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Saddle-point technique for autoionizing states of the lithium atom. I. 'I resonances
in the elastic scattering region
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A. total of eleven autoionizing 'P resonances has been observed by Ederer et al. in the lithium absorption spectrum
below the 2 'S Li+ threshold. In this work, all eleven states have been calculated using a saddle-point technique. The
results of this calculation agree with those of experiment. For the highest-eight resonances, the present results are
higher by an average of 0.010 eV. The errors of the lowest-three resonances are slightly larger. A perturber which is
presented in the observed spectrum is positively identified. The full effect of this perturber is studied with the
concept of dynamic coupling. The oscillator strength and the various radial expectation values of these states are
also calculated.

I. INTRODUCTION

The absorption spectrum of the autoionizing
states of Li atom was accurately measured ten
years ago. ' However, the understanding and in-
terpretation of these results is far from settled.
The reason for this is twofold. First of all, there
are six possible series which may converge to-
wards the four different series limit, namely, the
2'3$ and 2"P states of Li'. These six series may
or may not couple together strongly. Secondly,
there is a lack of a thorough and accurate theo-
retical calculation carried out for these autoion-
izing states. Many other experimental observa-
tions of the Li'P states have been reported. For
example, by Cantu zp al.' using the flash-pyrolysis
technique, by Pegg et al.' using projectile-electron
spectroscopy, and by Ziem pt al.' using 8' and He'
bombardment. Most experimental results are re-
ported with very small uncertainties. All of these
results are in very good agreement with each
other.

Theoretically, the situation is more obscure.
Although the results of Weiss' appeared to agree
with that of the lowest-five states observed, the
method he used is very approximate in nature,
and not suitable for making accurate predictions.
A better method was developed by Temkin and
collaborators, ' but the application of this method'
has been limited to the lowest few resonance
leaving the main question unanswered. That is,
in the elastic scattering region a perturber is ob-
served in the optical spectrum of Ederer et pl. '
and Cantu et a&. No attempts have been made to
explain the nature of this perturber. Energywise
the theoretical result of Wakid et al.' appears to
be very impressive, but their work differs sub-
stantially with Refs. 1 and 2 on the classification
of resonance. For example, the [(1s2s)'S, 4p] and
[(1s2s)'S, 5g] states in these two references are

classified in Ref. 8 as the [(1s2s)'S, Sp] and
[(1s2s)'S, 4p] states, respectively. With the lack
of the rigorous upper-bound property in calculating
the energy of these autoionizing states, the ap-
parent closeness of the energy to that of the ex-
periment can no longer be used as the only cri-
terion in evaluating the theoretical results.
Cooper et al.' also made a close-coupling calcu-
lation for the 'P resonances, but their calcula-
tions are limited to the resonances above the
2'9 Li' threshold. A simple model potential meth-
od is carried out by Barden pt al. ,' only the low-
est resonance is investigated in this reference.

Recently, a saddle-point method was developed. "
The application of this method in the He and He
systems shows that the method is not only effective
in calculating resonances in the elastic scattering
region but also in the inelastic as well as multi-
puly excited energy regions. ' " In this work a
detailed calculation will be carried out for the
eleven resonances observed below the 2'$ thresh-
old to further demonstrate the utility of this
saddle-point technique. In Sec. II, the saddle-
point method will be outlined. Section III gives
the results of this calculation before dynamic
coupling is considered. Section IV gives the re-
sults of oscillator strengths and moments of
these states. Section V discusses the concept of
dynamic coupling and the results obtained from
this coupling. Comparison of the theoretical re-
sults and those of experiments is given in Sec. VI.

II. SADDLE-POINT METHOD

The problem with calculating autoionizing states
is the fact that although they comprise a discrete
spectrum of the Hamiltonian, they lie in the con-
tinuum and coupled to the continuum via Coulomb
interaction. In many cases the coupling to this
continuum is very weak and the autoionizing width
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will in turn be narrow. In these instances, the
continuum contributes very little to the energy of
the resonance as well as to other characteristics
such as its optical transition probability to lower
states. Hence many properties of this system-
can be accurately studied if the discrete energy
and wave function of the resonance can be obtained.

In 1961 Fano" formulated his well-known theory
of configuration interaction which explicitly ex-
amines the effect of the interaction of the discrete
spectrum with the continuum. However, the meth-
od of obtaining such discrete spectrums is not ex-
plicitly spelled out in this reference. One way to
obtain such a spectrum explicitly is the method of
Feshbach projection operators. " In this formu-
lism, the discrete spectrum of the system is as-
sociated with the eigenvalues of the QHQ operator
where Q is the closed-channel projection operator.
However, in this theory the projection operators
Q and P, which is the open-channel projection
operator are not uniquely defined for any system.
They are only uniquely defined in the asymptotic
sense. "

Another fundamental handicap with the projec-
tion-operator approach is the fact that for sys-
tems with three or more electrons the idempotant
property of the P and Q operator can not be satis-
fied due to the Pauli antisymmetry principle and
the electron correlation. To circumvent this
problem, a quasi-projection-operator method was
developed by relaxing the idempotent condition. '
For many systems this gives rise to a number of
predictable spurious singularities. This method
is in close analogy to the QHQ approximation,
utilizing the target states in constructing the Q
operator. However, in real calculations one can
only use a highly approximate expression for these
states' because the computation effort will be
drastically increased if a better target-state wave
function is to be used. A poorer target state al-
ways results in a lower resonant energy.

Recently, a method has been developed by taking
a different approach. " It is well known that the
existence of the closed-channel resonances is due
to the excitation of the core electrons. In some
instances, the resonant configuration is compli-
cated due to degeneracy but the simple feature
that a particular core electron or electrons have
been excited thus leaving a well-defined vacancy
in the inner shell is easily visualized. Therefore
if one can build such a vacancy into the wave func-
tion, the closed-channel resonances should come
out naturally as the discrete spectrum of the
Hamiltonian. Such a wave function can be given by

@=2[1—~y, (r, ))&y,(r,)~]q(r„r, r„r„).(1)

Here we are assuming the P,(r) is the wave func-

tion of the vacancy orbital, of which electron j has
the same symmetry, and is therefore the only
particle that may fill the vacancy.

The problem is now reduced to finding a way to
properly determine the orbital wave function P, .
In Ref. 11, a theorem is proved which shows that
if one parameterizes Qo and P, the discrete reso-
nant spectrum of the Hamiltonian can be obtained
by maximizing the parameters in $0 and minimiz-
ing the parameters in g in the Ritz-Raleigh vari-
ation method:

(4 I H I @)6(H)=6
( )

——0. (2)

In this way, the energy, the wave function of the
resonant state, and the vacancy orbital are ob-
tained in this variation process. En applying this
technique to two electron systems, "it is found
that highly accurate results can be obtained by
assuming the vacancy to be hydrogenic. In fact,
in an attempt to improve the vacancy orbital by
making it more flexible does not change the result
of Ref. 12 appreciably. This seems to suggest
that unlike the structure of the particle orbitals,
the structure of the vacancy is relatively simple.
This further lends incentive to this saddle-point
technique.

In applying this method to the Li'P resonances
of interest, the nonrelativistic Schrodinger equa-
tion is

—Zl —v',. +—I+ + @=E+~
Il, 3) 1

r;)

In LS coupling the trial function 0 is expanded in
terms of a basis set whose angular component is
given by

x(l, l,m, m, ~&„p,)

&&(I „E,p, m~~LM),

and the spin part is given by

X(1 2 3)= (o(1)P(2)+o'(2)P(1))o.'(3)

—(1+ 1)~(1)~(2)P(3).

(4)

Here the Clebsch-Gordan coefficients and spin
functions a, P are defined in the usual manner. "
The + are chosen so that the total wave function
satisfies the Pauli antisymmetry principle. L =1
for 'P states. The radial part is given by

(6)

where u, , P, , y,. are the nonlinear parameters as-
sociated with a particular angular- and spin-com-
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ponent basis element. Combining these, the basis
functions become

Q„=NR„(r)Y (&, Q),

where

R (r)=e ~"i"L,'I&2qr&
nO

=
n (9)

and L„' is the associated Laguerre polynomial. "
q is the parameter to be optimized and N is the
normalization constant for $„0. The total wave
function becomes

where the C's are the linear parameters and P is
the projection operator constructed from Q„,. The
parameters and the energy are then determined
from Eq. (2). For ease of discussion, we will
use the notation [(I„I,)'I», I,] to represent a par-
ticular angular and spin partial wave. Here t, l,
forms a two-electron core of spin multiplicity 0
and angular momentum L». This I » again cou-
ples with the angular momentum of the third elec-
tron to give the 'P state of interest.

x X(1,2, 3) (7)

For the closed-channel resonances of interest,
the vacancy within the system is usually the. 1s
orbital. In some cases the 2g orbital also needs
to be built in. These orbitals are taken to be

III. COMPUTATIONAL ASPECTS AND RESULTS

A. [(2s2p) P, ls] Pand f(2s2p) P, ls] P

The lowest 'P resonance observed by Ederer
eg aL' is 58.910 eV above the ground state of
lithium. In atomic units, this corresponds to an
energy of -5.312 97 a.u." It is classified in Ref. 1
as a [(2s2p)SP, ls]'P resonance. This classifica-
tion is probably appropriate. In a [(s,p)'P, s],
one partial wave, ten linear parameter calculation
we obtain an energy of -5.29334 a.u. Here the
nonlinear parameters are u, =1.02, P, =0.95, and

y, =2.85. In this calculation, a vacancy is built
into the first s electronic coordinate. The q value
in the vacancy orbital is chosen to be the optimized
value 2.46 for this state. However, if this wave
function is further expanded by increasing the
linear parameters and by including the partial
waves such as [(p, d)'P, s] and [(d,f)'P, s], etc. ,
we found the. convergence is slow and the result
is still away from the experimental position. This
is because for this low-lying state, the correlation
effects of all three electrons is strong and the con-
figurations are complex. Realizing this situation,
we recalculate the energy with partial waves which
simulate [(1s2s)'S, 2p], [(1s2p)'P, 2 s], [(1s2p)'P, 2s],
[(ls2s) S, 2p], [(1s2p) P, 3d], and [(1s2p)'P, 3d]
configurations. The final result -5.312 184,a.u.
is obtained with 13 partial waves and 104 linear
parameters. This result is given in Table I. In
this table, the partial waves are given with the
associated nonlinear parameters in the radial
functions. These parameters are optimized in-

TABLE I. Energies and wave functions of the f(2s2p) P, ls]~P and [(2s2p) P, ls]~P states of
the lithium atom (in a.u.). In this table, +, p, y are the nonlinear parameters and N is the
number of linear parameters for each angular partial wave. -4E is the binding energy con-
tributed by including the corresponding angular partial wave. q is the parameter in the va-
cancy orbital.

Angular wave
f(2s2p)3P, 1s]~P, q=2.46
n, P, y N

f(2s, 2p}iP, 1s]~P, q=2.52
~, P, p- N —AE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Total

f(s.s)'S,p]
f(s,p)'P, s]
f(s,p) P, s]
f(s, s) S,p]
[(s,p)'P, d]
[(s,p) iP, dl
[@.d)'P, sl
fQ.f) 'P, s]
f@.p)'~, p]
[@,p)'s, p]
[@,d) P, s]
f(d, d}'S,p]
[(d d)'~, p]
[(p,d) P, d]
[(p,d) SP,d]

3.0, 1.36, 0.75
3.0, 0.86, 0.85
3.0, 1.36, 0.65
3.0, 1.01,0.70
3.0, 1.46, 0.85
3.0, 1.36, 0.95
3.0, 2.66, 0.55
3.0, 3.70, 0.75
3.0, 2.86, 0.75
2.9, 2.26, 0.75
3.0, 3.06, 0.95
4.2, 4.1,0.75
3.4, 2.5, 0.75

10 5.249 518
20 0.050 390
10 0.002 608
10 0.000 229
10 0.005 045
10 0.001 562
10 0.001 265

4 0.000137

4 0.000 803
4 0.000 453
4 0.000 072
4 0.000 072
4 0.000 027

104 5.312185

3.0, 1.26, 0.65
3.0, 1.16, 0.85
3.0, 1.46, 0.60
3.0, 1.11,0.75
3.0, 1.46, 0.85
3.0, 1.26, 0.85
1.0, 1.4, 3.0
0.9, 1.8, 3.0
3.0, 2.66, 0.75
2.9, 1.86, 0.65
3.0, 2.26, 0.85

2.90, 2.0, 1.05
3.05, 1.80, 1.05

20
10
20
10
10
10

. 4

4
4

5.099 817
0.102 955
0.016107
0.006 190
0.020 776
0.008 280
0.000 081
0.000 806
0.000 722
0.000 431
0.000 607

4 0.000 038
4 0.000 056

108 5.256 864
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dividually in the presence of most of the other
partial waves in the total wave function. To a
certain extent the value of the optimized nonlinear
parameter represents the principal quantum num-
ber of the electron orbital. For example, for the
first six pa, rtial waves u = 3.0 clearly suggest that
this electron is in the 1s state. On the other hand,
functions of the seventh and eighth partial waves
seem to improve the core states of the second
partial wave. The ninth and twelfth partial waves
are to improve the states of the first partial wave,
etc. In calculating the energy of the autoionizing
three-electron system, there are many ways the
angular momentum of the three electrons may
couple to give the desired symmetry. In actual
calculations, we always find that the most effec-
tive terms are those which improve a relevant
core state. In Table I, N is the linear parameter
used in each partial wave and -&E is the contri-
bution to the binding energy obtained by including
the corresponding partial wave. Here one must
realize that this energy contribution is sensitively
dependent on the order in which a partial wave is
included in the wave function, especially when the
partial waves are not orthogonal. Nevertheless,
it does give a reliable measure as to the impor-
tance of the partial wave to the total wave function.
In this calculation, the 1s vacancy is built into the
first three partial waves. The 1s vacancy in the
fourth partial wave is taken care of by the Pauli
exclusion principle.

For the second lowest resonance, the experi-
mental energy appears at 60.396 eV or -5.258 359
a.u. This state is classified as a [(2s2p)'P, ls]'P
resonance in Ref. 1. In our calculation, if a 10-
term [(s,p)'P, s] wave function is used, - the lowest
energy is -5.2146 a.u. If another 10-term
[(p, d)'P, sj partial wave is included in the wave
function to improve the core state, the energy be-
comes -5.2454 a.u. The q value in the vacancy is
optimized to be 2.52. Rigorously speaking, since
this is the second ~P' autoionizing state, it should
correspond to the second lowest root. To account
for this, a 10-term [(s,p)'P, s] function is also in-
cluded. In this case, the second lowest root of
the secular equation becomes -5.246 95 a.u. This
seems to suggest that the classification of Ref. 1
is probably appropriate. However, the energy ob-
tained by expanding the wave function along this
line of approach does not converge to the experi-
mental value quickly. Vhth this in mind a wave
function of the character of the lowest state with
13 partial waves and 108 linear parameter was
used to obtain an energy of -5.256 864 a.u. for
this state. These results are given in Table I.
Compared with the experimental result, there is
a, difference of 0.001495 a.u. or 0.0407 eV. This

is still very disappointing in view of the size of
the wave function and the partial waves used. As
it turns out, this is the worst result among the 11
resonances investigated. Notice that in this table,
the seventh and eigth partial waves are used pri-
marily to represent a better [(2s2p)'P, 1s]'P state.
The contribution of the seventh partial wave is
small because of the presence of fifth and sixth
partial waves.

B. ((1s2s) S,np) P, n=3 to 6

In calculating the higher roots of the secular
equation, the situation becomes much simpler in
that it becomes apparent which angular partial
wave contributes more to the energy. Many par-
tial waves which make a substantial contribution
in the two lower states are no longer important.
This allows us to use more terms in the main
partial waves and to be more selective in using
these terms. For example, in calculating the con-
tribution from the first partia1 wave for the m= 3
state, we first compute the energy E, from a 60-
term wave function. The 60 linear parameters
are then determined. After examining the abso-
lute value of the coefficients of the normalized
basis functions, the wave function is reordered
according to the coefficients in descending order.
The contribution of each term to the energy is then
examined. If the term contribution is too small,
it will be dropped. The final resulting energy
after excluding 20 terms is then compared with E
to see whether the 40 selected terms give an en-
ergy sufficiently close to E. All this can be done
with an efficient computer code.

It is fairly easy to decide the classification of
the higher states. For example, for the
[(ls2s)'S, 3p]'P calculation, using a single par-
tial wave [(s, s)'S, p] and nonlinear parameters:
n = 3.095, P= 0.895, and y =0.585, the second
lowest root of the secular equation becomes
-5.175 508 a.u. Since the lowest state of this
configuration is 1s2s2p, the second one must be
1s2s3p or 1s2p3s. Judging from the coupling of
the spin and the nonlinear parameters, one must
conclude that it is a [(1s2s)'S, 3p]'P resonance.
Interestingly, if a seven term [(s,p)'P, d] wave
function is added, the second root becomes
-5.179 105 a.u. , but if a [(s,p)'P, s] partial wave
is included, this root immediately becomes the
third lowest. This is expected because this par-
tial wave together with the first partial waves al-
lows [(2s2P)'P, 1s]'P and [(2s2p)'P, ls]'P to be
formed. The final result -5.183387 a.u. is ob-
tained by using an 8 partial wave, 93 linear-
parameter wave function. This result is given
in Table II. Also included in this table is the
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TABLE II. Energy and wave function of the [(ls2s) S, 3p] P states of lithium atom (in a.u.),
q = 2.48.

Angular wave

To'tal

[(s,s) S,pl
[(s,p) 3P, d]
[(s,p)'P, sl
[(p,p)'s, p]
[(s,p) P, d]
[@,d)3P, s]
[(s,d) D,fl
[(d,d) S,p]

3.095, 0.895, 0.585
2.84, 0.96, 0.71
2.64, 1.18,0.585
3.03, 1.88, 0.41
2.44, 0.96, 1.06
3.14,1.78, 0.585
3.00, 1.5, 1.5
3.53, 3.08, 0.41

40/60
7/10

22/3O
7/10
5/1O
5/8
2/6
5/8

93

5.175 508
0.003 597
0.002 871
0.001 057
0.000 111
0.000 104
0.000 080
0.000 060

5.183387

0.915
0.104(-1)
0.381(—1)
0.179(-3)
0.205 (-3)
0.175(-4)
0.532 (-4)
0.541(-5)

~N=x/y implies that x terms are chosen from a y-term angular wave function.

~
t) J is the contribution of the ith angular partial wave to the normalization in the 93-term-

8-partial-wave normalized wave function. (—x) indicates 10 is to be multiplied. For other
notations see Table I.

contribution of each partial wave to the normal-
ization of the 93-term wave function. This gives
a clear picture of the composition of the complex
wave function. However, one should realize that
some partial waves are not exactly orthogonal to
each other. For example the first and third par-
tial waves have an overlap of 0.0360, the second
and sixth have an overlap of -0.000009, hence
conclusions drawn from this column must be taken
with some caution. Nevertheless, it clearly illus-
trates the essential composition of this resonance
state. The experimental position of this state is
62.419 eV or -5.184 01 a.u. , compared with this,
the present result is too high by 0.000 62 a.u. or
0.017 eV.

From calculating the energies and wave func-
tions of the higher members of the 'P resonances,
a clear convergence pattern emerges. That is,
the importance of the partial waves other than the
[(s, s) S, p] becomes less, both in number, and in
contribution to the energy. For example, in Table
III where [(Is2p)'S, np]'P state with n= 4 to 6 are
tabulated, only six partial waves were needed in
the calculation. Furthermore, the contribution
of the second, third, and fifth partial waves be-
came smaller both for energy and normalization
as ~ increases. The presence of the second and
third partial waves is to provide coupling of the
form [(Is2p)'P, nd] and [(Is2p)'P, ns]. It is inter-
esting to note that the optimized nonlinear param-
eter yin the first partial wave decreases rapidly
as z increases, but the y of second and third par-
tial waves remains stable. Notice that the pres-
ence of the fourth and sixth partial waves is to
provide a better core state for the first partial
wave. Therefore the contribution of these two
partial waves to the energy and normalization of
the wave function are remarkably stable. Notice

also that the fourth partial wave contributes sig-
nificantly to the energy but its contribution to
normalization is very small. The presence of
the fifth partial wave is to provide a better core
for the third partial wave. The results for
[(Is2s)'S, 4P] and [(1s2s)'S, 6p] agree excellently
with experiment. The agreement in [(1s2s)'S, 6p]'P
is somewhat worse. The reason for this discrep-
ancy and a method to improve this situation will
be discussed in Sec. V. It is worthwhile to poirit
out that the two-electron cores in the six partial
waves in this table all couple as triplets. This
will be true also for the states from g= 7 to 10
as well.

C. [(1s2s)3S,np] for n = 7 to 10

For these resonant states, a large number of
nodes are present in the wave function. To ac-
count for these nodes and the correlation effect
we need a variational wave function with a large
number of linear parameters, especially for the
[(s, s)'S, p] partial wave. However, due to limita-
tions on computation time, numerical accuracies,
the occurrence of overflow. and underflow in the
IBM 370 computer we are using, we are limiting
the number of linear parameters to 110 or less.
Because of this, the term selection in the first
partial wave is only used for the a=7 state, while
for the n= 8 to 10 states the first partial wave is
fixed at 68 terms each. The results of this calcu-
lation are given in Table IV. In this table, the
optimized q changes slowly from 2.48 for n= 7 to
q =2.50 for ~ = 10. It should be noted that from
q=2.46 to 2.52 the change in energy because of
variation of q is very small.

In this table, the result of the [(1s2s)'S, 10p]'P
resonance is -5.115954 a.u. , higher than the ex-
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perimental result 64.260 eV or -5.11634 a.u. by
about 0.0106 eV. For this state, it is found that
slightly increasing the size of the first partial
wave does not improve the energy appreciably.
A large increase in the number of terms, however,
is not feasible for reasons discussed before. The
results for ~= 8 and 9 are -5.119294 and
-5.117363 a.u. , respectively, , which agree re-
markably well with the experimental values of
-5.11914and -5.11738 a.u. But the result for
&=7, -5.122244 a.u. , is substantially lower than
the experimental result 64.121 eV or -5.12146
a.u. The reason for this unusual behavior is due
to the presence of a perturber' which has not
been considered. Experimentally, the perturber
is located between the a=6 and 7 resonances,
therefore the results of this section for n=6 or
higher must be taken with caution, especially the
apparent excellent results for n=8 and 9.

D. The perturber

In Ref. 1, Ederer et a$. had analyzed the data
in the elastic region using the effective quantum
numbers, and located the [(1s2s)'S, np] series.
However, an extra line appeared at 64.046 eV
which does not seem to fit in. The identity of this
perturber has never been seriously studied in the
literature. In this work, a detailed calculation is
carried out for this state. The result of a 102-
term, 11-partial-wave calculation gives -5.124253
a.u. This is remarkably close to the experimental
position 64.046 eV (-5.12421 a.u.). This result is
given in Table V.

Since this perturber is not a member of the
[(1s2s)'S, np] series but is higher than many of
the [(1s2s)'S, np] states, one must use a wave
function which is essentially orthogonal to the
[(ls2s)'S, np] states. The first partial wave in
Table V is exactly orthogonal to [(s, s)'S, p], but
the second and third partial waves are not. There-
fore to avoid a variational break down in which
case [(1s,3p)'P, 2s] or [(1s,3p)'P, 2s] may occur,
we must build in a 2g vacancy in addition to the
lz vacancy in the third electron's coordinates.
When this is carried out the calculation becomes
straightforward. The lowest root of this secular
equation should correspond to a poor [(1s2s)'S,2P].
The second lowest root gives .an energy at
-5.124253 a.u. as shown in this table. In this ta-
ble, one notices that a two-partial-wave calcula-
tion gives an energy of -5.11542 a.u. , substan-
tially below the -5.11073 a.u. Li'(1s2s)'S thresh-
old. '0 This implies that the coupling of the
[(ls2s)'S, 3p] and [(Is2p)'P, 3s] configurations is
sufficient to produce a resonance lower than the
2 '9 threshold.

From the above discussions, the most natural
classification for this perturber should be the
[(ls2s)'S, 3p]'P state. However, a closer look at
the last column of Table V suggests that there is
an appreciable amount of mixing due to
[(Is2p)'P, 3s] and [(1s,2p)'P, 3s]. In fact, the
first three partial waves are not orthogonal to
each other. If we combine the first and second,
second and third, and first and third, the contri-
butions to the normalization would be 0.800,
0.283, and 0.914, respectively. Hence it should
be a [(1s2s)'S, 3p] state with substantial mixings.

TABLE V. Energy and wave function of the perturber [(1s2s) S,3p] p state of the lithium
atom (in a.u.), q=2.53. For notations see Tables I and II.

Angular waves N

10

[(s,s)'S,p]

[(s,p) 'P, sl

[(s,p) P, s)

[(s,p) P, d)

[fp p) S pj

[(s,p) P,d]

[@,d)'P, sl

f(d, d) S,p]

[@,d) P, s)

[@,d)'P, d~

Total

2.96, 0.82, 0.67

3.00, 0.97, 0.65

2.95, 1.17,0.55

3.02, 1.00, 0.65

3.60, 3.00,, 0.47

3.02, 1.0'0, 0.80

2.60, 2.90, 0.35

4.00, 3.90, 0.47

2.70, 2.60, 0.60

2.22, 2.60, 0.65

3.00, 1.20, 1.15

27/33

6/16

14/16

10/15

15/21

8/15

9/9

2/5

3/9

5/8

3/6

102

5.108 623

0.006 801

. 0.003 513

0.002 372

0.001 673

0.000 49g

0.000 389

0.000 125

0.000 185

0.000 051

0.000 022

5.124 253

0.743

0.192

O.g08(-1)

0.251 (-1)
0.225 (-3)

0.383(-2)

0.623 (-4)

0.g27 (-5)

0.303(-4)

0.894(—5)

0.211(—4)
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IV. OSCILLATOR STRENGTH AND RADIAL
EXPECTATION INTEGRALS

8
137.036 (13)

In the problem of interest, the initial state is the
ground state of lithium, and the final state is the
'P resonances. If we sum over 8, and M for the
degenerate final states, there is no loss of gener-
ality in assuming a particular direction for the
polarization vector e. Ghoosing e to be in the z
direction, we get

2E,; I & (I= 0) I I & (' ~ (14)

In this equation

f=2E,;I&j(M=0)l&li)l' (15)

is often called the oscillator strength of the j
state. The autoionizing states are not pure dis-
crete states, but it can be shown that if we inte-

In experimental observations, the intensity of
an optical absorption line is directly proportional
to the absorption cross section. If the initial
state i and final state j are both discrete, this
absorption cross section is"

2

o', 0, = 137 036E (& j I exp(ik r)p 8 [i& ['
p (11)

J$

where atomic units are used. E,, is the energy
difference for the initial and final state, g is the
polarization of the incoming radiation, and

(12)

If we assume k r to be small, this expression
becomes

grate over the neighboring continuum of a narrow
Feshbach resonance, Eq. (15) will still be valid. "

It should be pointed out, however, that in the
resonances of interest, k' r is not necessarily
very small, especially for high-n states. But
this is somewhat compensated by the small radius
of the ground state. Hence, Eq. (14) should give
a reasonable approximation to the absorption
cross section. With this in mind, the oscillator
strengths of the 'P resonances are calculated to-
gether with several radial expectation integrals.
We define

n+ n+ n

( „) . r, +r, +r, .

)j ' 3
(16)

and calculate the above for ii=-2, -1,1,2. (i &

gives the average radius of the system and &
r'&.

is directly related to the diamagnetic suspecta-
bility and scattering cross section. of the atomic
system.

In calculating the oscillator strength, a 96-term
ground-state wave function is used. The basis
functions are the same as in Eq. (7) and the energy
is -7.476909 a.u. This is inferior to the
-7.478025 a.u."obtained by Larsson and com- .

parable to the 18-configuration multiconfiguration-
Hartree-Fock (MCHF) result -7.476 90 a.u. of
Fisher. " The radial integrals of this ground state
are also calculated. These results are given in
Tabl, e VI.

It is interesting to note in this table that the
perturber does have similar geometrical param-
eters as [(1s2s)'S, 3p] state. This gives further
supportive evidence to the [(ls2s)'S, 3p] classifi-
cation. These parameter are obtained without
considering the dynamic-coupling effect. There-
fore it should be subject to some small corrections.

TABLE VI. Oscillator strength and radial expectation values of r for 2P resonances of
lithium (in a.u.).

Energy
states

[(2s2p)'»18 J

[(2~2p)'P, 1J
[(1s2s) 8, 3pl
[(1s2s) S 4pl
[(1s2s) S, 5pJ
f(lg2g)3$, 6pl
[(1828)'~ 3pl
(perturber)

[(1~») ~, 7pl
[(182~)'~ 8p J

[(1s2s)'S, 9p l

[(1s2s)38, 10p]
[(1s1s)'S,2s J S
Ground

Oscillator
strength f
0.2797
0.7527 (—2)
0.4656(-1)
0.1698(-1)
0.7907(-2)
0.4155(-2)
0.2720 (-3)

0.2337(-2)
0.1204(-2)
0.7203 (-3)
0.3863(-3)

6.3953
6.3028
6.3769
6.3920
6.3957
6.3977
6.2533

6.3983
6.3998
6.4012
6.4014

10.083

1.2993
1.2890
1.2333
1.2120
1.2028
1.1979
1.2214

1.1952
1.1929
1.1915
1.1903
1.9058

2.1876
2.2662
4,0931
7.0703

10.990
15.908
3.8097

21.539
29.305
37.787
47.640
1.6632

7.5152
8.3414

35.868
129.25
342.74
757.36
28.599

1437.8
2700.1
4571.0
7237.0

6.1167
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E»

E21 E22
=0,

where

V. DYNAMIC COUPLING

If one compares the results of this calculation
for the states [(ls2s)'S, 6p] and [(1s2s)'S, 7p] with
the experimental result, the 6p states appears to
be too high and the 7p state appears to be too low.
This leads to the suspicion that it may have some-
thing to do with the appearance of a perturber in
between. The study of the perturbation phenomena
of a Rydberg series started as early as 1932.'~
More recently, Weiss" investigated the series per-
turbation of the AlI and A1G spectra by using a
superposition of configuration technique. Ideally,
if the basis functions for both the perturber and
the [(ls2s)'S, np] could all be included iri the con-
struction of a huge secular equation, then all the
eigenvalues of the Hamiltonian could be obtained.
But in reality limitations such as the finite size
of the computer code, computing machine time
and the lost of numerical accuracy exist.

The basis function for the [(ls2s)'S, np] and the
[(1s2s)'S, np] are essentially orthogonal, we can
calculate these tmo series separately. However,
each single result may not be an exact solution to
the Schrodinger equation and there may be coupling
between the states through the Hamiltonian. Since
these states are good approximation to the final
solution, the coupling calculation carries a slightly
different meaning than the usual configuration in-
teraction. For this reason, it is called dynamic
coupling in this work.

I et us assume we have two approximate ortho-
normal solution g, and p„belonging to two differ-
ent series. One may construct a two-by-two
secular equation

i.e., the higher root mill be pushed up and the
lower root will be pushed down due to the coupling
of the two states. If g, and g, are good approxi-
mate solutions to H, then E» should be small. In
this case, if Egg E» is large this shift mill be in-
significant. Only in the case where E» -E» is
small will this shift be appreciable.

Another point which is worth consideration is
that in this work the energies of the higher states
are obtained by optimizing the corresponding high-
er roots of the secular equation. When the opti-
mized nonlinear parameters and configurations
are different from those of the lower states, the
orthogonality between the states will only hold ap-
proximately. This method is rigorously justified,
however, based on the theorem proved by Mac-
Donald. " In the case of the 7p resonance, me are
optimizing the seventh root of the secular equa-
tion. This seems appropriate from examining the
behavior of this eigenvalue in regards to the par-
tial wave added. On the other hand, the perturber
is also a 'P resonance of 'P' symmetry. Even if
the wave function of the 7p resonance appears to be
orthogonal to the perturber, the solution to this
seventh root is no longer a rigorous upper bound
to the true resonance. In reality this orthogonality
is only approximately maintained because the third
partial wave of Table V obviously overlaps with the
second partial wave of Table IV. This means that
the solutions to the Vp, 8p, Qp, and 10p resonances
needs to be carefully reexamined. It can also be
shown that in a coupling calculation, if the lowest
few states lie very far from the perturber, they
should not have much effect to the coupling result.
To illustrate this point, let us consider a set of
orthonormal states g„... , g„which are the eigen-
functions of the same secular equation with eigen-
values Egg E» etc. Consider a perturber

Define

The solution for X is given by

Z„+Z„+[(Z„-Z„}'+4 IZ„ I'7'~'11»
2

(18)

(19)

(g, i &0)=S... i= I, . .. , n

(g, (H)@0)=H,O, i=1, . .. , n

(y, [H [y, ) =H

Then the coupled secular equation becomes

(21a}

(21b)

(21c)

Assuming E» &E», then the shift in energy due
to this coupling is

Hn &11+[(Hll &-22}'+ ~&12~-']'"22 11
2

(20a)

E~~ —X 0 0 ~ 0 0

E„-X 0

0 '
0 ~ 0 0

H, o- XSzo

H2o- xS2o

Z„Z„[(Z„Z„-}2+4-IZ„!2]-'~2 (0,
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s Enn H„, —XS„,

(20b)
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This equation gives

D= (z„-~)(z„—x) ~ ~ ~ (z„„-~)(a„-x)
n n

-g ] (If„.—~s„.[',(z„-~) /=o.

Let us ass ume that 8ll 822 E l and Hpp are
very close together and very far from E„„. If we
are solving for X in the region near Hpp then one
term in the sum in Eq. (23) is much smaller than
all other terms. Dropping this term, we get

D= (z„-~)(z„—~) (z„„—~)(If„-~)
n-l

Q( ~H. ,. —.S., ~~= (E -x))„=0.
i=1 jWj

Clearly (Z„„-X}can be factored out from this
equation. This implies P„should have little effect
on the solution of X in the neighborhood of Hpp.

In the present work, the lowest and second
lowest, 3p and 4p resonances lie 0.188, 0.133,
0.059, and 0.025 a.u. away from the perturber,
respectively. On the other hand, the highest
state, 10p is only 0.008 a.u. higher than the per-
turber.

Based on these considerations, I carried out a
coupling calculation for the 'P resonant states.
These results are given in Table VII. In this ta-
ble, the results for the lower-five states are ob-
tained with all eleven states included in the cou-
pling, whereas the higher-six states are obtained
by using a seven- by-seven coupling. In this
seven- by-seven coupling, the lowest solution is
-5.134 63 a.u. which agree closely with the
-5.134 55 a.u. result in this table obtained by
coupling all eleven states.

VI. RESULTS AND DISCUSSION

In Table VII, the observed positions of 'P Li in
Ref. 1 are also given along with the results from
dynamic coupling. As expected the lowest-three
states are not effected by this coupling. For the
lowest resonance, the present work is higher than
the experimental value by 0.00078 a.u. or 0.021
eV. The discrepency may conceivably come from
two sources: the incompleteness of the basis func-
tions used and the effect of coupling with the open
channel. For the second resonance, the discrep-
ency is 0.041 eV, much larger than the rest of the
resonances investigated. Since no substantial im-
provement can be obtained by including more angu-
lar partial waves or increasing linear parameters,
one must conclude that the Feshbach shift due to
coupling with the open channel for this state is
much larger than that of the other resonances.
For higher resonances, the width and the Fesh-
bach shifts are usually much smaller. The reso-
nance positions for these higher states obtained
from the saddle-point technique should give an ex-
cellent approximation to the true resonances.
This can be seen from the close agreement of our
calculated results with those of experiment. Al-
though after the coupling this agreement appears
to be worse for the perturber and for the
[(ls2s}'S,np] states with n= 8 to 10, I believe the
coupled results are more sound theoretically, and
the overall pattern of agreement is more consis-
tent.

Theoretically, the 'P' resonances of Li have
been investigated by Barden et al.' using a model
potential method, by Bhatia and Temkin using a

TABLE VII. Coupling of perturber [(ls2s) S, 3p] P with the [(ls2s)3S,np] P states of lithium
atoms, (in a.u.).

States

[(2s2p) 3P, ls]
[(2s2p) P, ls]
[(ls2s) 3$, 3p]
[(ls2s) $, 4p]
[(ls2s) 3S, 5p]
[(ls2s) 3$, 6p]
[(ls2s) S, 3p]
(perturber)

[(ls2s) $, 7pj
[(1 2 )'$, 8p]
[(ls2s) S, 9p]
[(ls2s)3S, 10p]

g (Expt. )
~

—5.312 97
-5.258 36
-5.184 01
—5.149 57
-5.13498
-5.127 70
-5.124 21

-5.12146
-5.11914
—5.11738
-5.11634

(before
coupling)

—5.312 185
-5.256 864
-5.183 387
—5.149100
-5.134334
-5.126 683
-5.124 253

-5.122 244
—5.119294
-5.117363
-5.115954

Eo E
(in eV)

0.021
0.041
0.017
0.013
0.018
0.028

-0.001

-0.021
—0.004

0.0005
0.011

Ec
(after

coupling)

-5.312185
-5.256 870
-5.183390
-5.149193
-5,134 549
-5.127 359
—5.123 687

-5.121219
—5.118839
-5.117065
-5.115843

(in eV)

0.021
0.041
0.017
0.010
0.012
0.009
0.014

0.007
0.008
0.009
0.014

~ The experimental results are converted from Ref. 1 using E~ „„d———7.478 025 a.u. and 1
a.u. = 27.2095 eV.
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TABLE VIII. & resonances of the lithium-atom in the elastic scattering region (in eV).

Author

Wakid Harden
Present~ et al . Bhatia et al. Weiss

work (Ref. 8) (Ref. 7) (Ref. 10) (Ref. 5)

Ederer'
et al.

(Ref. 1)

Cantu
et al.

{Bef.2)

Experiment
Pegg Ziem

et al. et al.
{Ref. 3) (Ref. 4)

[(2s2p) &, »)
[(»2p)'&, »1
[{1s2s)S, 3p)
[{1s2s)'S 4pl
[(1s2s) S, 5p)
[(1s2s) S, 6pf
[{1s2s)'S, 3p]
f(1s»)'S, 7p J

[(ls2s) S, 8p]
f{1s2s)'S.9p j
[{1s2s)S, 10p]

58.931
60.437
62.436
63.366
63.765
63.960
64.060
64.128
64.192
64.241
64.274

58.914
60.438
62.424
63 377"
63.758"

58.976
60.531
62.483

58.96 58.965
60.599
62.458
63.364
63.772

58.910(6)
60.396(3)
52.419(3)
63.356(8)
63.753(3)
63.951(3)
64.046 (8)
64.121(3)
64.184(3)
64.232 (6)
64.260 (6)

58.909(3)
60.392 (3)
62.417(3)
63.358(3)
63.755(3)
63.956(3)
64.052 (3)
64.118(3)
64.181(3)
64.228 (3)
64.258(3)

58.91(3) 58.912(10)
60.40 (3) 60.397(10)
62.42 {3) 62.425 (10)

63.35(3)

The ground-state energy of Li is taken as -7.478025 a.u. (see Bef. 19). Other constants used in this table are 1 a.u.
= 27.2095 eV, 1 bohr= 0.5291770 A, fine-structure constant = 1/137.036, 1 Hy„= 13.6058 eV.

"The classification of the fourth and fifth states of this reference is different from the present work. They imply a
different wave function is obtained.

'The number in the parentheses gives the uncertainty in the last digits quoted. We have only included the errors due
to repeatability, the absolute error may be larger by 0.005 eV (see Bef. 1).

quasi-projection-operator method' (QPO), by
Wakid ef af.' using a generalized QPO, and by
Weiss. ' A comparison of the theoretical and ex-
perimental results in the literature is given in
Table VID. In comparing the theoretical results,
those of Wakid et al. appear to be particularly im-
pressive. However, this is possibly the result of
cancellation of errors. " For example, for the
lowest resonance, if we use the same 104-term
basis function as-in the present work, but carry
out a QPO calculation with the optimized target
state. We get -5.31457 a.u. This is losoez than
the experimental result of 58.910 eV by 0.044 eV.
If we adopt the method in Ref. 8, this energy will
be lower somewhat more. (In case of He, the
two QPO methods give results differing by 0.03
and 0.16 eV for two different resonances. See
Ref. 8). Therefore, the reason that their result
does not fall below that of the experiment must
be because the basis functions are not complete.
In the present work, the [(1s2s)'S, Sp] resonance
is located at 64.060 eV, higher than their result
by 0.687 eV. The results of Weiss are also im-
pressive. However, no detail of this work is given
in the literature for meaningful comparison.

To my knowledge, there is no published theo-

retical results for states higher than the
[(1s2s)'S, 5p]'P in the elastic scattering region.
The results of these states in the present work
are higher than those of Ref. 1 by an average of
0.010 eV. This discrepancy can be probably im-
proved slightly by includirig more correlation into
the wave function. It is also interesting to note
that the average absolute error" for the six
states are 0.010 eV in the experiment of Ref. 1.
Overall speaking, the result of the present work
must be considered as quite good.

In conclusion, we have calculated the 'P' auto-
ionizing states of the lithium atom in the elastic
scattering region using a saddle-paint technique.
Our result clearly suggests that this method is
capable of generating highly accurate results, es-
pecially for higher members of the Feshbach reso-
nances. Since this method is applicable in inelas-
tic region as well as multiply excited region, the
next step will be to investigate the resonances in
the inelastic scattering region.
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