grid holes in the lower
plate through which the ions pass to the multiplier.
This error was minimized hy moving the excita-
tion region to a position which yielded the same
transition probability irrespective of which initial
state was popul. ated.

A small transfer between the two states ( 3%)
occurred because of extraneous effects such as
hlackbody radiation and collisions. In addition,
there were small electronic offsets between the
two channels. These effects were monitored by
periodically carrying out the measurement with-
out applying the fast slew pulse, and also by set-
ting the bias field slightly above the avoided
crossing. The measured. diabatic probability was
then corrected for these errors. With these pro-
cedures, systematic errors in measuring the
transition probability are believed to be small
compared to the statistical error, typically 0.03.

V. RESULTS AND DISCUSSION

Under our experimental conditions, the parame-
ter d [Eq. (21)] ranged between 28 and 38. Ac-
cording to the discussion in Sec. IIC, the diastatic
transition probability under these conditions is
given with great accuracy by the simple Landau-
Zener expression, Eq. (1). With the range of
slew rates we could achieve, 7-40 kVcm '

p, sec ',
t' varied between 1.1 and 0.2, and the calculated
diabatic transition probability varied between
7 x 10 ' and 0.28. Although it would have been
desirable to investigate conditions of higher tran-
sition probabilities, the demands on the slew rate
were prohibitive. For instance, achieving a prob-
ability of 0.5 would require a slew rate greater
than 70 kVcm '

p, sec '.
The experimental results are presented in Fig.

10. The scatter is due to jitter in the slew rate,
discussed in Sec. IV C, and statistical fluctua-
tions in the measurement of the transition proba-
bility. We believe that the limits of possible sys-
tematic errors are small compared to the statis-
tical errors, and that the experimental results
are in good agreement with theory.

In addition to demonstrating the Landau-Zener
effect, this work was motivated by the need to
understand the dynamics of Rydberg atoms in
rapidly rising electric fields. We believe that this
goal has been substantially achieved, and that the
insights it provides should be considered in plan-
ning applications of pulsed-field ionization.
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APPENDIX: NUMEROV ALGORITHM FOR A COMPLEX DIFFERENTIAL EQUATION

Equations (17) are second-order, linear, complex differential equations with no first-order term. The
general form is

C =m(t)C.

It is convenient to consider the real and imaginary parts of this equation

a"=g(t)a -g(t)f,
f =g(t)&+i (t)a
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where a=ReC, b=ImC, g(t) =Res@(t), and j(t) =Imw(t). Proceeding as in the standard Numerov method,
ere obtain the "stepping" equations

g ~ +~~+~ ~4 +~ ~~~+~ ~4 ~ + +( 1O
e+Z= + s-X+ . ~t-X+ &c—

n, 'I

+h'IA„~' '-j~-, Ib~-, -h'I ioj&+j~„& '
Ib, +o(h'),

5+1 ] i' f+1

b„,= [—p;,b;, + n& b& +h'(j &,a, , +10j,a; +j;+,a;+,)]+0(h'),
II + 1

where n, =24+1Og, h', p, =12-g, h'. Initiating the integration requires values for a, and b, . These can be
I I

obtained from ao, ao ~0 ~Q and by using a Taylor series expansion

a, = (1+2 goh')aa+ap —s job, h'+O(h'),

b, = (1 + 2 g, h') b, + b, h + s jca, h' + O (h') .
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