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Population equations for quantum systems in contact with dissipation mechanisms
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We discuss the construction of population equations for driven quantum systems in contact with dissipation
mechanisms in the limit where the strength of the driving force is suAiciently weak that a suitable Born expansion
can be carried out in powers of the coupling constant of the coherent interaction. The Zwanzig projector technique
and the application of an appropriate eigenfunction-expansion method due to Weidlich lead to an elegant derivation
of population equations. If the decay rates of the irreversible processes allow the application of the Markoff
approximation, ordinary first-order differential equations for the level populations can be derived. The transition
rates are constructed explicitly in terms of the coherent Liouville operator and the Weidlich eigenfunctions.

I. INTRODUCTION

Many quantum-mechanical systems of statisti-
cal interest often allow a clear distinction to be
made between a limited set of relevant dynamical
variables (the system) and a much larger collec-
tion of degrees of freedom (the reservoir) whose
statistical properties remain essentially un-
changed during the evolution. The reduced density
operator 5' of the system of interest often obeys
a master equation of the form'

= —iI ~g +A+',

where the total rate of change is simply given by
the sum of a coherent and a dissipative part. In
Eg. (1.1) the so-called Liouville operator I., con-
trols the coherent part of the evolution; IJ is the
system's total Hamiltonian, and AW describes the
dissipative action of the reservoir(s).

Both open and closed systems have been des-
cribed by master equations of this form. ' Well-
known examples include the laser, ' closed sys-
tems interacting with a thermal bath, ' ""and
open bistable systems driven by external, sour-
ces." ' Obviously, a much more extensive list
could be compiled.

The reduced density operator contains complete
statistical information about the observables of
interest; this can be extracted using various tech-
niques. Thus, for example, in the case of the
resonance fluorescence problem" ' ' an atom is
driven by an external field and forced to undergo
Rabi oscillations between two resonant levels,
while the vacuum of radiation causes a decay of
the atomic polarization and excited population.
The off-diagonal matrix elements of the atomic

dW,.@' =~ (Pq, Wq -P;~W~ ), (1.2)

where W,. (t ) denotes the occupation probability of
the ith level, and P,-~ denotes the time-independ-
ent transition rate from level i to level j. As ap-
pealing as Eq. (1.2) may appear on intuitive
grounds, it is not obvious in general under what
conditions it can be applied with confidence or
how one should construct the transition rates P;~.'

An elegant procedure developed by Zwanig'
(projector technique) has been used to generate
rate equations of the form

where the generalized transition coefficients
P,&(7) [note: P,~(v) are no longer rates] contain
information about memory effects. Equations of
type (1.3), in general, provide an improved des-
cription relative to the rate equations (1.2). On
occasions, however, warning flags have been

density operator provide information that is need-
ed, for example, to calculate the spectrum of
resonance fluorescence, the diagonal elements,
instead, describe the energy relaxation process
and are connected to the correlation properties
of the radiation field intensity.

It is clear that, in general, an accurate des-
cription of the system's dynamics requires know-
ledge of a large number of matrix elements of W.
If the decay process of the off-diagonal part of the
density operator is sufficiently fast, one can in-
troduce a drastic simplification by assuming that
the evolution of the relevant variables can be des-
cribed adequately by the set of occupation proba-
bilities W„(t ).

In the so-called rate equation limit, the popula-
tion dynamics is assumed to obey a set of equa-
tions whose typical structure is4
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raised with regard to the application of this re-
sult. Thus, for example, the formal development
of an early single-mode. model of superfluores-
cence' led to a set of equations of type (1.3) for
the occupation probabilities of the atomic levels.
A careful analysis of the time scales of the prob-
lem, however, has shown that the decay time of
the kernel functions P,~ (v) is the shortest resolv-
able time and that the non-Markoffian master
equation ought to be replaced, for consistency's
sake, by its Markoffian counterpart (1.2) accord-
ing to the usual rules.

It is clear from a recent paper by Swain""' that
the exact construction of rate equations is not h,

trivial task. This is not surprising, of course,
because such development requires the exact
elimination of the off-diagonal part of the density
operator, unless one is willing to relinquish co-
herence information.

If one is mainly concerned with the population
dynamics, and if the decay rate of the off-diagonal
matrix elements is much larger than that of the
diagonal ones, population equations can be derived
after adiabatic elimination of the faster evolving
variables. This procedure is straightforward from
a conceptual point of view, but it is rarely easy to
carry out, in practice, except when the number of
variables to be eliminated is manageably small.

In this paper we want to discuss a class of prob-
lems of physical interest when the explicit deriva-
tion of population equations can be carried out with
relative ease and in such a way that the nature of
the approximations can be assessed w'ith some
confidence. We are especially interested in the
case when the characteristic rate of the coherent
exchange induced by the system Hamiltonian is
sufficiently smaller than the largest decay rate of
the dissipative process (formally L, «A). A Born
expansion scheme can then be carried out, and a
set of rate equations of type (1.3) can be derived.
If, in addition, the decay rate of the off-diagonal
matrix elements is al.so much larger than that of
the diagonal part of W, ordinary rate equations of
type (1.2) can be derived as a limiting case. This
is, in fact, the usual scenario when the rate equa-
tion approximation is expected to be valid.

In this paper we discuss these ideas with the
help of the Zwanig projector technique. In the
special case when the dynamical variables of in-
terest are harmonic oscillator degrees of free-
dom, the application of a clever scheme of calcu-
lation proposed by Weidlich' provides a transpar-
ent illustration of our results.

In Sec. II we describe the formal derivation of
the population equations. In Sec. III we illustrate
the main results of our formal development with
the help of the well-known model of driven and

damped harmonic oscillator. Under conditions
such that the Markoff approximation can be car-
ried out, the population equations are reduced to
the familiar rate equation form (Sec. IV).

H. MASTER EQUATION FOR THE DIAGONAL PART
OF THE DENSITY OPERATOR

=- -iSW (2.1)

for the density operator K of the relevant observ-
ables. The reversible term —i L,W= —(i—/h )
[H,W ] describes the coherent interaction of the
system's internal degrees of freedom with one
another or with external driving forces. The ir-
reversible decay terms A,S' and A,W result from
the action of one or more thermal reservoirs.
We shall assume A,W to be responsible for the
decay of the off-diagonal matrix elements.

Following Zwanig, ' we introduce a projector
operator P(P =P') and formally define

W, =PW, W) =(1-P)W= PW, (2.2)

as the relevant and irrelevant parts of the density
operator, respectively. The coupled equations of
motion for 9'„and 5, are

W„= -iPZ(W„+W, ), (2.3a)
0

W, = -iPZ(W„+W,. ) . (2.3b)

If the I,iouville operator P is explicitly time inde-
pendent, we can solve Eg. (2.3b) formally with the
result

W,. (t) =e '"W,(0-)+ d.re ''« '&[ -iPZ W-, (w)-]

(2.4)

The case in which 2 depends explicitly on time can
be handled in a similar way with the added com-
plications introduced by the need for considering
the time-ordering prescription. If we now assume,
as is often the case, that W, (0) = 0, and if we sub-
stitute the formal solution (2.4) into Eq. (2.3a), the
relevant part of the density operator is found to
satisfy the following integro-differential equation
of motion:

W, (t)=-iPSW„(t) iPS dt e «~-e't
0

x [ i PCW„(~—)] (2.5).

In anticipation of the needed distinction between
phase and energy relaxation processes, whose end
and effect is to cause a decay of the diagonal part
of the reduced density operator, or of both diagon-
al and off-diagonal matrix elements, we consider
a system governed by the master equation

dQ'—=-iI. W+A %+A S'
dt



3086 X. Y. HUANG, L. M. NARDUCCI, AND J. M. YUAN

This result is exact. If W„(t) is the diagonal part
of the reduced density operator, Eq. (2.5) provides,
in principle, an exact dynamical description of the
population evolution. Unfortunately. , an exact hand-
ling of Eq. (2.5) is an exceedingly complicated (and
probably hopeless) task.

If f ~n)} is a complete orthonormal collection of
states of the system, a convenient representation
for the projector operator P, such that W„=PS' is
the diagonal part of the density operator, is given
by

" =A W — drPL e' &' 2'" "L W (v)C c r
0

(2.11)
This development, of course, is not new. It has
been carried out here in some detail to emphasize
the nature of approximation (2.9) and to set the
stage for the next phase of our discussion. The
structure of Eq. (2.11) guarantees the conserva-
tion of the trace of W„because

(i) TrA, W„=0, (2.12)

PA, -AiP, (2.7a)

N)(n) (s[.. . ( n) . . (2.6)
n

The symbol (n~. . . ~n) denotes the diagonal matrix
element of any operator to which P is applied.

We shall now assume the validity of a few formal
properties of the chosen projector. They appear to
be satisfied rather generally and can be readily
tested in the specific case discussed in Secs. III
and IV. Specifically, we assume the validity of the
equations'

(ii) TrPL, e'"&' 2'" "L,W„(~)=TrL X(t, y)=0

(2.13)
X(t, 2.) -=exP[(A, +A,)(t —w)]L W„(T) .

The last step in Eq. (2.13) follows from the def-
inition of the projector P and from the well-known
property of the trace, Tr[A, B]=0, where A and B
are arbitrary operators in the Hilbert space of
the system. From Eq. (2.11) it is obvious that the
diagonal matrix elements of 8' satisfy the coupled
equations

m. ,=h, p=o,

PL, P= o ~

(2.7b)

(2.7c)

d(w )" "=(A W ) — «(n~L e'Aj+A2'"
t ~ r n— C

0

xL,W„(~)~s&, (2.14)

It is now a simple matter to show that Eq. (2.5)
with the help of Eqs. (2.7) can be cast into the
new and still exact form

W„=A,W„— «PL, e ' e" "L,W„(v). (2.8)

g-iPZ(t —v') ~P(Az+A2)(t -7 )

Furthermore, Eqs; (2.7) can be used again to
yield the identities

(2.9)

e ('~"2)('-') L W =e('"A2) ('-')PL e'
c r c r

=e+&+~2 &2 & L w (2 10)

The integral term on the right-hand side of Eq.
(2.8) contains the coupling constant of the coher-
ent interaction term to all orders. If the system
is such that the decay rate of the irreversible
process is much larger than the characteristic
frequency associated with the coherent energy
exchanges induced by the Hamiltonian H (formal-
ly, if A, or A2»L, ), one may neglect all terms
in the Born expansion of the exponential operator
except for the largest one. In this case we set

and
[~ B2) satisfy the ad joint equation

(2.16)

where (W„)„=—(n ~w„~ n) . The problem is now re-
duced to the explicit evaluation of the matrix ele-
ments that appear inside the integral in Eq. (2.14).
This may still be a difficult problem, in general.
Its solution can be simplified considerably in a
number of problems of interest with the help of a
clever procedure developed by Weidlich. '

It is convenient to regard the Liouville space of
the g operators as a Hilbert space in which the
scalar product between any pair of "state vectors"
[[A) and ~[B) is defined a.s

(a(( B)=- Tr(w'B) . (2.15)

In the Hilbert space of the system's observables,
& is an ordinary operator, as it appears on the
right-hand side of the above equation; on the left-
hand side, instead, it plays the role of a state
vector which obeys the mapping rule 8 () A) =

)) A')
under the action of an arbitrary Liouville opera-
tor. Weidlich has shown' that if the "state vectors"
~~ A2) satisfy the eigenvalue equation

Thus, in the Born approximation, the diagonal
part of the density operator satisfies the general-
ized master equation the following completeness relation holds:

(2.17)
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(2.18)

where 1 is the identity operator. The eigenstates
ll A~ ) and ll B~ ) form a biorthogonal set in the
sense that (B~ ll g~, ) = 5», . Explicit expressions
for ll A~) and

ll B~) have been derived in Ref. 8
for two rather common models of damping
Liouvillians. They will be discussed further in
the next section of this paper. Here we observe
that the matrix elements in Eq. (2.14) can be put
.in a much more convenient form with the help of the
completeness relation (2.18) and the eigenvalue
equation (2.16). This can be accomplished through
the following steps:

&n l r,, e"~""""L.W-„(v)ln&

=&"lL. '""'"""Z II& )(B,IIL.W, (r)l~&

d(w„)„
d,

" "=(A,W, )„-g Z„„,(W„)„,,
n'

where

(2.23)

Pnn'= d&Pnn' &

l

(L„a,)„(L,Bt)„,

can be identified with the time-independent transi-
tion rates of the ordinary population rate equa-
tions.

If the physical situation of interest is such that
the relaxation rate of the off-diagonal elements of

Q' is much larger than that of the diagonal part
(formally, if A, »A, ), the Markoff approximation
can be carried out in the usual way with the re-
sult

e ~" ' n L, A~ n Tr B~~L,W'„v

(2.19)
In Eq. (2.19), A~ denotes the eigenvalue of the
total damping Liouvillian (A, +A,). The relation
between Eq. (2.14) and the more familiar looking
population equations becomes clear at this point
if one observes that

Tr [B~t L,W„(r)]= —Tr[(Z,,B~~ )W„(v)]

and that

Tr[(L,B)))w,(&)j =Q (L, Bp~)„~(w, (7'))„~ ),(2 20)
n'

where the symbol (. . . )„, denotes the diagonal
matrix element of the operator in parentheses.
After minor manipulations, Eq. (2.14) can be cast
into the final form

d (W„)„"=(A, )„+Wf d7'Z P„„(k—'r)(W, (v'))„
0 n'

(2.21)

The generalized transition coefficients P„„i have
been defined by

I „„.(t-~) =g e"~('-"(L,&,)„(L,BJ)„,.
(2.22)

The range of validity of the integro-differential
equation (2.21) is determined by the accuracy of
the Born approximation (A, +A, »r, , ). The im-
plicit dependence of the matrix elements (W„)„
on the details of the previous history through the
memory kernel functions P„„, is a reflection of
the role played by the off-diagonal matrix ele-
ments of the density operator on the evolution of
the system.

III. DRIVEN DAMPED HARMONIC OSCILLATOR —AN
EXAMPLE OF POPULATION EQUATION IN THE

BORN APPROXIMATION

As an application of the formalism developed in
the previous section, we consider the well-known
model of a driven damped harmonic oscillator.
For the sake of simplicity, we consider the case
of a resonant harmonic driving force. In the in-
teraction representation, the coherent I.iouvillian
takes the form

I,, =Q„[a +a, . . .], (3.1)

where Q~ plays the role of a.Rabi frequency. The
dissipative terms are given by"

A, W=y, ([a,Wa']+[aW, a'])

+y&([at, Wa]+ [atw, a]),

A,W = q ([a~a, Wata]+ [at a W, ata] ),

(3.2)

(3.3)

d
df &a&)„,„=—(r, r, )(a) —q-(a&, (3.4)

(a a&) „=—2(y& —y&)(a a)+2y&, (3.5)

with P, affecting only off-diagonal elements of .the
density operator.

The first step, and very nearly also the end of

where the damping rates y&, y&, and q contain
implicit information about the reservoir(s). Their
physical significance is well known. Thus, the
expectation values of the amplitude and number
operators a, gtg under the action of the damping
mechanism alone are governed by equations of
motion,
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e '~a'I
p ~

q~ 0
atat
n

[IAp, ) = &-
-e~g/„tlqll lql q~(0

I - antinor

(s.6}

where

n=rtk, x=r( rt- (s.to

and the label "antinor" (antinormal) implies as

the calculation, consists of deriving an explicit
expression for the generalized transition coeffic-
ients P„„e(f —r) defined by Eq. (2.22). The method
adopted here is not unique, but it is probably the
most elegant and direct procedure. In Appendix
A, we illustrate a different scheme in connection
with the problem of the driven-damped two-level
atom.

For our purposes, we need the "eigenstates"
IIAp), llBp) and the eigenvalues Xp [see Eqs. (2.16)
and (2.17)]. These quantities appear explicitly in
Weidlich's paper. ' Here we only need to recall the
main results of relevance for our development.
The spectrum of eigenvectors and eigenvalues of
the (non-Hermitian) Liouville operator A~+A2
[Eqs. (3.2) and (3.3)] is labelled by two indices
p=0, 1, 2, . . . , and q=0, +1,+2, . . . . The llA)

eigenstates have the form

usual'"' that a and a~ must be arranged with all
the creation operators to the right of the annihila-
tion operators; the functions Ip(x) are Laguerre
polynomials. The eigenvectors of the Hermitian
adjoint I iouvillian are given by

I
„e"(('"), e=0

IIB„)=&

[y gtl((IL lal
q
( 0p I e(I p

501'

(3.9)

(s.lo)

where "nor" (normal) prescribes normal ordering
of the creation and annihilation operators. The
choice of the constants y~,

y- P'
p(( (p~ [q[)tn(()l+1 )

ensures the orthogonality relation

(B~IIAp, ) = Tr(B»Ap;. ) = &pp. &)„..

Finally, the eigenvalues are given by

(3.11)

(3.12)

=- (2P+ ~q~)-nq', ' ' '''' (3.»)P=0, 1, 2

q=0, +1,+2, . .. .
The equation of motion for the diagonal matrix

elements in the Born approximation [Eq. (2.21)]
is reproduced here for convenience

d
(W (I))„=(A W (I)) e I de Q (W (e)) QeWe '(L Ae ) ((. Bee)

)
. (3.14)

The evaluation of the matrix elements (I-,Ap, )„and (L,Bp,) is algebraically cumbersome but straight-
forward; the details are summarized in Appendix B. Here we mention that the only non-zero diagonal
matrix elements of both operators L,A~ and I,B~ correspond to arbitrary values of the index p and to

q = +1. Furthermore, the following symmetry relations hold:

(L.,A, ,) = (I.,A„), -
(I..B,',) = -(I..B,',)

(s.15)

The results derived in Appendix B [Eqs. (B.4), (B.9}, and (B.10)] can be used to express the integrand of
Eq. (3.14) in the form

N„~ P „t-v
m~0

(~ (r)j 2fl2 Q ge(t)(p)( w1)p(p-1) Pw)-pe 0 )2

nI" -p, n+1; 2; — n+1 + -P, n+ 2; 2;

OO

2pg (8 w) ( 1)w)(p 1)
(1 ++) Pp w), 0

P m+1

nE -P, n+1; 2; — n+1 + -P, n+2;2;

where P, ~ P(x) are Jacobi polynomials of the indicated argument and E(a, td; c;x) is the hypergeometric
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function. The complicated structure of the generalized transition coefficients is, in part, a consequence
of the role played by the off-diagonal matrix elements on the evolution of the system and, in part, of the
finite temperature of the reservoir. In general, aside from the possible simplification induced by the
Markoff approximation (if applicable), it appears that the structure of the generalized transition coeffi-
cients cannot be clarified any further.

Here, for the sake of algebraic simplicity, we confine our attention to a zero temperature bath (n-.G).
A careful analysis of the second sum (m+ 1-p & ~) in Eq. (3.16) reveals that every term vanishes in the
limit n - 0. The first sum, instead, reduces to the much simpler looking result

(3.18)

OO 00, m +1 'm~
(~(~))„I (f-.)—,-2fl.' g (~„(~)).g e~~"-"(-1)"', (3.17)

The main steps leading to Eq. (3.17) are summarized in Appendix C.
Not all terms should be kept in the double sum on the right-hand side of Eq. (3.17) because of the ap-

pearance of negative factorials in the denominator. It is easy to see that, depending on the value of n, the
appropriate way to write Eq. (3.17) is

OO m 2g (W„(r)).~ (f ~) = 2O,' -g (W„(~)}„e+~«-')(-1)"2, P,1 ™
'm~ 0 (g= 0) P=O(n~O)

where the lower limit of the sums are m(p)=0 or m(p) =n-1, depending on whether n =0 or n& 1, res-
pectively. After substituting Eq. (3.18) into (3.14), the population equations in the Born approximation
take the form

t m 2
r)n (A gr ) 2@2 I d+ (II) (T))

' g eXp (t )T) ( 1-)1+2 P

(fr=0)

(3.19)

The validity of this approach is predicated on the
strength of the driving force being such that the
associated Babi frequency ~& is much smaller
than the incoherent decay rates )( or )7 (or both).
It is clear that, as long as I(. and q are of compar-
able magnitude, .the population equations form a
set of coupled integro-differential equations
whose solution is a cumbersome task, even by
numerical methods. This is the price one has to
pay for the reduction of the original set of N'
coupled equations for the matrix elements of 8'
(actually, Ã —1, if one takes the trace condition
explicitly into account) to the much smaller set of
N population equations. "

A curious feature of this problem is that the
structure of Eq. (3.19) allows the derivation of a
simple differential equation for the average ex-
citation (n(t)) = Tr[ataW„(t)], as one can check with
a few algebraic manipulations. The result is

IV. POPULATION EQUATIONS IN THE MARKOFF
APPROXIMATIONS

(W,)„=(A,W,)„+g (W,)„Z
m=n-1
(m=0)

(4.1)

where the transition rates J~, to lowest order in
the small parameter a =)(/q, are given by

A significant simplification can be obtained if
the relaxation rate of the off-diagonal matrix ele-
ments is much faster than that of the diagonal
ones ()7»)(). In this case, the integrand of the
population equations (3.14) consists of the product
of a rapidly varying exponential function and a
slowly varying one. Application of the Markoff
approximation in the usual way leads to the much
simpler set of coupled differential equations

00 t
(s)=g n(A, W„)„+m„' J d~e ("'""-

2Qg n(A lir) + I( (1 8-(x+2)t)
1 t' ~ ~+@ (3.30)

( tl q Ffl =t):1
! -(2n+1), m =n

a g

!n+1, m=n+1

~0, otherwise

(4.2)

nl (P -)2+1)i (m -P)1
(P*O)

where the first term on the right-hand side is
identical to the right-hand'side of Eq. (3.5) in the
zero-temperature limit.

Hence, only nearest-neighbor levels are coupled
together, and the rate equations become



s a, micros op'd as „;,t„.st],
equa

t n for the sy '
babilitles

'pn Of mP lPn
ation prp

equ " . for the o P
fflclent

d eqU atlp ns

defined su
couple

h t under we -
ff diagpnal

~e have s . the strength o
rsible

show~ t a
pf the, osi plv g

t of lrrein mec ani
jpns can e

couPli g
lation equati

t proce-
popu a

in an elegan
e due to eld ' '

-
d transiti«

dure
h generalize ' .

d that con-
strue ture pf t e

p].utipn anopulatlpn ev
The simple

overn the Po
pr effects.

tha g
tipn on mempry

c oscillator
tains informa on

ed harmonic os '
P

1 if 1ussed lnas
the differen itions among e

3090

' [ w„, -(2n+s)w„

+/+i)w„„.
o ' in field on theof the driving iInteresting y, o

q

zero value
praising a u

Rabi fre-
T =0 (as chosen m

t depends on the magnl uthat depen s

d endence of'son between the time depen
robabilities anoccupation pro a

( .3) is provided '
of Eq. . i

ctory, as oneement is ra
Born and

g

ll satisfied.
the conch o
'on are weapproximati

ACKNOWLEDGMENTS
V.. CONCLUSIONS

M. ~UANAND JNARDUM ~

we

x. &

i) can be vxewtlon &.

P(N)

CN)

0.3

ossibility of deriving,
'f th~ p"..".-'pie s ~1 ss from firs pmore or es

fessor L. Lugiato of thee are in e
umerous s i dls-

cus sion
Ref. 8. e

ur Depar meJ Farina an
fessor D. For

stions. One o
Pro
usefu 1 commen s

ledge thee to acknow(X.Y.H.

perio o'
d f thiswork. i s ar a

1.5
P(Nj

0.2 0.3

0.1
0.2

I

d d11 to
(t)) (inset). e ' eation num ber a a

Ua-

terms
The re ev

dissipative

epresents
the sol io

O /q
d' tribution wi

the times v

it' 1 Poisson is
(b) and (c) corre= 3.0. Curves

respectively.=0.5 and 0.1, resp

0.1

I

8 1062 4

= 0.5. The- tth'tQ"/~= . .me as Fig. 1, excep
een exquantitative

h tth'8the fact t auffers from
11 ti f' dtion is no long er we



POPULATION EQUATIONS FOR QUANTUM SYSTEMS IN. ;. 3091

ported by A. R.O. Contract No. DAAK20/80/C0510
and the Research Corporation.

APPENDIX A: DRIVEN-DAMPED TWO-LEVEL
SYSTEM

A, w= ~([s-, ws ]+ [s-w, s ]),
A, W= rI([S„WS,]+ [S,W, S,]),

(Al)

where Aa is the usual Rabi frequency (essentially
the amplitude of the driving electric field) and
the damping rates are related to the longitudinal
and transverse relaxation rates ZI„y, by

1II ~ IIK= g=/ ~

2 ~ J 2
(A2)

The operators S',S, are angular momentum op-
erators corresponding to S = 1/2.

Once again, the required rate equation can be
derived from the general result

t
(w„)„=(A,w, )„- dr(

nl
L, "e~ &2'" "L,w, (r)ln),

0

(AS)

provided Q~«z, g. The index n labels the states
I+) of the two-level system. The explicit evalua-
tion of the diagonal matrix elements in Eq. (AS)
can be carried out as follows. We define

X(t r) = e'~~'~2 '" -"L,W„(7'),

X(t, r)= LW„(T) . -
From the definition of L,S' we have

(A4)

&+
I
L.x(f, r) I+&

=fin[&-lx(f, )I+)- &+Ix(f, )I-&]
= -&-IL.x(f, ~)

I
-&. (A5)

The matrix elemen"s &+ Ix(f r)l & and & Ix(f )I+&
can be evaluated with the help of their equations
of motion. Thus, we have for example,

d, &+lx«r)l-&= &+I(A~+A»«r)l-&
d

= -(~+ n) &+ Ix(f, r)
I
-&,

As an example of a different method for calcu-
lating the diagonal matrix elements in Eq. (2.14),
we consider the simple case of a driven-damped
two-level system.

The master equation for the reduced atomic den-
sity operator has the same structure as Eq. (2.1),
with

L,w=n [s'+s, w],

APPENDIX B: EXPLICIT EVALUATION OF THE
DIAGONAL MATRIX ELEMENTS

(LP APq )z AND (Lz B )ff

In this appendix we outline the derivation of ex-
plicit formulas for the diagonal matrix elements
of L,A~, and L,B~&,. We consider first the opera-
tor L,A&.

The antinormal ordered form of the operators
A& makes it possible to use the Glauber coherent
state representation according to the prescription

BA~ BA~
(L A~) =On n ~

— nPe n Ba Ba

nl Bo ~ B~

where 6~(o.',o'. ) is the c-number representative of
the operator A~, and d'n =—d(Reo'. )d(fmn). We must
consider the two cases q & 0 and q & 0 separately.
For positive integer (or zero) values of the index
q, Eq. (81) can be cast into the form

(L A ) =n e-'"' n

X —— e-IOI I 2 (82)

After transforming to polar coordinates, the inte-
gral becomes

where the last step follows from the definition of
A] and A2 In this case, it is especially simple to
solve the equations of motion. For the harmonic
oscillator model discussed in Sec. III, the pro-
cedure is more cumbersome but still usable. The
integration of Eq. (A6) leads to

&+Ix(«)l-&=e '""'" "(+IL w
I

&

'""'" "fl.(&-l w. l-&- &
I
w,

l
&).

(A7)

The population equations follow at once:

d
„—,(+I W„I+&=(A,w„),

t
+ dT 20'e '"'"'" "[(W ) —(W ) ]

(A8)
—,(-lw„l-)=-„—,(+I w„l+).

With a little more effort, one can apply this pro-
cedure to a multilevel atom model with equal
level spacing.

/ 2) 2(~ 1) 2n

) g P e-0 (1+Fr)/tel o2Lc(p [pa+2 p e& (&m&&
c pq ~= a ~ ~~( n)l (n -1)I nl

(8S)
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It is now a simple matter to show that

n+1 ( 1 n+2
I

(L,A&, )„=As n(P+ 1)F~-P,n+ 1;2; — (n+1)(P+ )F -P, n+ 2;2;. 1+n ' 1+n 1+n ' 1+n (84)

where E(a, b;c;x) is the hypergeometric function.
It is also simple to show that for negative values

of the index q, the only nonzero matrix elements
correspond to arbitrary values of p and q= -1.
Furthermore, we have

(L,A~, )„= (L,A-~, )„. (B6)

The required elements of the operators J,B~~, can
be evaluated as follows. From the identity

I.,B~~ = Q„[at+ a, 8~~] = Qs (B6)ea' ea

and the definition of Bt&, [Eqs. (3.9) and (3.10)],
it follows at once that (BBt~/Ba)„= 0 for every posi-
tive value of q. Furthermore, one can show that

~

~
BB~q1') 1 (-1)~ p+ I ) 1„')=(p, l)„-

P-2
(B7}

and that (st&, /Bat)„ for q& 0, q~ 1 is identically
equal to zero.

From Eqs. (B6) and (B7), one can readily arrive
I

at the required result

(L,&p, ).= =2 &4 j'(p i)-' i '(& i)-'

It is possible to express the finite sum on the
right-hand side of Eq. (B8) in terms of Jacobi
polynomials, provided we distinguish two cases:

(a) For n~ p we find

(L Bf ) ( 1)p~
n ~ 0 1 B

(B9)

(b) For p - n, the matrix elements become

(L.&(, -,)„=-(L.&'p, )„ (B11)

'The matrix elements corresponding to negative
values of q are all identically zero, except for
q= -1. In this case, the following symmetry rela-
tion holds.

APPENDIX C: DERIVATION OF EQ. (3.17)

In carrying out the low-temperature limit in Eq. (3.16), some care must be exercised in identifying the
leading terms of the various n-dependent contributions. The leading term of each hypergeometric func-
tion can be calculated as follows. Starting from the identity

E(-p, 2;2;z}=(1-z)~

and the well known function relation

1 d"
F(-p, n+2;2;z)= 2, „[z""F(-p,2;2;z)],

2) s an 1 1 1

it is simple to prove the equality

(C1)

(C2)

n-)) n-))i 1 li ni)i-t'"l
E( p n+ 2 2 &)

(2) I

~l (
'

I ) ( )
( 1) Z (1 m) (C3)

he limits of interest have the general form

limn E -p, l+ 2;2; 1
=lim

(2} ~ &~ (I & I)( (p I &})
(-1) n ' ", l=0, 1, 2, . . . (C 4)

Clearly, if p = m+ 1,rn+ 2. . . , the result of the limit is identically zero. When P - m, the dominant terms
can be readily identified with the help of Eq. (C4), with the result

m

i )mi( v)1=111 P:8 &" "(p+))(-))~ ' (-1)"'- ' (-1)")
p (2)„,p -~+1 (2)„(p -~)t
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