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Transient analysis of Kerr-like phase conjugators using frequency-domain techniques
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In this paper we develop the interrelationships between the steady-state and transient behavior for cw-pumped
Kerr-like conjugators in which the optical Kerr effect is considered to respond instantaneously. We use Laplace-
transform techniques to develop an expression for the conjugate response to input pulses of arbitrary form. For
stable conjugator operation (in which the cw conjugate reflectivity is finite for all input frequencies), the expression
reduces to an antilinear Fourier-transform relationship, which is readily adaptable to computer simulation. The cw
filter function of Pepper and Abrams [Opt. Lett. 3, 312 (1978)] is found to play a central role. We show, both
numerically and analytically, that our calculated delta-function response agrees with that previously published. We
numerically demonstrate temporal spreading and reshaping when the conjugator transit time becomes equal to or
longer than the duration of the input pulse, and we show numerically the perfect chirp reversal for sufficiently thin
conjugators and the deviations from perfect chirp reversal upon increasing the thickness of the conjugator. These
numerical results can be understood in terms of the bandwidth of the associated cw filter function.

I. INTRODUCTION

A. General

Optical phase conjugation (or "wave-front rever-
sal") via degenerate four-wave mixing in Kerr-
like media has recently become an extremely
popular subject. The unusual "aberration-free"
image transformation properties of phase conju-
gators suggest many practical applications in
fields as diverse as adaptive optics, laser fusion,
image restoration, real-time holography, high-
resolution microscopy, and optical computing.

Although there are many early publications
which, in retrospect, contain concepts that clearly
establish the basis for conjugation via Kerr-like
degenerate four-wave mixing, ' Hellwarth' was the
first to explore the image transformation proper-
ties and to quantify the nature of the nonlinear in-
teraction. ln the process, he stimulated much
subsequent work. The setup discussed in Ref. 2
is shown in Fig. 1. A pair of precisely counter-
propagating but arbitrarily oriented cw plane
waves (called "pump waves") is established in an
optical Kerr material (one in which the index of
refraction depends linearly upon the optical inten™
sity). Both pump waves have the same carrier
frequency. If a third weaker cw-probe wave (Z~
in the figure) at nearly the same carrier frequency
also impinges upon the material, the nonlinear
interaction creates a fourth cw conjugate wave
(E, in the figure) which exactly retraces the path
of .E~. The production of the conjugate wave can
be thought of as a real-time holographic process',
the probe wave and each pump wave interfere in
the nonI. inear. medium to generate a grating which
is properly phase matched to Bragg scatter the
other pump wave into the conjugate direction.

B. Steady-state theory

Bjorklund and Bloom' and Yariv and Pepper'
concurrentI. y developed a steady- state coupled-
wave theory of Kerr-l. ike conjugators in which all
four waves were at precisely the same frequency
(the degenerate case) They. found the "conjugate
reflectivity" (the ratio of the conjugate wave in
tensity to the probe wave intensity) to he tan'(

~
a ~l).

For the case of equal-intensity pumps

~
z

~
=(2m/X, ) 5n, I is the path length over which

the pump and probe waves. interact in the non-
linear medium. Here A is the-free-space wave-
length of the light, and Sz is the nonlinear refrac-
tive index change induced by one pump wave.
Shortly after the development of this cw degener-
ate theory, many corroborating experiments were
reported. "

Pepper and Abrams' subsequently relaxed the
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FIG. 1. The basic arrangement for obtaining conjuga-
tion via four-wave mixing in Kerr media. The Kerr
medium is pumped by a pair of cw counterpropagating
waves of common frequency. The probe wave E& im-
pinges upon the medium, and the medium reradiates a
conjugate wave E . The arrows denote the directions
of the corresponding k vectors.
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degeneracy condition by allowing the cw-probe
wave to be at a frequency different from that of
the cw pump waves. The resulting conjugate wave
is frequency upshifted (or downshifted) by precise-
ly the amount by which the probe wave is down-
shifted (or upshifted). The conjugate-wave ampli-
tude was shown to be the complex conjugate of the
input wave amplitude multiplied by a complex fil-
ter function. It is a slight variant of this cw anti-
linear transfer function that we will find central
to our development of the conjugator's transient
response.

C. Transient theory

Marburger' was the first to study theoretically
the conjugation of time-varying pulses. He ex-
plored the time-domain behavior of the pair of
coupled-wave equations for the case of a cw pump,
and he found that, for a sufficiently thin conjuga-
tor, an initially chirped pulse will be reflected
with the opposite sense of chirp. He also showed
that the output pulse is a rather complicated con-
volution of the input pulse if the conjugator is not
sufficiently thin. Chirp reversal was subsequently
discussed by Yariv, Fekete, and Pepper. ' They
considered the following situation: A short optical
pulse upon passing through a dispersive material
emerges temporally elongated and develops a
linear chirp. If such a pulse is subsequently re-
flected hy a sufficiently thin Kerr-like conjugator,
chirp reversal will program the conjugate pulse
so that upon its retraversal of the dispersive ma-
terial, dispersive pulse compression will occur
and the emerging pulse will he identical to the
original pulse (i.e. , in a double pass, dispersive
spreading would cancel). In describing the conju-
gation of the chirped pulse, the authors presented
a Fourier-transform relationship to which we
shall devote the remainder of this paper.

Rigrod, Fisher, and Feldman' have developed
an analytical time-domain expression for the del-
ta-function response of a cw-pumped Kerr-like
conjugator; it is a series of modified Bessel func-
tions of integral order. For zl & /2, othe solutions
are unstable, in the sense that a finite input pulse
results in a conjugate pulse of infinite energy and
duration. Reference 9 relied upon an earlier
analysis of active contraflow systems which Bob-
roff and Haus' had published over a decade ago.
Opposite to the cw-pumped case we shall discuss,
Miller" recently considered a conjugator with a
transit time very much longer and with a pump
pulse very much shorter than the probe pulse. In
this interesting limit, the conjugator truly time
reverses the probe envelope.

In this paper we develop the interrelationships

between the steady-state behavior and the transi-
ent behavior for cw-pumped Kerr-like conjugators
in which the optical Kerr effect is considered to
respond instantaneously. We use standard linear
techniques even though the original problem could
be construed as a nonlinear one. We develop an
antilinear fast- Fourier-transform technique that
allows us to calculate rapidly the conjugate re-
flected wave form for input pulses of arbitrary
form. " Phenomena associated with pulse re-
shaping, chirping, and chirp reversal are readily
simulated.

Section II uses Laplace-transform techniques to
show the general relationship between the transi-
ent and steady-state responses, and it demon-
strates that for zl&z/2, an antilinear Fourier-
transform relationship exists. Section GI shows
the results of numerically applying this Fourier-
transform technique to a number of pulse reshap-
ing and chirp-related matters.

II. RELATIONSHIP BETWEEN TRANSIENT
AND STEADY-STATE EFFECTS

A. General relationships
I

In this section we develop the fundamental rela-
tionships between the transient and the steady-
state responses. We obtain antilinear relation-
ships that will allow us to treat the problems nu-
merically through relatively standard Fourier-
transform techniques. As in Fig. 1, we consider
an antiref lection coated slab of transparent non-
linear dielectric material extending infinitely in
the x and y directions, and extending in the z di-
rection (x, y, z are Cartesian coordinates) from
z=0 to l. The material is pumped by two equal-
intensity counterpropagating pl, ane waves of fre-
quency &,. We assume throughout that these
pumps are not depleted, that they remain plane
waves in the medium, and that they are signifi-
cantly stronger than the probe and conjugate
waves. We assume that all waves are plane po-
larized in the same direction. A probe wave pro-
pagates towards the right and impinges on the
dielectric at z =0. Its electric field E~ is repre-
sented as

E~ = —,
'

&~ exp[- f~,(t —z/v) ] + c.c.
A conjugate wave is generated within the dielec-
tric and propagates toward the left; we represent
its field E, as

E, = —,'8, exp[-f(o, (t+ z/v)]+ cc. (2)

where 8, and 8~ are assumed to be slowly varying
functions of x, y, z, and t. Because of their low
intensity, neither the conjugate rior the probe
wave experiences self-focusing or self-phase
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modulation. In Eqs. (1) and (2), v denotes the
linear phase velocity of light in the dielectric. We
do not require that the probe wave be exactly at.
the frequency of the pump. If F~ is centered on

+p + 4 then E, will be centered on &p —6 and the
envelopes 8~ and 4 mill. carry, respectively, fac-
tors exp[-ib, (t —z/v)] and exp[+id(t+z/v)] in addi-
tion to other x, y, z, and t dependence. As long
as A«&p, inclusion of these exponential factors
will in no way affect the validity of the slowly
varying amplitude approximation; we shall there-
fore assume that S~ and 8; vary slowly in t and in
s as compared with the exponential factors in Eqs.
(1) and. (2). This results in the well-known' "0
coupled set

&8 1 &8,--'+- ' = —sa8+
~rE

QgW ] Qgk' =-iK*S„
~z 'g Bt

(3)

where K is the complex-coupling coefficient eval-
uated at ~ = vp. The parameters v and x are con-
stants. Because 8, and 8& may depend weakly
upon x and y, they need not be plane waves, but
Eqs. (3) do neglect diffraction.

A known pulse of radiation is introduced as a
probe and enters the medium at & =0. Thus at
a=0 we have

8~(0, t) =F(t), (4)

where F(t) is a prescribed function. The conju-
gate wave is generated in the medium, not intro-
duced from the right; thos at s=l,

$,(l, t) =0. (5)

Equations (3) plus the boundary conditions, Eqs.
(4) and (5), completely specify our problem.

We shall. solve by Laplace transforming in t.
However, as we do not wish to require that F(t)
vanish for negative t, we must employ the two-
sided" (rather than the normal) Laplace trans~
form. We denote tranformed functions by lower-
case letters; thus

] oo

q, (z, s) =~ $~(z, t'}e '"'dt
QQ

(6)

converges for all positive y. This is guaranteed,
for example, if F(t) decays ultimately as exp(-bt')

and so on. For our purposes, me can restrict our
attention to probe. pulses of finite total energy;
F(t) therefore belongs to L,. We shall further re-
quire that F(t)- 0 sufficiently rapidly as t- —~
that the integral

I

Et e 'dt

as t- —~. These restrictions on F(t) guarantee
that its (two-sided) transform f(s) has no singu-
larity for Re(s) o 0.

Since we are interested in $,(z, t), we take the
complex conjugate of Eqs. (3) and Laplace trans-
form the result, obtaining

de~ s
+ —e~~ —iz*e, = 0,d8 V

de s
8 —$Ke =0.

ds v

(8)

Here the symbol eg(s) denotes the Laplace trans-
form of the complex conjugate of S~(z, t), not the
complex conjugate of the transform. The general.
solution to Eq. (8) is

-i»eg = [(s/v) —ip]Ae's'

+ [(s/v) +iP] se-'",
e =we" +ae-"

C (9)

li = [ I» I' —(s /v)']'",
where A and & are constants which, so far, are
arbitrary. Because our pumps are exactly coun-
terpropagating plane waves of equal intensity.
and because the medium is nonresonant, then K

may, without loss of generality, be taken to be
real and positive. For the remainder of this
paper we mill discontinue absolute value bars
about a.

The Laplace transforms of boundary conditions
(4) and (5) become

sg(0, s) =f*(s), e, (l, s) =0,

and these determine the constants

A = (-i»/D)e '8'f*(s),

B= (i»/D) e'8'f*(s),
D = -2i[P cosPl+ (s/v)sinPl].

The conjugate wave at depth z is given by the
second of Eqs. (9). Inserting the above values of
A. and & the result may be written as

e,(z, s) =h(z, s)f*(s),
-i» sin[P{l —z)]

P cosj3l+ (s/v)sirj3l '

P = [»' —(s/v)'] 'i'.
(12)

Taking the inverse Laplace transform, we have

y+i
@,(z, t) =

~2
h(z, s)f*(s)s"&is

1T
y

(13)

where y is subject, by causality, to the sole re-
striction that all singularities of the integrand lie
to the left of the path of integration. Note that
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h(z, s) assumes the role of a transfer function.
For z=0, )i(z, s) is formally identical to the
steady-state filter function found by Bobroff, "and

by Pepper and Abrams, ' which means that, just
as in linear optics, one can generate any transient
behavior knowing only the steady-state responses
at all frequencies. If one examines Eq. (13) for a
temporal delta-function input [E(t) = t)(t), or f(s)
=1], one readily obtains Eq. (38) of Ref. 10. In
Appendix A we prove that for E(t) = 5(t) our Eq.
(13) yields precisely the series of modified Bessel
functions given as Eq. (3) in Ref. 9.

Note that in Eqs. (7)-(13) there is no reason
why v and a may not depend upon s, the complex
frequency. This means that our technique applies
both to Kerr-like conjugators in which the linear
index of refraction varies with frequency and to
conjugators that employ the saturable behavior of
an absorbing or amplifying medium. " Appendix
8 discusses why v and ~ cannot depend arbitrarily
upon frequency. It also discusses the closely re-
lated limitations imposed by the slowly varying
envelope approximation.

Since the line of integration in Eq. (13) must be
to the right of all singularities of the integrand,
we must know something about where these singu-
larities lie. Our restrictions on E(t) guarantee
that f(s) has no singularity on the imaginary axis
nor in the right half-plane. Therefore only singu-
larities of Ii(z, s) need concern us, and these are
discussed in detail in Appendix C. This appendix
shows the following facts:

(1) The singularities are all poles.
(2) If «I & n/2, all these poles lie to the left of

the imaginary s axis.
(3) If, for some integer n, we have (n — )«& «I

& (n+ ,)n, then the-re are exactly n poles in the
right half-plane. These poles are all simple and

they all lie on the real s axis.
Now let there be exactly n poles in the right

hal. f-plane and denote their location by s =s„
0 =1, 2, . . . , n. Let h„edn teothe residue of )'i(z, s)
at s =s,. A procedure for computing [s~$ and f)'i,].

is given in Appendix C. We now form the function
g(z, s), defined by

g(z, s) =)'i(z, s) —Z
ih-~ S —Sp

(14)

As the poles at s =s, are all simple, it follows that
g(z, s) has no poles in the right half-plane, and

therefore we may set y=0 in the integral over g.
Thus if we solve Eq. (14) for i'i(z, s) and set the
result into Eq. (13), we obtain our central result,
namely,

1 oo

h, (z, t) =~ g(z, -iQ)f*(-iQ)e '"'dQ
27r

n

+g fi,f*(s )e'&' .
k=1

Here Q = —Im(s).

B. Specialization to stable operation

(15)

The integral in Eq. (15) connects the input and
the conjugate waves through an antilinear Fourier-
transform relationship. Before discussing the in-
tegral, we wish for several reasons to restrict
our interest to the case of stable operation, in
which «l & w/2. Our treatment of the unstable case
is of limited validity because the exponential
growth of the conjugate wave will eventually vio-
late the condition that the conjugate wave be weak-
er than the pump wave, and also because the ef-
fect of spontaneous optical parametric emission
is not taken into account. Such a quantum-mechan-
ical effect can be thought of as the conjugate re-
flection of zero-point photons, a matter not at all
considered in our classical starting equations.
For the above reasons, we restrict our attention
to the regime in which «l &w/2. Clearly, n =0.
The sum in Eq. (15) disappears, and g(z, s)
=h(z, s).

We shall denote the Fourier transform" of a
function by a tilde, for -example:

i,(G)=~ j )),(( )e'" dt'

This equation is our desired prescription for nu-
merically computing the conjugate wave forms.
First one Fourier transforms the input pulse,
then one multiplies the antilinear transfer function
4 by the complex conjugate of the Fourier com-
ponent at frequency -0, and finally one inverse-
Fourier-transforms to obtain the output wave
form. The importance of this equation is that,
for an arbitrary input pulse, one can readily apply
standard fast-Fourier numerical techniques" first
to obtain the function [h~(-Q)]* and subsequently
to evaluate the integral in Eq. (17). The relation-
ship derived here for stable operation is precisely
that anticipated in Ref. 8. The Fourier transform
of Eq. (17),

where Q = &a —&o,. Accordingly, f*(-iQ) = @P(Q)
= [h~(-Q)]*. We then write Eq. (15) in a form most
amenable to numerical analysis:

1
h, (z, t) = ~ Ii(z, iQ) [$~-(-Q)]*e '"'dQ.

ll oo

(17)
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$,(z, Q) = h(z, -iQ)[h, (-Q)]+, (18)

m. NUMERICAL SMULATIONS

A. Introduction

Section II describes a technique for rapidly cal-
culating the conjugate wave forms for arbitrary
input pulses. In this section we apply that tech-
nique to a number of interesting cases. In general
our numericaL calcul. ations proceed as follows:
First the possibly complex input-pulse envelope
expression ~(t} is evaluated on an appropriately
chosen 4096-point uniform time grid. The fast-
Fourier transform" is applied, and the resulting
complex spectral function is point-by-point in-
verted about the pump-wave frequency. This new
spectral function is then complex conjugated be-
fore multiplying by the appropriate antilinear
transfer function. The resulting distribution is
inverse-fast-Fourier transformed to obtain the
conjugate wave form h, (t).

Several functions are then readily calculated.
The intensity versus time

~
b,(t) ~' and the spectral

intensity ~8,(Q) j' are generated. The instantane-
ous phase perturbation 6$(t) is found by evaluating
tan '[fmh, (t}/Re&,(t)] and by then piecewise fit-
ting together the discontinuous function through
addition or subtraction (where appropriate) of in-
tegral multiples of ~. The instantaneous frequency
shift 6u&(t) is found by computing -&(6P)/St.

The fast-Fourier transform cannot be used pro-
perly without certain precautions: The bandwidths
of both the conjugator and the input pulse must lie

shows that the spectrum of the conjugate wave at
upshifted frequency 0 is equal to the antilinear
transfer function times the complex conjugate of

. the input spectral component evaluated at the
downshifted frequency -O. This is precisely the
cw relationship described by Eq. (6) of Ref. 6.

Note the difference between the above develop-
ment and the more conventional /inear optical sys-
tem described by a transfer function T(z, Q). The
linear counterparts of Eqs. O7) and (18) contain,
instead, the product T(z, Q)h~(Q), which means
that input at one frequency comes out at the same
frequency. Note al.so that, in conventional linear
optics, the complex-conjugation operation is
missing.

The extension of our numerical procedure to
unstable («l ~ w/2) operation is simple. First,
one subtracts off the unstable poles as shown in
Eq. (14). Next, one carries out the prescription
as outlined for stable operation using g(z, -iQ) in
place of A(z, -iQ). Finally, one adds back the
contribution of the unstable pol, es given by Eq.
(15).

well within the allotted spectral window. Any
physical pulse must be defined on a sufficiently
fine time grid that the temporal resolution is ade-
quate. The temporal width of the input pulse must
lie within the allotted time window. Problems
associated with aliasing must be avoided, because
an improperly chosen window will truncate the
trailing edge of a pulse, and the truncated trailing
edge will unfortunately modify the leading edge of
the output pulse. The calculations which follow
take all of these points into consideration.

B. The delta-function response

To simulate the temporal delta function, we set
8 =0 at al.l but one temporal point. We thus are
replacing the delta function with a triangular pulse
whose hal. f-width equals the temporal step size.
For «t = z/4, the calculated conjugate wave form
is shown as the dashed l.ine in Fig. 2. For com-
parison purposes, the solid l.ine in Fig. 2 is the
corresponding closed-form analytic expression
previously published in Ref. 9 and derived here as
Eq. (A23). The vertical separation between the
two curves is introduced for comparison purposes
only; the curves are virtually identical. The con-
ditions associated with Fig. 2 are l =6.6 cm,
n=1.62, and «l =«/4.

Figure 2 shows that for a delta-function input
the results of the antilinear Fourier-transform
technique are in excel, lent agreement with the
analytical answer for over ten orders of magni-
tude in intensity. This agreement is especially
encouraging because the calculated delta-function
response is a very critical test of any numerical
technique. The calculated delta-function response
exhibits many interesting features. Obviously,
there is no response until the time thedelta-func-
tion pulse strikes the entrance face of the con-
jugator. At that time the conjugate signal rises
abruptly and thereafter it gradual. ly rises until the
round-trip time of the conjugator. At that first
round-trip time, the conjugate signal drops
abruptly to a Lower value and thereafter rapidly
approaches exponentiaL decay. The explanation
for the gentle rise during the first round-trip
transit time is simple: As the delta-function
pulse passes through the conjugator it generates
a backward conjugate wave. Because of the nar-
row-band reflectivity of the conjugator, the back-
ward wave spectrum is peaked at the pump-wave
frequency of the conjugator, in contrast to the flat
spectrum associated with the forward-traveling
delta function. As the backward wave travels
through the conjugator on its way out, it too gets
conjugated into a forward-going wave. This con-
jugation and reconjugation continuousl. y coupl. es
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FIG. 2. The calculated delta-function response. The

dashed line shows the result of the calculations using
the Fourier-transform techniques presented in this pa-
per. For comparison, the solid line was calculated
from the analytical expression in terms of the series of
modified Bessel functions (taken from Eq. A23). The
artificial vertical separation between the two curves is
for comparison purposes only. The conditions for this
calculation are l =6.6 cm, n =1.62, vl =m/'4.

forward- and backward-going waves and it puts a
smooth tail on the forward-going delta function.
It is the growth of this smooth tail which accounts
for the increase in conjugate intensity as the delta-
function pulse is traversing the device.

As the delta-function pulse leaves the conjuga-
tor, only the temporally smooth backward- and

forward-going waves remain inside; the delta
function no longer is generating a "new" backward
wave. This accounts for the sudden discontinuous
decrease in the conjugate signal at the time that
an observer at the entrance face could first learn
that the delta function has left the sample. Be-
cause zl & m/2, the coupling is inadequate for the
remaining waves subsequently to generate stronger
partial waves and, therefore, the waves (both
forward and backward) rapidly approach an ex-
ponential decay.

For al «1, the delta-function response is mere-
ly a flat-topped function that turns on at t =0 and
turns off at the round-trip transit time. This also
can be easily understood in the partial-wave pic-
ture; the coupling is so weak that the primary
backward-going wave is not reconjugated and,
therefore, no tail grows on the forward-goirig
delta function. Thus the radiated intensity is con-
stant until the round-trip transit time, and there-
after the output is zero because the reconjugation

of the partial waves can be neglected. This point
was clearly appreciated by Marburger. '

As xl is increased to w/2, the exponential decay
becomes a slower and slower process. With pro-
per precautions to avoid aliasing, . our numerical
calculation of the delta-function response is in ex-
cellent agreement with the analytical expression
for values of zl as high as 1.5. If we try the in-
verse-Fourier transform of the transfer function
for xl slightly larger than x/2, namely, 1.6, we
get a clearly incorrect answer. This is to be ex-
pected because of the appearance of a pole in the
right-hand half-plane. To continue using the
Fourier-transform techniques for values of ~l
above or equal to n'/2, we would have to treat the
transfer function g [as described in Eq. (14)], and
then to account separately for each pole which
had crossed into the right half-plane [as outlined
in Eq. (15)]. Clearly, this same technique can be
applied to cases in which a/ is only slightly less
than x/2. The pole, although still in the left-hand
plane, can be separately accounted for. This
procedure could greatly ease aliasing problems.

C. Temporal spreading in conjugate reflection

As was shown in the previous section, a tem-
poral delta function is converted into a conjugate
pulse with a duration longer than the round-trip
transit time of the conjugator. To examine the in-
fluence of this type of temporal spreading, we
performed a series of calculations. A ~-nano-
second (FW-', M) duration temporally Gaussian
pulse is conjugated by an infrared-pumped ger-
manium conjugator (n=4). To examine the role
of pulse spreading, we have considered various
conjugators, with xl =n/4, but with l (and, corre-
spondingly, x) variable. Thus the conjugate re-
flectivity on resonance is unity, but the effective
bandwidth of the conjugator is varied.

Figure 3 shows the results of the calculation.
The input pulse (with carrier frequency chosen
equal to the pump-wave frequency) is shown for
comparison purposes. Note the decrease in peak
intensity and the increase in temporal duration as
the physical thickness of the conjugator is varied
from 1 to 5 cm. These results can be explained
noting that the induced gratings consist of more
and more lines as the conjugator becomes longer.
Hence, the bandwidth of the conjugator is reduced
to such an extent that it cannot efficiently conju-
gate all the frequency components in the input
pulse. The results of Fig. 3 are recast in Fig. 4.
Peak intensity and total energy were evaluated for
each conjugate wave form. Both quantities are
plotted as functions of the ratio of the conjugator
round-trip transit time to the duration of the
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FIG. 3. Temporal spreading of the conjugate pulse.

This calculation was performed by keeping ~l equal to
m/4 (so that the conjugate reflectivity on resonance is
unity), but with l (and, correspondingly, j(;) variable.
This procedure varies the effective bandwidth of the
conjugator. The original pulse (0.5 nsec FW-, M) is
shown by the dashed line. The conjugator material is
germanium with a refractive index of 4.0.

pulse. Note that the intensity curve falls off much
faster than the energy curve, a manifestation of
the temporal broadening process. In summary,
the results obtained indicate that even if a conju-
gator has a cw reflectivity of unity, the practical
reflectivity will be greatly reduced unless the
duration of the input pulse is far l.onger than the
round-trip transit time of the conjugator.

D. Chirp reversal

For a broadband conjugator, the implications
for chirp reversal are clear; if h(z, -iQ) is set to
be constant in Eq. (17), the chirp (rate of change
of instantaneous frequency with time) of the con-
jugate pulse is precisely opposite to that of the
input pulse. This fact was first pointed out by
Marburger. ' Yariv, Fekete, and Pepper' showed
that a pulse that had undergone dispersive spread-
ing would be conjugated in a suitable broadband
conjugator so that the chirp reversal would cause
subsequent dispersive narrowing upon retraversal,
of the dispersive element. Our calculations verify
this, but, more importantly, they can be.used to
evaluate the degradation in chirp reversal when
the bandwidth of the conjugator is inadequate.

We have analyzed the degree of chirp reversal.
under the conditions discussed in Sec. IIIC. Again,
the conjugate refiectivity was set equal to unity on
resonance, and the physical. thickness of the ger-
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manium conjugator was varied (as an adjustment
of its bandwidth). The same temporally Gaussian
probe pulse was used, but this time it had im-
pressed upon it a positive linear chirp of such a
magnitude that the bandwidth is twice that of an
unmodulated pulse. At the peak of the input pulse,
the instantaneous frequency is that of the pump
waves.

Figure 5 shows the results of that calculation.
The instantaneous frequency shift is plotted as a
function of time for both the input pulse and for
the conjugate pulses, with conjugator thicknesses
of 0.1, 1.0, and 2.0 cm. As in the previous fig-
ures, t = 0 is the time at which the peak of the
probe pulse strikes the input face of the conjuga-
tor. Note that for the thinnest conjugator (l = 0.1
cm), the bandwidth of the device is adequate to
produce nearly perfect chirp reversal, but that
for greater thicknesses the chirp reversal. is in-
compl. ete. The chirp shows a rather distinct
diminution (as evidenced by a flattening of the
frequency-versus-time curves) at approximately
the time that the conjugate pulse peaks. Thus we
see that a chirped pulse is conjugated as a rela-
tively chirp-free pulse in this narrow-bandwidth
limit.

In a related calculation, zl was set equal to v j4,
and the conjugator thickness was set equal to 2 cm,

RATIO OF CON JUGATOR ROUND-TRIP TRANSIT TIME

TO INPUT PULSE DURATION

FIG. 4. The calculated degradation in effective re-
flectivity when the probe-pulse duration becomes shorter
than the thickness of the conjugator. Plotted are both the
integrated conjugate energy and the intensity at the peak
of the conjugate pulse. All other conditions are the
same as in Fig. 3.
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All calculations in this section were repeated
with equivalent negatively chirped pulses, and the
curves obtained are just right-left mirror images
of the originally calculated curves. Thus our
chirp-reversal conclusions apply to input pulses
with either positive or negative chirp. Pepper
and Yariv have recently shown" that a conjugator
with a ref lectivity of unity will compensate for the
interposition of a weakly nonlinear aberrator as
long as catastrophic self-focusing does not occur.
Clearl. y, considerations of this section would re-
quire the transit time of the conjugator to be far
less than the duration of the input pulse. Other-
wise the time-varying diver'gence [which is equi-
valent to a spatially (x, y) dependent chirp] would
not be faithfully reversed.

E. The inverse problem

FIG. 5. Study of the chirp-reversal process. The in-
stantaneous frequency shift versus time is shown for
the positively chirped input pulse. Again (as in the pre-
vious two figures) the cw on-resonance conjugate re-
Qectivity is unity but the physical thickness of the con-
jugator is varied. Note that for physically thin conjuga-
tor (i,e., one that is sufficiently broadband), the chirp
reversal is nearly perfect, but that for thicker conjuga-
tors, the chirp at the peak of the pulse is significantly
reduced.

and the chirp was varied. We found that increasing
the chirp on the input pulse resulted in decreasing
the duration of the conjugate pulse. This can be
easily understood by considering that as the chirp
becomes more severe, the pulse sweeps more
quickly through the high-ref lectivity center fre-
quency of the conjugator.

To study the chirp degradation by weaker conju-
gators, we repeated the above calculations with
much smaller values of ~l. As anticipated, we
find that the chirp modification at fixed l does not
tend towards perfect chirp reversal, but, instead
becomes asymptotically independent of the value
of al. This tendency can be understood as follows:
As one decreases al, the delta-function response
becomes a flat-topped function for the round-trip
duration of the conjugator. The duration of the
function depends only upon l, and the height of the
function depends only upon II.". Thus the inverse-
Fourier transform of this limiting function has a
spectral width that depends only upon l, as clearly
shown in Eq. (8) of Ref. 6. This inability of a
physically thick conjugator (in the weak coupling
limit) to reverse the input-pulse chirp was first
noted by Marburger, ' and it can easily be under-
stood in terms of the impressed gratings; the
resolution is merely determined by the number of
lines in the gratings.

One can ask the inverse question: To obtain a
desired conjugate wave form, what probe pulse is
needed~ The transfer function appropriate to this
question is merely [h(z, s)] ', which, unfortunate-
ly, is not as well behaved as is h(z, s). This in-
verse problem will be discussed in a later paper.

IV. CONCLUSIONS

We have used linear techniques to develop a
powerful and rapid numerical method for corn-
puting the transient response of a cw-pumped
Kerr-like four-wave mixing conjugator. Our
algorithm is based on expressing the conjugate
response in terms of an antilinear Fourier trans-
form, with, in the unstable case, correction
terms. A complete derivation is presented, along
with a comparison of these results to others in the
literature.

Our numerical examples clearly show that a
conjugator whose round-trip transit time is com-
parable to the duration of the input pulse will very
noticeably broaden and delay the conjugate re-
flection. This effect is consistent with the narrow-
band nature of the cw filter function. We have also
calculated examples that show the effect of conju-
gator length upon the quality of chirp reversal:
The longer the conjugator (the narrower its band-
width) the greater the departure of the conjugate
pulse from complete chirp reversal. As our ex-
amples show, the leading edge of the conjugate
pulse shows most faithful chirp reversal, and the
peak of the conjugate pulse exhibits the largest
deviation from faithful chirp reversal. This also
indicates that too long a conjugator will be unable
to correct for the onset of self-focusing in a
mildly nonlinear distorter.

Note added. We have recently become aware of
a letter by B. Ya. Zel'dovich, M. A. Orlova, and
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V. V. Shkunov (Dok. Akad. Nauk SSSR 252, 595
(1980} [Sov. Phys —Dokl. 25, 390 (1980}]};Their
Eqs. (3) correspond to our Eqs. (12), and their
Eq. (8) gives the leading term of our Eq. (A23).
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APPENDIX A: INVERSE LAPLACE TRANSFORM
FOR A DELTA-FUNCTION INPUT

By evaluating the Laplace transform of the anti-
linear transfer function, we obtain for unre-
stricted ~l,, the conjugate response to a delta-
function input. Our result will agree with the
modified Bessel function series given in Befs. 9
and 10. This agreement offers further proof of
the correctness of our approach. To simplify the
notation, we normalize our input, setting E(t}
= (-i») '5(t). Then f (is) = (-i»M2n) ', and our
problem is to evaluate the Laplace transform:

s —n a
s +n (s+n)' '

obtaining the series
2 (n-1)

s + n „,(s+ n)'"

(A4)

(A5)

This expansion is suggested hy Ref. 10. First we
shall show that this series is uniformly conver-
gent for s = v —iQ, v &a, and all Q. This wil. l
al.low us to Lapl. ace transform term by term.

Let us write

s =v-iQ, a=pe' .i8 (A6)

Our expansion has introduced branch points at
s =+a. If we are to integrate term by term, the
line of integration must lie to the right of these
new branch points; thus, we shall require

v&a.

Now, from Eq. (A6) we have

p' —(v' —0' a')'+4v'0'

(A7)

all times, including the initial transit period.
Starting with Eq. (A3) for h(s), we formally ex-
pand Q(s) in a power series in X[exp(-nr)], where

-2vQ
tan28=

v -a —0
(A8)

sinP l

P cosPl + (s/v)sinP& '

P =[»' —(s/v)']'".

From Eqs. (A7) and (A8) we see that as 0 in-
creases from -~ to ~, 8 increases monotonically
from -w/2 to v/2. Thus, Re(n) &0 for all 0 and

The bars over H and h indicate their normaliza-
tion by the factor of (-i») ' and indicate that the
functions are evaluated at ~ =0.

For convenience, let us write

exp(-nr) & 1.
Next, note that

/X/' = a'/ fs + n /',

(A9)

(A10)

a= v», ~=2l/v,

n = ivP = (s' —a')'~'.
(A2)

P(s) = [(s + n) —(s —n)e ']
We can apply the contour integral theorem
separately to the two terms h, (s) and h, (s), to find
that (i) H, (t) turns on at t =0, just as the probe
pulse enters the medium, and (ii) H, (t) turns at
t=7, i.e. , when an observer at 8=0 could first
learn that the delta-function pulse has left the
medium at z=l.

We shall fol.low the procedure outlined in Ref.
10 to evaluate the transform using contour inte-
gration. Of course, the end result will apply for

Note that 7 is the round-trip transit time. We
now replace the trigonometric functions by their
expressions in terms of exponentials, so that

h(s) =h, (s)+h, (s) = vP(s) —ve 'Q(s),
(A3)

but

~s + n
~

' = (v + p cos 8)' + (0 —p sin 8)
' .

As cos8 is always positive, we see that

(s + n ('& v' &a'.

(A11)

(A12)

On the large circle~s
~

=R» a, we have n =s. Thus
we can always complete the contour for I.„; we
complete to the right if t &nv and to the left if
t +n&. In the latter case we encircle all the singu-

Thus, the series of Eq. (A5) converges uniformly
over the whole l.ine of integration and can be
transformed term by term.

Consider, therefore, the Laplace transform of
the sth term of the series Eq. (A10), namely,

y+ foe ~ 2n-2aa
L„(t)= . ,„exp(st —nun)ds .

2vi
y )~ s+n

(A13)
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larities, namely, the branch points s = +a. Clear-
ly, L„(t)= 0 for t & nr.

The trick in evaluating the integral of Eq. (A13)
is to remove the branch points by a substitution"
of the type s =au+b/u and to integrate in the u
plane. Trying this we readily see that the appro-

priate substitution -is

ia t+nT " t+n~ -'"
(A14)

With this change of integration variable, Eq. (A18)
becomes

(-1)" t —net, " ',„, t —nr, „, t+nr
8si t+n7 j c t+nT t-n7

te ~

x exp —(t' —n'T')' '(u —u ') du, (A1 5)

where C is a contour in the u plane which encloses
the singularity at I=0 once counterclockwise.
Now recall the definition of the Bessel function,
namely, "

J„(x)=2 . u " 'exp —(u —u ') du.
2n'S c

(A16)

The contour in Eq. (A21) is exactly the same as in
Eq. (A20); thus, using

J„(ix)= i"I„(x)

we get

(A17)

1L (t) = . (s+o.) 'e" ds.
7T1

y

(A19)

Clearly, this term turns on at t =0. For t &0, we
proceed exactly as for L„, setting

s = (ia/2)(u —u '), (A20)

which, incidentally, is Eq. (A18) with n=0. Then

Lo(t) = . (u '+u ')exp[(iat/2)(u —u ')]du, (A21)
1

4ws c

and finally

L (t) = -[I (at) —I, (at)] S(t) = (1/at)I, (at)S(t) . (A22)

For the full evaluation of Eq. (Al) we therefore

n+l
+ I,„„(a(t'—n'T')' ') S(t —nT) .t +gT

(A18)

We have introduced the step function S(t) =0 for
t &0 and S(t) = 1 for t &0 to remind us that L(t)
vanishes for t &nT.

We have now transformed every term of Eq.
(A5) except the first, namely,

have

II(t) = vLO(t) —2v g L„(t), (A23)
n=l

with L„L„given by Eqs. (A22) and (A23). Thus
we have evaluated the inverse transform' by series
expansion coupled with contour integration methods
to find the impulse response given by Befs. 9 and
10 in the special case that the probe is introduced
at a =0 and that the conjugate return is observed
at the same point. This series had previously
been deduced by the method of images rather than
by our present expansion of the integral. Note
that, because of the step functions S(t - nT), the
series Eq. (A23) is actually finite for all finite t.
Thus the delta-function response has been evalu-
ated in closed form.

APPENDIX B: COMMENTS ON HIGH-FREQUENCY
BEHAVIOR AND ON THE SLOWLY VARYING

. ENVELOPE APPROXIMATION

Equations (3) are derived from Maxwell's equa-
tions by making the sl.owly varying envelope ap-
proximation, and hence are valid only as long as
s, the complex frequency of modulation of'the
envelope, is very small compared with the carrier
frequency &uo. In spite of this, Eq (13) exp.resses
our solution as an integration over an infinite
range of s, or more precisely, if we set s=v —iQ,
over an infinite range of Q. Qbviously this is
a good approximation only if we restrict our
attention to signals whose power spectra are con-
fined to the immediate vicinity of uo. But this in-
finite range of integration contains a hidden
caveat: if we generalize by allowing e to depend
on 0 we should be careful that jt(s, —iQ) remains
quad ratic ally integrable.

In their study of the steady-state response,
Pepper and Abrams' found a frequency dependence
of the coupling constant of the form x ~(&so+0).
As they explicitly restrict the frequency range so
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= z A exp[-iQ (t —z/v)]+ c.c. , (Bl)

then we are solving exactly the same problem as
did Ref. 6. However, Ref. 6 finds z~(~, +0)
whereas we find K= constant. Which of us is
right~ Strictly speaking, neither. Both of us
mutilate Maxwell's equations, because in making
the slowly varying envelope approximation we ig-
nore terms of order 0/&uo; but these two results
differ precisely by a term of order 0/&uo. There-
fore, insofar as the slowly varying envelope ap-
proximation is valid, the two different rules must
be considered as being indistinguishable. Note,
however, that our numerical method always uses
a mesh so coarse that the condition 0 «e, is ef-
fectively enforced. Thus, using either dependence
causes us no computational difficulty. As a prac-
tical test of this last statement, all numerical ex-
ampl. es of Sec. III were computed both ways. In
all cases, the two results were indistinguishable.

Clearly, the delta-function response we calcu-
late is the true transient response for the first-
order set of coupled differential equations, but it
is not correct for the more precise second-order
set. Thus, our delta-function response should be
considered only as a kernel for treating the con-
jugate reflection of input pulses which do not vio-
late the slowing varying envelope condition.

APPENDIX C: SINGULARITIES OF h(s, s)

We will study the singularities of h(z, s). We
start with the prescription outlined in Ref. 10.
Although P has branch points at s = + vz, h(z, s)
has no such branch points because it is an even
function of P. Therefore the only singularities of
h(z, s) are poles and. they are the roots of the
equation

A=Pl cosPl+ (sl/v)sinPl =0, (C1)

Of these zeros, the one at P =0 (s = + vz) is not a
pole because the numerator vanishes when P = 0.

It is convenient to write

that 0 «~„- such a frequency dependence makes
good sense in their problem. We, however, must
be cautious of using such a frequency-dependence
of z in Eq. (13) because it is not correct when
[n f- ~.

The frequency dependence found by Pepper and
Abrams raises a related question. If we choose a
cw monochromatic probe, specifying that

E(t) = S~(0, t)
sinZ= ~ Z/zl,

s = % vK COSS.
(C5)

These equations are equivalent to Eq. (Cl). As s
and 2 will in general be complex, we break Eqs.
(C5) into real and imaginary parts, writing

S=V —SQy

Z=X+iY.
(C6)

Then the two complex Eqs. (C5) are replaced by
four real. equations, namely,

cosXsinhY= + Y/zl,

sinX cosh Y = + X/Kt,

v = +KvcosXcosh Y,

0 = + Kv sinXsinh Y.

(C7)

In these equations we must use all. upper signs to-
gether and all. lower signs together. At this point
we depart from Ref. (10).

We have two cl.asses of roots depending on
whether YIO or Y=O. We now discuss these in
turn.

Class A roots, Y0. When Y40 we can solve
the first of Eqs. (C7) for cosX and set the result
into the third. We get

v = —(v/t) 1'coshl'/sinh Y. (C8)

As YcoshY/sinhY&1 for all Ye 0, we see that

v& —v/E (C9)

for all class A roots. Thus, all cl.ass A roots lie
in the negative half s plane and are well bounded
away from the imaginary s axis. The first two of
Eqs. (C7) are indifferent to the algebraic signs of
X and Y. Thus, the replacement X--Xor
Y- —Y simply changes the sign of O. Generally,
the cl.ass A roots form an infinite set which occur
in complex conjugate pairs.

If Kl &1, there will be one real class A root.
For 0 = 0 we need X= 0 and we have

where k simply denotes the common value of the
two expressions. We now use Eq. (C2) to deter-
mine k. Equations (C3) give

s' = (1/k') (1 - sin'Z) = (1/k') [1 —O'Z'(v/l)'] . (C4)

Setting Eq. (C2) for Z into the extreme right-hand
member of Eq. (C4), we see that the equation is
satisfied if and only if we choose k = +1/(vz).
Thus Eqs. (C3) become

Z= pt= [2 ( /v)2]'~'.

Equation (C1) can then be rewritten as

(t/v) sinZ/Z = —(cosZ)/s = k,

(C2)

(C3)

sinhY= Y/xl,

v = —Kv coshY,
for this root. If we set

Kl =1 —&

(C10)

(C11)
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we find, for small e,
Y'= 6e, v = —(v/l)(1 +2e) . (C12)

are simple, provided v» e —v/l. This calculation
will provide a formul. a for finding the residue
h, of h(z, s) at s»,

Thus, as K/ increases towards unity, this real
root moves to the right towards the point v = —(v/
l), and Y-0. At «l=1, Y=O and this root changes
class, becoming a class 8 root.

Class 8 roots, defined by 1'=0. Equation (C7)
reduces to

h, = lim [(s —s,)h(z, s)].

Let us set

S =Sp+6

(C18)

(C19)

sinX=+X/«l,

V= WKVCOSXq

Q=O,

(C13) X= l[« —(s»+e) /v ]
= X» —(l/v) s»e/X», (C20)

and suppose & to be small. Clearly, to first order
in 6,

so these roots are all real, and can occur only if
Kl ~ 1. If we set Kl = 1 + e, with e small, we have

X'= 6e, v =-(v/l)(1 —2e) . (C14)

Clearly, this is the real class A root which
crossed the point s = —v/l when «l went through
unity. As Kl continues to increase beyond unity,
this root continues to move towards the right and
crosses into the right half plane when Kl reaches
the value v/2.

Now let «l continue to increase beyond «/2 The.
above root moves farther into the right half plane,
and the class A roots (now all complex) move
towards the real axis. When Kl reaches such a
value that the equations 6 = (el/v)[1+ (l/v) v, ]/sinX». (C23)

where X, is X evaluated at s =s,. Now set Eq.
(C20) into Eq. (Cl) (note X=Pl). Expanding to
lowest order in e and remembering that b, (s») =0,
we get

6, = (el/v) [1 + (l/v) v»] [sinX, —(l/ v) v, co sX,/X»] .

(C21)

Because X„v» satisfy Eqs. (C13) this can be
simplified. From Eqs. (C13) we have

—(l/v) v» cosX»/X» = k («l/X») cos X» = cos X»/sinX»,

(C22)

whence

cosX= sinX/X=+ I/«l (C15)
It then follows that near the pole at s =s, we have

(n - —,')s & «l & (n+ ,')z, - (C16)

there are exactly n poles in the right half plane.
We shall now show by direct calculation that all

the class 8 poles

s =so="a (C17)

are satisfied, two class A roots reach the point
s =- v/l and coalesce into a doubl. e class B root.
As Kl increases beyond this critical value, these
two roots again split, one traveling to the right
and the other to the left along the real s axis.
They both remain class B roots. [It is clear that
Eq. (C15) implies Y=0.] This coalescing- of class
A roots happens first for X=4.49341, Kl

=1.46528m. When K/ reaches 1.5~ the right-
traveling root crosses into the right half plane.
Next, when X=V.V2525, Kl =2.4V950n', two new
class A roots coalesce into a double class 8 root
which again splits. The right-traveling member
crosses into the right half plane when Kl =2.5n,
and so on. We see, therefore, that if for some
integer n,

h(z, s) = —i«v sinX, sin[X, (1 —z/l)]

x {(s-s,)[l + (l/v)s»]} (C24)

x [1+(l/v)s, ]

X, = l[«' —(s,/v)'] 't'. (C25)

Everything is now spelled out. The class A
poles are all well bounded away from and to the
left of the imaginary s axis and hence are of no
concern. If «l &w/2 there are no poles in the right
half plane and therefore no residues to evaluate.
If condition (C16) is satisfied for some integer
n&0, then we must locate the n poles in the right
half plane. This is most conveniently done by nu-
merically solving the first of Eqs. (C13). Next
one calculates s~= v, from the second of Eqs.
(C13). Once the set {s,} is determined one can
readily calculate the set {h„}from Eq. (C25).

The poles at s =s, are therefore simple, provided
s» w —v/l, and the residues h» are given by

h» = —i«v sinX„[sinX» (1 —z/l) ]
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