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It is shown that the momentum-translation approximation (MTA) for the treatment of the interaction of bound
states with a plane-wave field can be developed in at least five different ways. This multiplicity of approaches is used
to exhibit some of the basic features of the approximation, as well as to contrast it with a gauge transformation, with
which it is sometimes confused. Validity conditions are eaa~/E &1, cuba, +1 (where a is the amplitude of the vector
potential in the Coulomb gauge for a plane wave of circular frequency m, E is a characteristic bound-state energy,
and a, is a characteristic size of the bound system), and an absence of intermediate near resonances in a transition.
The momentum-translation technique predicts replica states very directly, but level shifts are found only by a
method equivalent to perturbation theory. A general formalism is developed for transitions caused by linearly or
circularly polarized applied plane-wave fields, in which a second field may or may not be involved. In first order, the
MTA always reduces exactly 'to first-order perturbation theory, but when treated in their entireties, it is shown that
a perturbation series and a momentum-translation series are rearrangements of each other. All the criticisms which
have been directed at the MTA are reviewed and evaluated. The principal limitations of the MTA are found to be

the difficulty of treating problems with intermediate near resonances, and the absence of a systematic way to
improve on the basic approximation. The strengths of the MTA are its simple analytical form, its good accuracy
when there are no intermediate near resonances, and the fact that high-order multiphoton processes are treated as
easily as first;order processes.

I. INTRODUCTION

The momentum-translation approximation (MTA}
was introduced ' a decade ago as an extremely
simple calculational tool for the approximate
treatment of interactions of a bound system with
an applied electromagnetic field. It has the
major advantages that it gives analytical forms
of very simple type; the same general expres-
sions hold true for a wide variety of bound sys-
tems in interaction with a plane-wave field; and
the approach is applicable to all multiphoton
orders, with no extra complications as the order
increases.

The method has fallen into disuse in recent
years because of a number of criticisms
leveled against it. Although the answers to most
of the. objections were contained, explicitly or
implicitly, in earlier papers, ' '"no response
specifically directed to the criticisms has yet
been published.

It is the purpose of this paper to review the
bases for the MTA, and to outline the areas of
usefulness and the limitations inherent in the
method. In the course of this evaluation each of
the objections which has been raised is discussed
and resolved.

In Sec. II, the MTA wave function for a bound
charged particle in an electromagnetic' field is
generated by three totally different methods:
From perturbation theory, by a path-integral
technique, and by a unitary transformation ap-

proach. In the perturbation method, it is shown
in first-order and in second-order time-depen-
dent perturbation theory that the assumption that
the energy of R photon of the applied field is
much less than level spacing in the bound-system
spectrum, leads directly to the MTA. Although
the inference that this result holds true for arbi-
trary order is not developed, this approach
clearly shows one aspect of the nature of the MTA.
The path-integral method". shows in one simple
step that the MTA follows from the assumption
that the wavelength of the radiation is so much
in excess of the size of the bound system that de-
tails of the path are irrelevant. The development
of the MTA by a utiitary transformation is the
technique used originally. ' '. This method is the
most useful of the three alternatives, but it is
reserved for laet because the unitary transfor-
mation employed is of the same form as the gauge
transformation from Coulomb gauge to electric-
field gauge. ' '~ Although no gauge transforma-
tion is implied in the MTA, this correspondence
in transformation functions has caused confusion
in the literature. """Presentation of two al-
ternate methods to generate the MTA apart from
the unitary transformation technique should serve
to avoid such misunderstandings. In addition,
quite independent calculational methods devised
by Babiker" "and by Campos and Kruger" yield
the MTA as a special case. Therefore, at least
five different ways to arrive at the MTA are
known.
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In Sec. QI, it is shown that the MTA wave func-
tion automatically predicts repli. ca states. The
simple MTA does not contain a level shift, but a
calculation of the level shift in a momentum-
translation framework is shown to be identical to
a perturbation calculation of this effect.

Section IV is devoted to a development of tech-
niques for calculating transition probabilities.
This exposition is undertaken both because the
most familiar procedures are based on perturba-
tion theory, and also because there is some con-
troversy about the way in which the MTA is to be
applied to two-field problems. ' The procedure
employed is a simple 5-matrix approach, valid
for time-dependent interaction Hamiltonians, but
done entirely in the Schrddinger picture. This is
more direct than the Dyson interaction-picture
approach, and it has the advantage of being di-
rectly applicable also to time-independent (except
for adiabatic switching) interaction Hanultonians.
It is shown that transitioos can be viewed as taking
place between an unperturbed state and one of the
replica states of an interacting state. Both single-
and two-field problems are considered.

Section V is concerned with the formal rela-
tionship between the momentum-translation
method, including all supplementary terms, and
the standard perturbation series, also including
all terms. As is expected on general principle,
one series is simply a rearrangement of the other,
since, when. aD terms are considered, the result
in both instances is exact. The rearrangement
properties were pointed out in part by Tewari'
and then by Haque. " A more complete treatment
is given by Rachman and Laplanche. ' Only the
leading, or MTA, term in the momentum-trans-
lation method has any physical meaning or pre-
dictive power. Adding supplementary terms to the
MTA produces; a hybrid of momentum transla-
tion and perturbation theory which has no useful-
ness either physically or numerically.

Problems in which a bound charged particle in-
teracts only with a single electromagnetic field
are treated in Sec. VI. When transitions occur
between adjacent states, results obtained with
the simple MTA range from very accurate if
there are no nearby states "~ to accuracy within
an order of magnitude or better if there are
nearby states. "*"2' For first-order transitions,
MTA in the low-intensity limit always gives ex-
actly the same result as perturbation theory. For
higher orders, agreement to within a factor of 2
or so is usual. However, the ease of obtaining
results in MTA is not lost as order increases,
and a high-order result accurate to. within less
than an order of magnitude and obtained with
minor calculational effort, can be very useful

indeed. The situation is quite different if transi-
tion between nonadjacent levels is considered, and
intervening levels can be nearly resonant at a
lower order than the overall transition. It has
been found both in bound-bound' "and bound-
free'" "tjL'ansitions with intermediate near
resonances possible, that the simple MTA ap-
proach can be seriously in error.

Section VII is concerned with transitions in
which a bound charged particle interacts both
with an applied electromagnetic field, and with
a second field as well. For instance, Haman
scattering problems, which can be multiphoton in
the incident field, come under this heading. If
most of the energy in a transition involves the
incident field, then. the single-field remarks
about MTA apply here as well. However, in cases
where most of the transition energy is associated
with the second field, then MTA can become very
accurate. In such cases, there is no limitation
to factor of 2 or 10 accuracy. Furthermore, the
accessible intensity domain grows as the fraction
of transition energy in the applied field shrinks.
As always with the MTA, there is no extra cal-
culational difficulty associated with very high-
order processes.

In Sec. VIII, all of the objections raised about
the MTA are listed and evaluated. For most of the
objections, this is just a matter of summarizing
material presented earlier in the paper. Finally,
Sec. VIII gives a brief survey of the strengths and
limitations of the MTA.

II. BASES OF THE.MTA

II,.p2/2m+ V(r)

and a perturbation Hamiltonian operator

a'(t) = -eA(t) p/m+e'A'(t)/2m

can be identified. The first-order perturbation
solution of Eq. (l) is

(2)

Generation of the momentum-translation approx-
imation is interpreted here to mean development
of the MTA wave function. The way in which this
wave function is used to calculate transition prob-
abilities is considered in later sections. The
starting point is the single-particle Schrodinger
equation containing the effects of both a biading
potential and an external field, expressed in
Coulomb gauge, i.e.,

is, @(r,t) = [(2m)-'(-iv- eA)'+ V(r)j@(r, t) . (I)

Units with @=c=1 are employed.
I

A. Induction from perturbation theory

In Eq. (1), an unperturbed Hamiltonian operator
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ip/m = [r, H,],
the first-order interaction is

H'&')=ieA [r, H,].

(5)

Now consider the interaction term to arise from
a linearly polarized plane wave in long-wave-
length approximation

A= acost,
and write the stationary states C„(r, t) as

C„(r,t)=C„(r) exp(-iE„t).

The integral which appears in Eq. (4) is then

(8)

"t
dt, (4„,H'"'5), ,= —(E„—E) &„, &)w oo

X
ej (Sg-S++)t g (E„-E-~)f

+
(E E +) &()(E E &())il

'

(9)

in which it is implicit that the vector potential ex-
pressed in Eq. (7) is adiabatically switched at

l
t

l

- ~. ff it is now supposed that

"IE -El (10)

for any n, then ~ can be neglected in the de-
nominators in the second set of large parentheses
in Eq. (9), leading to a common denominator
which is canceled by the prefactor in Eq. (9).
Equation (9) can then be rewritten as

"t
dt, (C„,H'"'C. ),,= -(C„,eA ~ rc), .

When Eq. (11) is substituted into Eq. (4), the
summation can be accomplished and the result is

C "'(t)= (1+ie A .r )C (t) . (12)

The second-order perturbation solution of Eq.
(1) is
C&"(t) =C (t) —i g C„(t) dt, (C„,H'C), ,

n ~OO

+(-i)&ggc„(t) dt, (c„,H'&"c„),
g m -'o

dt, (C „,H'")C.), ,

4'"'(t) = C (t) i-g C„(t) dt (C„H'"'C.) (4)
n

where the set fc„]is a complete set of noninteract-
ing states [i:.e., solutions of Eq. (1) without H'],
dependence on r is not explicitly indicated, the
subscript t, on the scalar product in the integrand
means that all quantities in the scalar product de-
pend on t„and H'"' as it appears in the scalar
product contains only the first-order term in
Eq. (3). With the standard operator theorem

where, in the term with a single sum, H' is the
full expression given in Eq. (3), whereas the
double sum term contains only the first-order
H'"' of Eq. (6). The terms in Eq. (13) will be
considered in reverse order. The t~ integral in
the last term is just like Eq. (9), except that the
result is a function of t, . After the t, integration
is done, and Eq. (10) employed, the last term in
Eq. (13) is

&. Path-integral method

Some years ago, a number of attempts to develop
a manifestly gauge-invariant quantum electrody-
namics made use of a solution of the form" ~'

o(x) = exp(-(e
path

& d~'lc(x),
)

where the context is relativistic. That is, & is

-QQ C„(c„,eA ~ rc„)(c„,eX rc) —,"
)

.
m

(14)

When the single-integral term in Eq. (13) is con-
sidered in two parts corresponding to the two
terms in H', the linear part of H' is just like
Eq. (11), and the quadratic part of H' gives

( e2A2 '& 1
~) (E„-E)

Equations (14) and (15) can be combined if A' in
Eq. (15) is first rewritten with the help of the
commutator

-A'= [(A.r), (A ~ip)],
and then the p operator is replaced by Eq. (5).
The result of these manipulations is that Eq. (15)
becomes

gg C)„(C„,eA rC)„)(c„,eA ~ rc)
2 l E "E ") .

(»)
Equations (14) and (1V) combine directly, both
sums can be done, and the outcome is -2(eA ~ r)'C).
The overall result for Eq. (13) is, therefore,

4' '(t) [1+ieA r+ —'(ieA ~ r)']C(t). (18)

Equations (12) and (18) can be recognized as
successive approximations to the momentum-
translation wave function

C((t) e&eA rc) (t)

The essential input is the condition expressed in
Eq. (10). Any attempt to extend Eq. (18) to higher
orders involves a large amount of labor. It is
not worthwhile, since more direct paths to Eq.
(19) exist.
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4(r, t)=explie A dr'lc(r, t), (21)
"V path )

where the designation "V-path" refers to paths
determined by the V(r) potential which establishes
the noninteracting solution C (r, f). With the as-
sumption that A. is essentially constant over the
region to which the particle path is constrained
by the binding potential V, then Eq. (21) converts
directly to the MTA wave function of Eq. (19).

The path-integral formalism developed in Ref.
11 leads to the validity conditions

mao«1,

eaa, (v/E) «1,
(22)

(23)

where a, is a characteristic size of the bound
system (e.g. , a Bohr radius), and E is a charac-
teristic energy of the bound system. Equation
(22) is simply the long-wavelength-approximation
condition, and Eq. (23) is an extension of Eq. (10).

C. Unitary transformation method

If the unitary transformation

U= exp(-ieA ~ r)

is applied to the wave function 4' of Eq. (1),

0=UC,

then 4 satisfies the equation

ie,4(r, f) = [(2m) '(-iv)'+ V(r) —er ~ E(f)]@(r,t),

(24)

(25)

(26)

where E(t) is the long-wavelength-approximation
electric field associated with the vector potential
X(t). If the term er ~ E is much smaller in magni-
tude than any characteristic energy or energy dif-
ference in the problem,

I- ~ El «E, (27)

a four-vector potential, A ~ dx is a four-vector
product with the meaning & 'dx =A 'dt —X ~ dr, and
x written as an argument of the wave functions
means r, t. In Eq. (20), C (x) is a solution of the
quantum-mechanical wave equation in the absence
of &', and 0 (x) is the solution with &" . Because
of the path dependence of the path integral, one
finds that a sum over all paths must be considered
if C (x) is to be truly a noninteracting solution. If
only a single path is considered, then 4 (x) itself
must be path dependent. With some guidance from
the very different appearing Feynman path-inte-
gral formalism, '~~' approximate forms of Eq. (20)
were developed. " The form appropriate to the
present set of circumstances, where&' has only
a space part, and the problem is nonrelativistic,
1s

then this term can be dropped, Eq. (26) becomes
the noninteracting equation with solution C (r, f),
and so Eq. (25) implies

(28)

When combined with Eq. (24), Eq. (28) is just the
same as Eq. (19) for the MTA.

In Eq. (27), if
l
E

l
is replaced by ~a, and l r

l
is

replaced by a„ the result is precisely the condi-
tion stated in Eq. (23). The long-wavelength ap-
proximation, Eq. (22), has also been used.

In principle, an exact solution follows if an exact
expressionfor 7 is used in Eq. (25), instead of
adopting the approximation C, as in Eq. (28). The
standard formal solution for 4 gives the expres-
sion'

@=exp(ieA r)(% @) '~'

x @+pc l-~ J~
"f (c

n 00

where the quantity in the square brackets is 7, and
can be expanded by iteration. The terms in the sum
overs were referred to in Ref. 1 as "correction"
terms, but it is more suitable to speak of them as
"supplementary" terms, since (unless the sum-
mation is carried out in its entirety) successive
terms from this sum cannot be used to improve
the MTA. This point is discussed more fully. in
Sec. VI.

Some important comments must be made here.
Equation (24) is exactly the transformation used
to achieve a gauge transformation of the potentials
from Coulomb gauge to electric-field (Goppert-
Mayer) gauge. "" It is not used in that sense
here. Equation (24) is used to accomplish a uni-
tary transformation of the wave function seithin
Coulomb gauge. That status is assured by em-
ploying H as stated in Eq. (3) as the transition-
inducing Hamiltonian in all transition matrix ele-
ments. Equation (3) is, of course, the Coulomb-
gauge interaction Hamiltonian. Equation (28) is an
approximate solution of Eq. (1) in Coulomb gauge
in exactly the same sense that Eq. (18) [and its
logical extension, Eq. (19)] or Eq. (21) is an ap-
proximate solution of Eq. (1) in Coulomb gauge.
No gauge transformation is implied in any of these
cases.

Another point worth noting is that if X is used in
its full (non-long-wavelength approximation) form
when the transformation (25) is applied, and long-
wavelength approximation is reinstituted Sfter the
transformation, then a vector potential term will
appear in addition to the scalar potential term in
Eq. (26)." The correct equation is

iaP(r, t)=((2m) '[-iV+ ~ 'kr E(t)]'

+ V(r) —er ~ E(t)]4(r, &) . (30)
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However, it is easily shown" that the vector po-
tential in Eq. (30) is unimportant compared to the
scalar term when long-wavelength approximation
is justified. These remarks are based on the
status of Eq. (1) as an equation in relative coordin-
ates between the bound charged particle and the
system to which it is bound. That is, the m and e
parameters in Eq. (1) are really reduced mass
and reduced charge. "

D. Other approaches

The MTA emerges as a special case of more
general (and hence more complicated) methods
of solution in electrodynamics. Babiker 's
method"'" is to introduce a unitary transforma-
tion akin to Eq. (24), in which the generating func-
tion is not eA r, but is instead

tn

8= d'rP A,

where P is the polarization operator. Babiker's
work is relativistic and it reduces to the MTA in
the nonrelativistic limit when P is limited to
electric-dipole contributions.

Another interesting approach is that of Campos
and Kruger. " They develop a time-evolution op-
erator method based on a Magnus expansion4' for
solution of the equation of motion for the time-
evolution operator. The leading term in this
technique is just the momentum-translation re-
sult.

E. Gauge considerations

As emphasized in Sec. IIC above, the MTA does
not involve a gauge transformation. The fact that
it has been asserted to be a gauge transformation
by Cohen-Tannoudji et al.' has led some authors '"
to refer to the MTA as a "gauge-transformation
method. " It is quite clear from the variety of
ways given above to infer the MTA, that this is a
non sequitur. In fact, the momentum-translation
approach is a gauge-specific technique appropriate
to Coulomb gauge. The minimal electromagnetic
coupling substitution p-p -eX to incorporate elec-
tromagnetic fields into the equations of motion is
what suggests' the unitary transformation (28) as
an approximate way to translate away the elec-
tromagnetic part. This point of view is lost in
gauges of the Goppert-Mayer type.

a standard perturbation theory or "quasienergy
state" 44~' calculation. However, a simple result
for the so-called replica states (or satellite
states, or sidebands) emerges immediately.

The MTA wave function, Eq. (19), obviously
does not possess any well-defined energy eigen-
value. Nevertheless, the energy eigenvalue asso-
ciated with the unperturbed state C (t) is retained
as a convenient label, even though it is no longer
a true eigenvalue. With a simple periodic vector
potential as given in Eq. (7), the MTA wave func-
tion can be rewritten as

g(r t) —g(~) Q i' (ea, r)e tEt+tn~t (31)

The MTA wave function is thus a superposition of
a principal substate (n= 0) with the unperturbed
energy, plus a sequence of replica states of
energy E+ ~n~ &t (n= 1,2, . . . ) distributed sym-
metrically about the principal substate.

To treat level shifts in the most elementary
fashion within the MTA, consider the expectation
value of the total Hamiltonian

E+ ties =(~, (H, + H')e)

=(4 e ""'(H +H )e""'"4) (32)

'The commutator theorem'~ in the long-wavelength
approximation gives the immediate result

e teA r(H-+H&}eteA r (33)

so that 4E as expressed in Eq. (32) vanishes. This
vanishing of the level shift in the MTA is also
evident from the symmetry under n- -n of Eq.
(31).

The level shift is now treated in more detail
in terms of the quasienergy formalism. " If Eq.
(29} is written as

4 = exp(ieA r)C,
where% is the solution of Eq. (26), and% is written
in the quasienergy form

e = e-tutu (r, t),
then the quasienergy form for 4 is

4' = e tsttt(r, t),
w'ith

tt (r, t) = exp(ie X r) u(r, t) .

HI. REPLICA STATES AND LEVEL SHIFTS

The primary utility of the MTA is for the cal-
culation of transition probabilities. It confers no

special advantages for the calculation of level
shifts, since any attempt to do this within the mo-
mentum-translation approach simply reduces to

The quasienergy g is given by

f"~"g dt(e, (H, +H' iet)v)-
f'~,g dt(v, tt)

If tt(r, t) is normalized, this gives

(y 'f/QJ

g = dt(u, (H, + H, -ia, }u),
~ 'f/{d

(34)

(35)
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where Eq. (33) has been used, and where Pi =

-er ~ E is the interaction Hamiltonian of Eq. (26).
That is, the quasienergy sought by Eq. (34) for
the wave function in the momentum-translation
formalism (if one wishes to go beyond the simple
MTA) is identical to the quasienergy of Eq. (35),
which can be treated by perturbation theory. 4'

In summary, the MTA directly gives a spectrum
of replica states associated with any given unper-
turbed state, but it predicts no level shift. If a
level shift is sought within the momentum-transla-
tion approach by going beyond the MTA, the pro-
cedure for finding the level shift is identical to
that employed in perturbation theory.

IV. TRANSITION PROBABILITY FORMALISM

A. Single-field ease

The formalism for calculating transition pro-
babilities and cross sections is established in
general terms. The technique used is for time-
dependent interaction Hamiltonians 0', done in the
Schrodinger picture, and with the presumption
that If' is turned off at asymptotic times ItI-~.
The basic equations are

where the subscript t on the inner product indi-
cates the time parameter appropriate for both
states in the product. A form equivalent to Eq.
(41), more suitable for some problems, is

S„=Iim (e&-&, e,), . (42)

The in states%+ and out states 4 follow from
the solutions of Eq. (36}with retarded and ad-
vanced Green's operators, Eqs. (39) and (40).
These solutions are

4"(t)=4(t)+ f d(G'"(t 1 )il (t le'" (t ). (44)

Equation (43), when used in Eq. (41}, gives

Sf g Off

+lim dty4ft G t ted& tz+g tz
'

44
t ~4)O

In Eq. (44), the adjoint of Gi+l(t, t, ) can be taken
to operate on dt&(t) and, from Eq. (40), this ad-
joint is the advanced operator with reversed
time dependence. The action of the Green's op-
erators on noninteraeting states is

(lie, -II H')+(t) =-0

fop the interacting state%,

(Its, a,) e(t—) = 0

for the noninteracting state 4, and

(he, -If,) G(t, t,) = 15(t -t,)

(37)

(38)

(45)

(46}

G'l(t, t,) 4 (t,) = te(t t-,)e(t), -
G ~ l (t, t,) dt. (t,) = i e(t; t) 4) (t) .

From Eq. (46), the action of Gi l(t„ t) on 4&(t) pro-
duces 4&(t,), and a theta function B(t —t,). In the
limit t-~, this theta function is just unity, and so
Eq. (44) becomes

for the noninteracting Green's operator. In
Eqs. (36)-(38), 4' and 4 are vectors in the Hil-
bert space, IIO, II', G, and 1 are Hilbert space
operators, and time is a parameter external to
the Hilbert space. In the following, the unitopera-
tor 1 will no longer be stated explicitly. Equa-
tion (38) has the retarded solution

(s —()t,. = —i fdt(ete'4, '), , , .(47)

(s —1)t; = —i fdt(ete 4;),, ,
'(48)

An alternative form which follows from Eq. (42}
is

G"(t, t,) = te(t-t, ) -g Ic,(t))(c,(t,)I

and the advanced solution

Gi i(t, t()) = Gi'i (t(), t)

(39) Equations (47) and (48) are quite general. If
the vectors and operators in Eq. (47) are rendered
in configuration representation, and the interact-
ing state is given by the MTA expression Eq. (19},
then (47} is

= 'e(t, —t) Q IC' (t)&&4'(t,)I, (40)

(41)

where it is convenient to introduce Dirac bra and
ket notation for Eqs. (39}and (40} only. The j
sum encompasses a complete set of states (4~).

The S matrix is the probability amplitude for
an interacting initial state to be asymptotically
in a particular noninteracting state. This is
stated as

S« = lim (4&,4~+i), ,t -+ 4)O

(S —1)tt = -i f dt, (ettt't" '4, ), ,
1

The commutator theorem" in the long-wave-
length approximation is

IItekeA s IefeX r If ]
which puts Eq. (49) in the form

(S 1)tt= tlt S,)fdt(dt t dt),

(49)

(50)

(51)
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1. Linear polarization

For a linearly polarized monochromatic field,
the vector potential can be written

bound particle is a free particle in the final state.
The the total transition probability per unit time
is

A = a cost= ae cost, e = 1 (52}
Vd3p

(2 )' (59)

in long-wavelength approximation. The exponen-
tial factor in Eq. (51}is then

eleA r Pg (ea. r }eln&ut
'

tf (53)

as in Eq. (31), so that the S~ matrix is

(S —1)y, = —2xi(E,. -E~)

T&", = (E, E&)i"(Pz,-J„(ea r)P, ),
so that

(55)

x g i"(Q&, J'„(ea r ) g,.}6 (E& -E,+ nv) .
(54)

&n Eq. (54}, the stationary-state character of the
noninteracting solutions is used with the terminol-
ogy of Eq. (8). The delta function appearing in
Eq. (54) contains an~, even though the straight-
forward result would have+nu only. The reason for
this extension is that, sinceri ranges from -~
to +~, the substitution n- -n can be made. The
only consequence of this is to change the sign of
n in the delta function. It is convenient to think
of n as positive, and the sign ambiguity in the
delta function permits the application of Eq. (54}
to either emission or absorption processes while
viewing n as positive in either case.

Equation (54) can be used to define a T matrix

I

where p is the momentum of the free particle,
and V is the normalization volume. With the con-
version

Use of the delta function gives the differential
transition probability

dW (2m')' 'V ~ (E ~s~)ih(T(z)(2
(2s}'

and the differential cross section

do 83' d%'
dg a'~ dg '

(62)

(63}

where it is understood that wherever Ef appears
in the 7.' matrix, it is to be replaced by E,+ n+.

As a footnote to the above derivation, it should
be observed that the fully interacting state%, as
it appears in the S matrix of Eqs. (47) and (48),
is treated as in Eq. (31}. This means that the
transition can be viewed as taking place between
one of the replica states associated with the
interacting state @, (or 4&) and the unperturbed
state C~ (or C,).

d'p = p'dp dn = (2~'E )' ' dE~ dn, (60)

Eqs. (58) and (59) yield

W= 2 ~ E& de dQI Ty~ I 5(Ey -Eg a+a) .(2~3)1j2V
(n) 2

(2v '
(61)

(S —1}&& ———2' P T&~"&~ 5(E& —E, +n (o).(56)
2. Circular polarization

in conformity with the usual connection between
S and 7.

' matrices.
The elementary transition probability per unit

time is found from the S matrix by
]

w = lim —((S —1}~,('.f (57)

The delta function in Eq. (56}causes the separate
terms to contribute incoherently when the square
is taken, so Eq. (57} leads to

zv = 2m V'(",~ 'O E, -Z, ~neo . (58)

The total transition probability 5' is found'by inte-
grating m over available final states. The cross
section follows from W by dividing it by the inci-
dent flux.

As an example of the last two. steps just stated,
suppose the problem to be treated involves photo-
ionization or photodetachment, so the initially .

e2=c* =02 6 ~ 6*=~.
It is convenient to select coordinate axes with the
s axis in the direction of propagation of the field.
Then the polarization vector is

e = 2 '~'(xviy), (65)

where x and y are unit vectors along the x and y
axes, the upper sign refers to right circular po-
larization, and the lower sign to left circular, po-
larization. The argument of the exponential that
appears in Eq. (51) is then

eA. r = P(@cosset ay sint), P =2 '~'ea. (66)

For a circularly polarized monochromatic field
in dipole approximation, the vector potential can
be written

A = —,
' a (Ze '~ + e. *e * ')

(64)
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The exponential function is
egeA. x e jlxcoscote+$8y sin&et (67)

The first factor on the right in Eq. (6V) is of the
form given in Eqs. (52) and (53},and the second
factor can be represented by

ettae sin&et g ~ (p
}ettlert

g —~ 00

Equation (6V} is then the double sum

(68)

e i% g g illy (pz)g (py) et(ntl) en (69)

If the k, l sums are transformed to k, n sums
where n = It +I, then Eq. (69} is

eie 'r P etnwt g t J' (p&) J' (py) (70)

&& J (p(z'+ y'}'~')

It is conveWent to introduce cylindrical coor-
dinates p, y, s, ' with

p = (x'+ y')'~, y = arctan(y/x) .
Equation (Vl) then simplifies to

(V1}

P i'&, (pz)Z, „(py) = (-i)"e'"eJ „(pp). (V2)

The corresponding result for the right-handed
case is

gt ~.(pz)J,.(py) = (-t)"e '""J .(Pp) (73)

When Eqs. (V2) and (V3) are substituted into Eq.
(VO), the outcome can be expressed as

eieA nr +&8+i@ n J ~ &4SCOt (74)

8ieA r g (Vie&t9')nZ (pp)e t tnte (V5)

where the upper sign refers to right, and the
lower to left circular polarization. Equation (V4)
is the analog of Eq. (53).

When Eq. (74) or (75) is used in the S matrix, the
matrix element which appears in Eq. (54) for
linear polarization is altered to

(P~, e "neJ' (2 ' 'cap)rtt()

for circular polarization. The exp(winy) factor

The sum over k in Eq. (VO) can be done with the
help of Graf's addition theorem. " For left-hand-
ed polarization, the result is

n

t'Ja X Jn-„3 = -& I 2n (1+2 + $2~)l 2

makes clear immediately a fundamental property
of the circular-polarization case. If, for example,
Qt represents an S state, then Q& must possess a
total angular momentum gf at least n units, and
only that portion of the Q& state with a z projection
of n can contribute. The angular momentum
constraints inherent in the linear polarization
matrix element (Q&,

J' (e a r)Qt) are much less
rigid.

The remainder of the development of transition
probability expressions given for linear polariza-
tion carries through in the same way for circu-
lar polarization. That is, Eqs. (56)-(63) are
true for the circular case as well. The only dif-
ference is that Eq. (55) must be replaced by

TtIn'=(Et —E&)(-i)"(rtt&, e"neJ(2 '"'cap)Pt) (76)

for right circular polarization, and

T',"'=(&, &)-i "(rtt, e"""J(2 ' 'cap)P, ) (77)

for left circular polarization, where the ambiguous
signs in Eqs. (V6) and (V7) are correlated with the
ambiguous sign in the delta function in Eq. (56)
or (58).

B. Two-fields case

A two-fields situation will occur when energy
conservation in a transition cannot be accom-
plished with any integer number of photons from
the applied electromagnetic field. For example,
if an atom in a metastable state is irradiated by a
field for which no multiphoton order can lead
exactly to the ground state, stimulated emission
can still occur with the emission of a Raman
photon (the "second field" ) of energy appropriate
for overall energy conservation. Both fields are
switched off asymptotically, transitions can occur
only through the simultaneous action of both fields,
and so the formalism developed in Sec. IVA
above can be applied directly if H' in Eq. (36)
refers to the interaction Hamiltonian of both
fields. All steps through Eq. (51) remain true
with two fields.

Attention will be directed first to the linear
polarization case, for which the two-fields
formalism was given in Ref. 3. The vector po-
tential in Eq. (52) is to be supplemented by a
second term representing the second field, whose
intensity is taken to be much smaller than that
of the applied fieM. The second field is thus
treated always in first order. Equation (52) is to
be replaced by

A =ac cos&ut+az' cos(&ot+n), (V8)

where n is a phase displacement between the two
fields. Instead of employing Eq. (53) for the se-
cond field, it is treated by the expansion
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w

exp[iear ~ c' co s(&ut + u)]=1+~iear ~ e' e""' '

+~iear Z' e ' -" ' (79)

The first term in Eq. (79) leads to the same re-
sult as if no second field were present, and by
hypothesis, this cannot satisfy energy conserva-
tion. Only the last two terms need to be retained.
The analog of Eq. (54} that arises is

(S —1) )
= —2'(E, -E )

x e" (ea) g i""(p&,r ~ c'J' (ea ~ r)p,.)
n (80)

x 6(E~ —E)+n(g)+j)),

where +nw and +~ are not correlated, so that four
different possibilities are represented in the
delta function. The implication of Eq. (80) is that
Eqs. (55) and (56) are to be replaced by

T~P '=(E, —Eq)i""e" (ea)(yq, r z'J (ea ~ r)y, )

(81)

(S —1)& =-2mi P T&" 6(E& Ean~—+u). (82)

The delta, function in Eq. (58) must be generaUzed
by the appearance of + in the argument. With
that modification in mind, the remaining equa-
tions in Sec. IV A can be employed.

With circular polarization in the two-fields
problem, Eq. (78) is replaced by

A =-,'a(Ze'"'+c~e *'"')

g x g t g j & ~ t «a & +&
g' g -g ( Fu t +a &5

2 / ~

The portion of exp(ieA r) arising from the se-
cond field in Eq. (83) is approximated by

(83)

exp[ie~ a(r z'e ' ' "" '+r .e* e ""' ') ]
= 1+2 Pp cos(&dt +nT p) (84)

in place of Eq. (79), where cylindrical coordinates
p, y have been introduced inthe right-hand side of
the equation. The parameter P is defined to be
P =2 ' 'ea in analogy to the definition for P in
Eq. (66). As in the linear polarization case, the
unit term on the right-hand side of Eq. (84) cor-
responds to the single-field case, and mill not
contribute here. Equation (80) for linear polari-
zation is nom replaced by

(S —1)« = —2'(E, —E&)e' —,'2 ' 'eai P ( vi) "(P&,pe'"""'~Z (2 ' 'eap)g, )6(E& —E, +nar+&u)

—2gi(E, -E&)e '~ —'2 ' 'eai g (vi)&(P&, pe'"""'~J (2 ' 'eap)p, }6(E&—&, +n&o —&o)

(85)

for circular polarization. Equation (85) is written
only for the case where the 5 function contains
+n~, which is the natural form for emission of
n photons of frequency . One can also mrite the
corresponding S -matrix expression for n-photon
absorption in the same fashion as done earlier.
The ambiguous signs in Eq. (85) in the factors
like exp[i(wn wl)y] are independent. For example,
this factor, from the first of the two terms in
Eq. (85), represents emission of n right-handed
~ photons and one right-handed ~ photon if both
upper signs are used. If both lower signs are
used, the emission is of left-handed photons in
both fields. The other two possibilities are mixed
cases. The second term in Eq. (85) is for emis-
sion of n photons of w type and absorption of one
photon of ~ type, mith either handedness of the
circular polarization depending on the choice of
either the upper or lower sign. The same re-
marks apply to the form of Eq. (85) altered to
represent absorption of n photons of ~ type.

C. Asymptotic-field case

A variation of the two-fields case can occur
in which the applied field exists as an "asymp--

(86}H'=-m 'e8 p+m 'e'8 ~ A

since 8 is to be retained only to first order. The
asymptotically present field is A, and the per-
turbing field is 8. The second term in Eq. (86)
gives the cross coupling between the perturbing

!
totic" field. What is meant by this is that the
bound system is subjected to an applied field
even at asymptotic times, so that observations
on the initial and final states are made in space
and time regions that include the field. This is
the only type of two-fields case considered by
Deco ster. '

The formalism of See. IVA can be applied
directly to this case by reinterpreting the H, of
Eqs. (36)-(38) to include the applied field, and
restricting H' in Eq. (36) to refer only to the
effects of a second perturbing field. There is no
difficulty in this, since the formalism permits
H, to have explicit time dependence as well as H'.
However, to denote the fact that 4 now includes
effects of a time-dependent applied field, it will
be relabeled as Y. The interaction Hamiltonian
operator in this asymptotic-field case is denoted
H,', and is
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fieM and the asymptotic field. The S matrix in
Eq. (47) is now

(S -t)«-t f td, (T tH ', tt,'")., . (87)

With H,' to be treated as a weak field, the inter-
acting state in Eq. (87) can be replaced by the
noninteracting state so 4,' '= T, . Furthermore,
the noninteracting states will be represented
by the MTA, so

T = exp(ieA ~ r)4}, (88)

with 4 having its earlier meaning of the state with
no applied fields. By implication, the Hilbert
space vectors and operators in Eq. (87) are now

given in configuration representation in the Schro-
dinger picture. The inner product in Eq. (87)
takes the form (S-1)tet'=(H, Ht)f-dt, (dt, eX ei, }, (94)

H' is replaced by H'"' [the first-order term in
Eq. (3)], and the exponential factor is replaced
by unity. The first-order form of Eq. (49) is thus

(S -1)t,"= if-dt, (dt, H'"'@t)t, (SS)

which is exactly the first order 8 matrix for per-
turbation theory in Coulomb gauge.

The form of the MTA S matrix in Eq. (51) leads
very easily to the electric-field gauge perturba-
tion theory when the first-order limit is consi-
dered. To obtain a first-order contribution in
Eq. (51), the exponential factor must be expanded
to two terms

e"A"=1+ieA r,
so that

(eft Ht1lt(+&) (8teX 54} Ht&tHX "St@
) (89) An integration by parts in Eq. (94) yields

However, the action of the momentum-translation
factors on B,' is to transform it to (S —1)tt'; = tfdt, (dt-H'S, ), , , (95)

@pe &eQ .pa (90)

thus eliminating the cross-coupling term in Eq.
(86). The result of Eqs. (89) and (90) is that

(91)

just as if no asymptotic field were present at all.
That is, the MTA predicts no effects of the asym-
ptotic field.

The above conclusion is altered if initial and
final states differ in the charge state of the bound
particle. 'The MTA factors for initial and final
states are then exp(ie,.X ~ r) and exp(ie&X ~ r), with

e, ss ez, and so Eqs. (90) and (91) no longer hold.
For example, if an initially bound electron is de-
tached in the final state, it is no longer describ-
able by the MTA, which is applicable only to
bound electrons. The final state is not represented
by Eq. (88), but will be given instead by

rf ef &

where 4„ is the state of the residual system with-
out the detached electron, and 4, is the state of
the free electron. 'The MTA treatment of the in-
itial state then leads to nontrivial consequences of
the asymptotic field.

V. CONNECTIONS BETWEEN THE MTA
AND PERTURBATION THEORY

A. First-order S matrix

It is known' that the MTA is exactly the same as
perturbation theory to first order in the field.
The result is very easy to demonstrate. If Kq. (49)
for the MTA is to be restricted to first order, then

where

HI=—-eE ~ r . (96)

Equation (95) can be viewed as the electric-field
gauge result in first-order perturbation theory,
but a refinement can be inserted. The work done
in this paper is all in Coulomb gauge (except for
peripheral discussion about electric-field gauge),
and so the set of noninteracting states (4&) refers
to Coulomb gauge. If expressed in electric-field
gauge, the set is (e" '4&}. This can be incor-
porated trivially in Eq. (95) by writing it as

(S-1)".' ifdt (e"1'@=i-l e"1'td. }

which follows immediately from

[H e~eX s-) 0 (98)

B. Complete S matrix

The complete 8 matrix in the momentum-trans-
lation approach is found from Eq. (47) with the
interacting state represented by Eq. (29). Ex-
plicitly, this is

(S -1)t,. = -i f dt(dt, H'e" 'i,.),
~ 00

-i dt 4», H'e" '" g 4}„~
~ C7 n "]t

x -i dt~(4t„, HI}It,)~.
~ N

(99)

Equation (97) is the first equation in this paper in
which exp(ieA ~ r) is employed as a gauge transfor-
mation.
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in the notation of Eq. (96). The commutator theo-
rem of Eq. (50) puts Eq. (99) in the form

(E —1)t, = i(E-E, t) f dt-(et, e"""E,)t.
~ 00

i(E,-Et-)f dt(et, e" '4 ) tt
~ 00

=(E e" 'tt;)~: -if d( tE,tEet""" E),t(lit()
~ 00

in view of the fact that

ig-(E Et)„f-dt(dt, e" 'E„)
0 ~ 00

gg &ieA ~ r ~ gee+ rI (102)

t
x( if dt,-(E.,E,E, ),,) . .

(100)

Integration by parts in the first term in Eq. (100)
yields

Because the field is switched off at asymptotic
times, both limits in the first term on the right
in Eq. (101}give 5z, , and so they cancel each
other, leaving. only the second term. Eentegration

by parts in the t integral of the second term in Eq.
(100) is more complicated because of the t in the
upper limit of the t, integral. 'The result is

(103)

t t(t„E)Eft-dt(@t, e" "E„) -t f dt, (E„,E Et),
(~ OO m g4

d)0 t 40

i-dt(4~, H~4', ), -i d. t 4~,H~e" '+4„i-dt, (4„,HI%, ),, ~+i dt(4~, e""'H1%,), . .
~ OO ~' 00 ~ DO

When Eqs. (101) and (103) are added, Eq. (101)
combines with the second term in Eq. (103) to can-
cel the third term in Eq. (103). As a result, Eq.
(100) becomes

(1 —1)t, = -t f dt(et, EtEt)t .
~ 00

(104)

As pointed out following Eq. (95}, the states 4z
and 4,. have been defined in a Coulomb-gauge con-
text. Equation (104) is entirely in electric-field
gauge if it is written as

(1 -1)t,. = ifdt(eel ttt-t, E e"" tV')t . '(105)

This last step is purely formal. In practice one
would simply use Eq. (104) as the complete ex-
pression from which a perturbation series ean
be developed.

The fact that the momentum-translation expres-
sion, Eq. (99), is fully equivalent to Eq. (104) or
(105) means that a momentum-translation develop-
ment with all terms included is equal to a per-
turbation series with all terms included. This is
as it should be, since the complete sum in both
cases is exact. Nevertheless, in practical appli-
cation, the two approaches will be very different.
The MTA is used in the lowest-order form shown
in Eq. (51) regardless of the multiphoton order
of the process. By contrast, a multiphoton pro-
cess of order n requires that a perturbation ex-
pansion of Eq. (104) be carried to nth order to ex-
hibit the leading term. Despite these major dif-
ferences, the fact that the full momentum-transla-
tion series is a rearrangement of the full:pertur-
bation series has led to some confusion. It cer-

I

tainly does not mean that momentum translation
is "just" perturbation theory when corrections are
applied. " This is much like saying that pertur-
bation theory is just 1VZTA when corrections are
applied, since a partial sum of perturbation-theory
terms leads to the M'TA. Any approximation me-
thod, when all terms are included, will be a re-
arrangement of perturbation theory, when all
terms are included.

Both momentum translation and perturbation
theory start at the same point: a complete set
of basis states (the unperturbed states) and an in-
teraction Hamiltonian. Power series are unique,
and so any expansion of the transition amplitude
in powers of the interaction term is the perturba-
tion series. Any method of calculation other than
perturbation theory will omit some portion of field
dependence to the nth power in the nth term. If
it doesn' t, it is perturbation theory-. Therefore,
to say the MTA cannot be correct since it omits
some part of that term' is tantamount to saying that
no method of calculation other than perturbation
theory can be considered.

A corollary to the uniqueness (once basis states
and interaction term are selected) of perturbation
theory is that any method which is not the per-
turbation series can appropriately be called non-
perturbative. The momentum-translation approach
is to carry out a unitary transformation (the mo-
mentum translation) to another system, do a
perturbation expansion there, and then use the re-
sult back in the original system. In the original
system, which is where the dynamical calculations
are made, the technique certainly does not pro-
ceed in powers of the field strength, and thus it is
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not the perturbation expansion. Nevertheless, it
has been maintained"' that it is improper to call
the method nonperturbative because of the use of
a perturbation series in the momentum-translated
system. I disagree. As stated above, any method
which is not the perturbation series is, ipso facto,
nonperturbative.

The philosophy of momentum translation is that
the effect of the field is asserted (in Coulomb
gauge) by the field momentum in the equation of
motion. The idea is to approximately transform
this away, leaving a simple result. 'There is no-
thing iterative in this. It gives an answer at the
first step, regardless of photon order.

VI. SINGLE-FIELD TRANSITIONS

The accuracy of the MTA is difficult to assess
in general. In Ref. 1, two conditions were stated:
eaao~/E«1 and &u/E«1. The second of these
conditions is not necessary. In fact, if v/E= 1,
this corresponds to a problem treatable by first-
order perturbation theory, where the MTA gives
results essentially identical to perturbation theory.
The other condition eaa, ~/E«1 is more signi-
ficant. However, it has been faulted by Decoster,
who has attempted an elaborate error analysis. '
Decoster's analysis does not consider the cancel-
lations that occur among the terms beyond the ba-
sic MTA term, and it thus overestimates the er-
rors. Some of the individual terms beyond the
basic MTA can have magnitudes nearly as large
as the MTA itself, but these terms have no phy-
sical meaning, and tend to be canceled by other
terms. 'This is an important general point to
stress. The momentum-translation method is not
a successive approximation method. The basic
MTA term has a physical meaning as a momentum-
translated result. '-The sum of a/l the other terms
has meaning as a correction, but none of the in-
dividual terms beyond the M'TA has a,ny physical

TABLE I. Ratios of perturbation-theory cross sec-
tions (opg) to MTA cross sections (aM~Q for multi-
photon transitions in hydrogen with no possible inter-
mediate near resonances.

1S-2S

significance in itself, nor can the MTA consistently
be improved upon by including additional terms.

A pragmatic way to assess the accuracy of the
MTA in single-field problems without near reso-
nances is simply to compare results calculated
from the MTA in the low-intensity limit with known
perturbation theory results. Table I gives this com-
parison for 1$-2$and 1$-2& multiphoton transitions
in hydrogen. These transitions are selected from
the perturbative multiphoton calculations of Gon-
tier and Trahin" because they clearly do not have
intermediate near resonances.

The greatest discrepancy shown in Table I be-
tween perturbation theory and MTA is in the last
entry, where the results differ by a factor of 2.25.
'This is excellent agreement for different methods
of calculation of multiphoton processes.

Another comparison that can be made, related
to the above results, is to consider the spontan-
eous two-photon decay of the metastable 2S state
in hydrogen. In this process, all possible com-
binations of energies occur between the two emitt-
ed photons, as long as they satisfy the constraint
that the sum of the photon energies equals the 2S-
1$ transition energy. 'The known perturbation re-
sult for t,he spontaneous transition rate is" "
8.23 sec ', whereas the MTA gives" 3.23 sec '.
The results differ by a factor of 2.5. The spectral
distributions of emitted photons from perturbation
theory, "from an exact solution, "and from the
MTA" are very similar in shape, suggesting little
frequency dependence in the accuracy of the MTA.

A different physical process where comparisons
between perturbation theory and the MTA can be
made is for two-photon detachment rates of nega-
tive ions. These rates have been calculated by
Faisal" with the MTA, and may be compared with
Geltman's" perturbation results. 'The compari-
sons are given in Table II.

The agreement shown in Tables I and II can be
described as excellent. For example, several-
authors"'"'" have compared theoretical results
for three-photon ionization of alkali-metal atoms
as obtained by the approximate perturbation theory
of Bebb and Gold, "the approximate perturbation
theory of Morton, "and the Green's-function theory
of Manakov et a/. " Differences by factors of 10

&Pvi~MV~

1S-2P

2.20 1.52 0.906

TABLE II. Ratios of per turbation-theory transi-
tion probabilities (+'p~) to MTA transition probabili-
ties (VM~~) for two-photon detachment in negative
ions.

~»/~M»
n=3

0.911 0.760 0.444

I
Br
F

0.78
0.82
0.76
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to 100 are commonplace between different theo-
ries, as well as between theory and experiment.
Similar discrepancies occur in comparisons of
calculations of other multiphoton processes. "'"

Although it is important to stress that the MTA
should not be used when intermediate near reso-
nances can occur, it is nevertheless instructive
to see how near an intermediate resonance can be
before causing difficulty for the MTA. This infor-
mation can be inferred by comparisons of MTA
results with the multiphoton calculations of Gon-
tier and 'Trahin" for transitions from the ground
state of hydrogen to the n= 3 and 4 states. The
n= 2 intermediate state does not pose a problem
for the MTA for two-photon transitions, but it
does for three-photon transitions. From the spe-
cific energy differences in these transitions, it
can be inferred that the nearest approach to an
intermediate resonant state by an intermediate
number of photons (e.g. , one photon in a two-pho-
ton transition, or two photons out of a total of
three) should be greater than perhaps 25 to 30%%

pf the total transition energy for the MTA to
give useful results.

The general conclusions implied by practical re-
sults from MTA calculations with no near reso-
nances are several. First, a factor of 2 accuracy
in transition probabilities seems to be the general
case, although it is 'more conservative to assume
no better than a factor of 10 accuracy when com-
parison results are not available. This accuracy
might not be very impressive for two-photon pro-
cesses, but for higher orders it is very useful in-
deed. 'This statement is buttressed by the conclu-
sion that the MTA does not lose accuracy with in-
creasing order of the process, and furthermore,
that the MTA is as easy to apply for high-multi-
photon orders as it is for low orders. This last
quality is very important, since the MTA is gen-
erally very easy to apply, and it can often lead
to analytical results where other methods can
provide numerical output only.

VII. TWO-FIELDS TRANSITION. S

As explained earlier, a two-fields problem is
one in which a transition in a system is effected
through the agency of a second field in addition
to the external electromagnetic field. The second
field may be electromagnetic as in Raman scatter-
ing, or it may be of some other type. Interme-
diate near resonances can occur, as in single-field
problems, but they are less likely, and they will
not be discussed further. The remarks made
about near resonances in the single-field case
apply to the two-field case as well.

The basic condition, Eg. (23), is more easily

satisfied in a two-fields problem than in a single-
field problem. In particular, a process involving
a single photon from the applied field constrains
the field intensity to eaa, «1 in the single-field
case, but need not imply any such thing for a
two-fields problem. If &/E is small enough, true
intense-field situations can be treated by the MTA.
This is in contrast to the single-field case, where
the MTA suffers from the same intensity con-
straint as perturbation theory. It was largely be-
cause of this extra flexibility about intensities
that the two-fields problem was stressed in Refs.
1-3.

VIII. SUMMARY

A. Objections to the MTA

The most fundamental objection to the MTA,
were the objection justified, is the assertion by
Cohen-'Tannoudji et aE.' that the momentum-tran-
slation technique is nothing more than a gauge
transformation, and hence devoid of physical con-
tent. This subject has been dealt with at length
in Sec. II. The momentum-translation approach
makes use of a unitary transformation zvithin a
Coulomb gauge, as shown unambiguously by the.
inference of the M'TA from perturbation theory
(Sec. IIA), by the path-integral development
(Sec. II 8), and by the relationship of the MTA to
the independent methods of Babiker"'" and of
Campos and Kruger" (Sec. IID). The Coulomb-
gauge character of the MTA is clearly in evidence
in the transition matrix elements, which involve
explicitly the C oulomb-gauge interaction Hamil-
tonian.

Another significant challenge to the momentum-
translation method comes from Decoster' and

- others, who treat the single-field problem as if
the leading (MTA) term in the momentum-transla-
tion expansion is no different in kind from the
other terms which follow. Cohen-Tannoudji et al.4

have done something similar. In fact (see Sec.
VI), only the MTA term has physical significance
as an approximation to the full result. Supple-
mentary terms may be individually significant,
but they tend to mutually cancel, so that the lead
term is a good approximation to the complete
series sum when Eqs. (22) and (23) are satisfied,
and when no intermediate near resonances can
occur. Adding supplementary terms to the MTA
produces a hybrid of momentum translation and
perturbation theory which has no physical or nu-
merical meaning.

In his discussion of the two-fields problem within
the MTA, Decoster' has confined his attention to
the asymptotic-field case, where the asymptotic
reference states contain the full effects of one of
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the fields, but not the other. Under these circum-
stances, the MTA gives nontrivial results only
when there is a change in charge state in the in-
teraction. Decoster takes the point of view that
the asymptotic-field case is the only type of two-
fields problem possible, whereas it is, in fact,
quite unusual. In the great majority of two-fields
problems, the asymptotic reference states are
free of interaction. This is discussed in Sec. IVC.

'The simple M'TA is known to fail badly when in-
termediate near resonances can occur in a transi-
tion. If a momentum-translation approach is to
be used, then supplementary terms must be in-
cluded. Useful results can be obtained this way,
but then most of the simplicity, directness, and
analytical utility of the MTA is lost.

The fact that the complete momentum-translation
series can be shown explicitly to be a rearrangment
of the complete perturbation series, and vice versa,
has led to misunderstandings that have no rele-
vance for the validity or utility of the MTA (see
Sec. V).

Cohen-Tannoudji et al.' compare MTA results
with known exact solutions for transitions in a har-
monic oscillator. "'" 1hey fault the MTA for pre-
dicting a multiphoton transition between adjacent
states when, in fact, the exact solution has none.
This' inconsistency arises because of some proper-
ties peculiar to the harmonic oscillator. The har-
monic oscillator appears to be the only problem
in which multiphoton transitions between adjacent
levels are not possible, nor are single-photon tran-
sitions between nonadjacent levels. The peculiar
feature with respect to the lack of multiphoton
transitions between adjacent levels shows up in
the momentum-translation theory in the form of
zero denominators in the supplementary terms.
This means that the finite and nonvanishing result
of the MTA term is meaningless for this problem,
but for this problem only.

Cohen-'Tannoudji et al. have also criticized the
MTA for failure to predict level shifts. The MTA
is unlike perturbation theory in that transitions of
all orders (from a perturbation-theory point of
view) are calculated within the MTA in a fashion
resembling first-order perturbation theory. Nor-
mally, one does not go beyond the leading term in
momentum translation. It is for this reason that
the level shift does not appear in the simple MTA.
However, as shown in Sec. III, a level-shift cal-

\

culation can be carried out in the context of mo--
mentum-translation solutions, but the calculation
is formally identical to perturbation theory. Al-.
though the use of momentum translation confers
no special advantage for calculating level shifts,
the MTA does give a replica spectrum directly.

B. Strengths and limitations of the MTA

The MTA gives extremely simple and general
analytical approximations for wave functions,
transition amplitudes, and probabilities for multi-
photon transitions. Above all, the simplicity is
maintained for high-order transitions, which are
as easy to calculate as low order, and for which
accuracy is as good as for low order. Conditions
for validity are eaa, &u/E « l, tea, « l, and the ab-
sence of intermediate near resonances.

The above comments hold true in general for
two-fields problems, with the added remark that
increasing values of eaa, can be treated as neo/E
declines.

A brief list of numerical experience to date with
the MTA follows.

(a) Bound-bound transitions in hydrogen are
given to within a factor of about 2 when no in-
termediate near resonances occur. See Table I.

(b) Two-photon detachment of halogenic negative
ions is given accurately. See Table II.

(c) Two-photon spontaneous decay of the met-
astable 2S state in hydrogen is given to within a
factor of about 2, and the emitted photon spectrum
is given accurately. "

(d) The qualitative behavior of polarization ef-
fects in photoionization was deduced easily and
correctly with the M'TA. " The simple analytic
MTA near-threshold results for polarization ratios
agree numerically with the perturbation calcula-
tions by I ambropoulos" for four- and five-photon
processes at the same near-threshold condition.

(e) MTA calculations by Jones" for polarization
ratios in photoionization of hydrogen agree with
perturbation calculations by Gontier and 'Trahin"
for field frequencies which lie between the reso-
nance-caused peaks in the dispersion curves.

The disadvantages of the MTA are that it can be
very much in error when intermediate near reso-
nances can occur, it does not lend itself to syste-
matic correction, and it is no different from per-
turbation theory for calculation of level shifts.
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