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Total cross sections for the reactions ‘He*(ls) + H(ls)—*He*(1s) + H(2p), *He*(ls) +
H(1s)—*He(1s2p *P) + H* are calculated in an impact-parameter formalism, for collision energies 0.5-30 keV,
using a molecular approach. The molecular energies are calculated at large internuclear distances by a
configuration-interaction method, and at short distances by a block-diagonalization method. The radial couplings
between the molecular wave functions are evaluated exactly, and turn out to depend strongly on the choice of origin
of electronic coordinates; as a consequence, the cross sections also depend on this choice. The effect of the
anomalous rotational couplings which decrease like R ~! is shown to be negligible, and a method to integrate them is
proposed in the Appendix. Choosing the center of mass as origin of electronic coordinates, we obtain good
agreement with experimental data, but we find no a priori reason to favor this choice. As an important conclusion,
the main effect of the so-called momentum-transfer problem, which is the origin dependence of the cross sections, is
due to the form of the molecular wave functions at short internuclear distances.

1. INTRODUCTION

In the application of the molecular model to
atomic collisions, two-electron systems provide
an intermediate situation between (one-electron)
systems for which the molecular states can be
exactly calculated, and which have been exten-
sively studied, and (many-electron) systems whose
molecular wave functions are known with much
less accuracy. In the present work, we have
studied the simplest heteronuclear two-electron
system HeH*; more specifically, we have treated
the reactions

“He*(1s) + H(1s) - *He*(1s) + H(2p), (1)
“He*(1s) + H(1s) - “He(1s2p **3pP) + H*, (2)

Our main reasons for choosing this particular
collision are as follows:

(i) There is a great amount of recent experimen-
tal data'™ on the total cross sections of reactions
(1) and (2), for collision energies ranging from
0.5 to 30 keV; previous theoretical work® has only
studied the range 0.5-5 keV. Exploration of the
higher-energy range will contribute to clarify
the domain of validity of the molecular model.

(ii) The basic mechanism which is responsible
for processes (1) and (2) has been proposed by
Fayeton.ef al.,® and is basically correct. How-
ever, these authors employed molecular energies
calculated from a very crude model, which were
further empirically corrected, and couplings ex-
tracted from a model potential calculation.® The
HeH* system is sufficiently simple so that accur-
ate wave functions can be constructed, and their
dynamical couplings can be calculated exactly”®
without excessive difficulty.

(iii) A very important feature of the molecular
states involved in processes (1) and (2) is the fact
that some of their dynamical couplings depend
strongly on the choice of origin of electronic coor-
dinates. At high nuclear velocities, the branching
ratio between the cross sections of (1) and (2)
has, therefore, a considerable origin dependence.
We show that, contrary to what is often assumed
in the study of momentum-transfer problems, '
this dependence is due to the behavior of the coup-
lings at short internuclear distances. We also
study in the Appendix the numerical integration .
of the slowly (R™) decreasing rotational couplings.

For the range of nuclear velocities considered
in this work, we have used a semiclassical ap-
proach with rectilinear trajectories along the z
direction. The program PAMPA of Gaussorgues
et al.® was slightly modified to integrate the ano-
malous rotational couplings, as explained in the
Appendix. This work was performed simultaneous-
ly with similar calculations of Harel and Salin, °
who used a different molecular expansion. Atomic
units will be used unless otherwise stated.

II. ENERGIES AND COUPLINGS

We present in Fig. 1 the correlation diagram
corresponding to the molecular states involved
in processes (1) and (2). The basic mechanism
which is responsible for these processes is very
simple. The system is initially represented by
a statistical mixture of singlet |2'%) and triplet
[132) molecular states. These states evolve in-
dependently; their energies cross diabatically
those of the |3'Z) and |2%5) states, respectively,
at short distances, and they are coupled rotation-
ally to the states |1,2'I) and |1, 2°M) (primary
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FIG. 1. Qualitative correlation diagrams for the sing-
let (a) and triplet (b) subsystems, for reactions (1) and
(2) of text. The molecular orbital labels indicate the
approximate symmetry of the wave functions for small
internuclear distances.

mechansim). The radial couplings {1 *211|d/dR|
21311y provide the secondary mechanism that
further governs the branching ratio between reac-~
tions (1) and (2).

The atomic basis sets used in the calculation
of the molecular energies are presented in Table
I, and the corresponding molecular potentials in
Table II. For distances R <0.6 a.u., the diabatic
states corresponding to the energies that cross
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in the correlation diagrams of Fig. 1 were con-
structed by block diagonalization,'! using one-
center Gaussian orbital expansions for the wave
functions. More explicitly, consideration of the
Berat-Lichten diagram indicates that the diabatic
states have the molecular orbital configuration,
and the approximate gerade or ungerade charac-
ter, shown in Fig. 1; all configurations involving
only 1s Gaussian-type orbitals (GTO’s) {0, 0,} were
constructed from the basis set, and the Hamilton~
ian matrix was set up in this representation and
diagonalized, yielding the wave functions that
correlate in the Configuration Interaction (CI)
region to the |1,3's) and |23%) states. A similar
calculation involving all configurations made up

of 1s and 2p, (GTO’s) {0, 0,} yielded the diabatic
states that correlate to the {2'3) and |13%) states.
The interaction between these functions at the
crossing point was seen to be negligible.

When a full {0, 0,,0,0,} CItreatment is carried
out, the asymmetry due to the different nuclear
charges causes the crossings to be substituted
by avoided crossings, and strong radial couplings
appear between the corresponding adiabatic states.
In the range of short internuclear distances, the
diabatic II states were constructed using the same
technique. For R>0.6 a.u., we used a full CI
approach, with approximately optimized basis
sets, centered on each nucleus (Table I).

The most accurate calculations on HeH* found
in the literature are those of Green et al.'>'?;
they differ from our results at most by 0.017 a.u.
for the II states (for |21I) at R=1 a.u.) and by
0.038 a.u. for the T states (|2'z) at R =1 a.u.).

We did not employ the accurate data of Green

et al **»*% pecause it is insufficient to tackle the
collision problem; for instance, we need rotation-
al couplings and the dependence with the origin

of all dynamical couplings. Moreover, the accur-

TABLE I. Exponents of the Gaussian orbitals used in the molecular calculation.

Two-center expansions

One-center expansion? 1I states® > states® = states ¢
T and (I states He H He H He H
Qys,20,,26, Qs ap, Qop, Qs %o, Qg Qs Qi

0.01 0.02 0.01 0.005 0.01 0.08 - 0.05 0.1 0.005

0.04 0.08 0.03 0.015 0.5 0.5 0.2 0.3 0.18

0.16 0.32 0.1 0.045 2.5 3.0 0.75 1.1 0.6

0.64 1.2 0.3 0.13 12.0 2.8 3.6 0.2

2.56 4.8 1.0 0.4 10.5 12.0 0.7

10.24 19.0 1.2 2.5

40.96 76.0 8.6

2Qrigin: center of charges. R<0.6 a.u.
®R>0.6 a.u.

°0.6<R<3 a.u.

dR>=3 am.
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TABLE II. Molecular energies obtained using the basis
sets of Table I, for singlet (a) and triplet (b) states. We
use the method of block-diagonalization (see text) for
R<0.6 a.u., and full configuration interaction for R>0.6
aau.

(a)

R 2iz 1'n ~ 2l
0.0 —4.9686 —4.9686 —4.,6979
0.1 —4.8890 —4.8878 —4.4900
0.2 —4.7031 —4.6983 —4.3300
0.3 —4.4865 —4.4759 —4.2200
0.35 —4.3786 —4.3642 -4.1100
0.4 —4.2736 —4.2550 —4.0200
0.5 —4.0900 —4.0793 —3.8166
0.6 -3.9413 —3.8961 -3.6343
0.7 -3.8629 —3.7500 —3.5000
0.8 —3.7505 —3.6200 —3.4000
0.9 —3.6544 —3.5000 —3.3000
1.0 —3.5644 —3.4096 —3.1683
2.0 —-3.2311 —2.9150 -2.7207
3.0 —3.0949 —2.7000 —2.6000
4.0 —2.9739 —-2.5893 —2.4759
6.0 -2.9178 —2.4600 —2.3900
8.0 —2.7348 —2.3740 —2.3397
10.0 —2.6647 -2.3238 —2.3053
12.0 —-2.6514 —2.2894 -2.2796
14.0 —2.6276. —2.2649 —2.2595
16.0 —2.6200 —2.2468 —2.2433
18.0 -2.6111 —2.2330 —2.2302
20.0 —-2.6000 -2.2221 -2.2195
24.0 —2.5840 —2.2025 —2.2032

o —2.5720 —2.1940 -2.1915

()

R 132 1’0 281
0.0 —5.0052 —5.0052 —4.7200
0.1 —4.9275 —4.9255 —4.6284
0.2 —4.7470 —4.7392 —4.4412
0.3 —4.5383 —4.5205 —4.2218
0.4 —4.3700 —4.3045 —4.0045
0.5 —4.2200 —4.0991 —-3.8003
0.6 —4.0886 -3.9104 -3.6123
0.7 .—3.9754 -3.7700 -3.4700
0.8 —3.8809 —3.6526 -3.3606
0.9 —3.8018 —3.5500 —3.2600
1.0 —-3.7351 —3.4598 -3.1750
1.2 —-3.6100 -3.3092 —3.0350
2.0 —3.3554 —2.9463 -2.7262

3.0 —3.1275 —2.7266 —2.5657
4.0 -2.9814 —2.6015 —2.4847
5.0 —2.8800 —2.5187 —2.4339
6.0 —2.8182 —2.4592 -2.3977
7.0 —2.7700 —2.4145 —2.3695
8.0 —2.7347 —2.3797 -2.3466
9.0 —2.7000 —2.3519 —2.3274

10.0 —2.6847 —2.3293 -2.3100
11.0 —2.6650 —2.3108 —2.2966
12.0 —2.6514 —2.2954 —2.2840
13.0 —2.6400 —2.2824 —2.2729
14.0 —2.6276 -2.2715 —2.2630
16.0 —2.6097 —2.2530 —2.2463
18.0 —2.5910 —2.2402 —2.2329
20.0 —2.5800 —2.2294 -2.2221
24.0 —2.5600 -2.2130 —2.2060

Lad —2.5570 —2.2016 =2.1940

acy of our results is adequate enough for the pres-
ent work.

The radial couplings between our approximate
wave functions were calculated exactly, using the
method proposed by Macias and Riera.”® They
can be written E

4
(tlan):

where x, x, are the molecular wave functions, ¥
denotes the set of electronic coordinates, B the
matrix of d/dR, and S the overlap matrix, corre-
sponding to the basic configurations used to ex-
pand x, and x,; ¢, and ¢, are the expansion coeffi-
cients. When the origin of electronic coordinates
is changed from a position 8 to © + R5, the term
RT in Eq. (3) varies:

x‘> ~cis L ¢, +c} Be,=R'+RT, (3)

RY=R'+5clirc,. _ (4)

The corresponding change in the L, matrix element
is

(2liL)elxs = (xaliL)z Xy +oct Q ey R. (5)

In expressions (4) and (5), ~4I" and ~{Q are the
matrices of the electronic linear momentum along
the z and x axis, respectively.

We have drawn in Fig. 2 the dynamical couplings
which are involved in our three-state calculations
for the singlet and triplet subsystems, choosing
the proton and the center of mass as two possible
origins of electronic coordinates.

Let us first consider the radial couplings
(1°m|d/dR|2*+*1). For internuclear distances
R<10a.u., the dominant term is RL. This term
is due to the variation of the basis set required
to describe the change in the wave functions that
take place in going from R = 0 to the molecular
region. This change is the same for singlet and
triplet states, and, accordingly, the values of RY
are very similar. It will be noticed that R £ 0
at the united atom limit; in fact, the exact limit
can be easily estimated, and seen to agree with
our result.

For internuclear distances R>10 a.u., R' domi-
nates the radial couplings; it presents a maximum
at R~15 a.u. due to a delocalization (or Demkov)
process. Taking into account the correlation limits
(see Fig. 1)

|1 Mmyz==He*(1s) + H(2p),
|2 M)g==He(1s2p 'P) + HY, ®)

[13M)g==He(ls2p°P) + H*,

|23m)z==He*(1s) + H(2p),

we can explain the behavior of the radial couplings
by using the well known two-state model as follows:
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FIG. 2. Radial couplings for the singlet (a) and triplet (b) subsystems. Rotational couplings for the singlet (c):
@) 2!z-1'n coupling, origin on the proton; (2) 2 Is_21n coupling, origin on the proton; (3) 2!=-111 coupling, origin
on the center of mass; (4) 21z-2'n coupling, origin on the center of mass. Rotational couplings for the triplet (d) sub-
systems: (1)1 33-13%m coupling, origin on the proton; (2) 1 3329 coupling, origin on the proton; (3) 1%2-1 3 coupling,
origin on the center of mass; (4) 1 33-2 3H.coupling, origin on the center of mass.

X1 €0S0¢p, —8infe,, x, =~ sind’ ¢ +cosb’ ¢,, )
X2~ Sinf¢, +CoSO¢p,, ;= =c0SE ¢, +Sind' ¢,

for the singlet {x,,x,} and triplet {x/, x4} 1 states.
The functions ¢, ,, ¢/ , represent diabatic states
which at long distances are quasiatomic in charac-
ter:

P15 =P ¢1’R_—~3¢;n (8)
7= Puer P TP her

Since x; »x=%¢1,2 and x{ »x==¢s,1, Eq. (7) yields
6()=6'(=)=0.

According to Smith’s definition, the transforma-
tion angles 6, ¢’ are given by integration of the
radial couplings R'+RT, but the origin dependence
of R" precludes a univocal definition of 6, ¢, hence

of the diabatic states ¢, ,, ¢; , at short distances.
For large distances R™ =~ 0, and one can just
eliminate RY. In this case, as we have

X1ES0PLt Do XJ.IR—>0¢1'+¢?Z’ 9)
XeES— 1t P2 Xamso—®1+ Pa-
According to Eq. (7), 8'(0)~—6(0)~7/4, and it

is clear that — 6~ ¢’ varies from 7/4 to 0 as R
goes from 0 to ». Hence, we have from Eq. (7)

de

Ny pla
R R 4R

(0
The transformation angles obtained by eliminat-
ing R! are presented in Fig. 3; the corresponding
diabatic states have energies which are parallel
for R>10 a.u., and are coupled exponentially in
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the most orthodox manner.

For smaller distances, the situation is very
different as RT dominates, and we have explained
that

<x{‘£'xé> =<x1 % x2>- (11)

Accordingly, if the transformation angles are
calculated by integration of R +RY, we have the
values presented in Fig. 3 for two extreme choices
of origin: the proton and the He nucleus. For

the former, f R, R (singlet) has opposite sign to
f % R! (singlet), while f R _R™M (triplet) has the
same sign as [® R (triplet), with the result that
05750, 0'z=m/2. For the latter choice the
contribution from R'and R have the same sign

in the singlet case and opposite signs in the triplet
case, and —0z=%1/2, 6'55%0. Obviously, for
other choices of origin, the situation is intermed-
iate.

We have explained in detail these features of
the radial couplings because they will be useful in
the interpretation of the secondary mechanism of
the collision process. )

Let us now consider the rotational couplings
[see Fig. 2(b)]. Besides their dramatic origin
dependence, an important property is that two
matrix elements

@'z |iL,|1'm and (1T |4L | 2°)

increase linearly with R at large distances (with
the consequence that the corresponding rotational
couplings decrease like R!) unless one chooses
the proton as origin of electronic coordinates.
This is so because the x component of the transi-
tion dipole moments '

V=]

=3

TRANSFORMATION ANGLE

L " P S I

0 10 RJ(q.u,)‘ l 20

FIG. 3. Transformation angles obtained by eliminating
the radial coupling between 11-2111(6) and 13m-2%1(6*)
(see Eq. 5). Elimination of R! (Eq. 3) yields the values
—6(0) =6’ (0) ~7/4. Elimination of R'+ R (Eq. 3) yields
the values 0(0) =0 and 6 (0) ~7/2 with the origin of elec-
tronic coordinates on the proton, and 6(0) = —r/2 and
6’(0) = 0 with the origin on the He nucleus.

@ |1y, and (132 | p,|2°W

do not vanish as R—,

This poses a problem in the integration of the
coupled equations, as there is no obvious reason
to prefer the proton as the origin of electronic
coordinates (apreferredorigin may be argued for
in the simpler case of excitation!®'¢),  We have
thus performed calculations with the proton and
the center of mass as origins of electronic co-
ordinates. As will be shown in the Appendix, the
integration of the slowly decreasing rotational
couplings is full of pitfalls, but may be performed
safely if one is careful.

III. RESULTS AND DISCUSSION
Total cross sections for reactions (1) and (2)
have been calculated in an impact parameter form-
alism, using the molecular energies and couplings
presented in the previous Section.
The set of coupled equations

da by r
W= g olit (i) B, - B)ar)e,
bv . (T
R (Xol L, | X,) exp (—lf (B, —E‘,)dr)a2 ,

da by . T
7 =-gz <x1lzLy| Xo) €Xp (—zf (E, —El)d7)a0

—% <X 1,% xz> exp(—-i f' (E, —El)d’*’)az (»12)
%2 = %15)<Xz’iLleo> exp(— z‘fr(Eo —Ez)dr)ao

Z dR X1> exp (_ifr (E, ‘Ez)df)ax

- x2

was solved numerically using the program PAMPA®
with the semianalytical modification proposed in
the Appendix to integrate correctly the slowly de-
creasing rotational couplings. In (12) the wave
functions x, correlate, in the CI region, to

{l2tz)y,[1°2)}, |1421m),and |2%2m)

for n=0,1,2, respectively (see Fig. 1); b is the
impact parameter and Z the nuclear coordinate.
We notice that the states X, (singlet and triplet)
cross diabatically the 1so, 2s0, states (Fig. 1);
for the range of nuclear velocities considered
here, we did not include the (very small) elec-
tronic coupling between these diabatic states.

Our resulting cross sections are plotted in Figs.
4(a) and 4(b) for reactions (1) and (2), respec-
tively, together with the experimental data.-*

We have not drawn lines through this data because
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FIG. 4. Total cross section for reaction *He*(1s)
+H(1ls) —"He’(l s)+ H(2p)(a) and for ‘He’(ls) + H(1s)
—~4He(1s2p1*P)+H*(b). Our results: origin on the
center of mass, ---- origin on the proton. Experimental
results: o Ref. 1, @ Ref, 2, oRef. 3, & Ref, 4.

we think that the resulting oscillations would be
misleading, unless one takes into account the un-
certainties of the data (we have not included the
error bars for the sake of clarity). Analogously,
there are very slight oscillations in our results
which we have smoothed out because they fell within
the numerical errors of our calculation; as we
shall showinthe Appendix, any error inthe integra-
tion of the slowly decreasing rotational couplings
produces oscillations in the resulting cross sec-
tions.

For incident energies E <8 keV (relative nuclear
velocities v <0.3 a.u.) the cross sections calcu-
lated with the origin placed on the proton agree
better with experiment than all other reasonable
choices. For E >8 keV, those results depart
rapidly from the experimental points, while the
cross sections calculated with the origin at the
center of mass agree well with the experimental
data (taking the error bars into account).

Our findings may be readily explained by the
mechanism invoked in the previous section. The
population of the II states occurs mainly through
23 - 1!1T and 132 - 1301 rotational couplings at
short distances. The rotational couplings between
the entrance channels and the 2 "1 states do not

~have a strong influence in the process, and only
modify the secondary mechanism provided by the

radial couplings. An explanation is that at large
distances the greatest of these couplings are those
which decrease like R™!, and we have shown that,
if properly treated (see the Appendix), the influ-
ence of these couplings is small. The same rea-
soning applies to other states which are not cou-
pled directly to the entrance channel, and which
were therefore not included in the calculation.

The introduction of states such as 4'> and 4°%
which correlate to He*(1s) + H(2p) would only
slightly modify our results, but considerably com-
plicate the numerical treatment because these
states present a nonvanishing coupling with the
entrance channel at infinite distances. It may be
pointed out, however, that these couplings will
become very important in the region of nuclear
velocities much higher than those considered
here,3'4 but in that region the molecular approach
itself is questionable.

As mentioned in the previous section, the
branching ratio between reactions (1) and (2) is
governed by the radial couplings between the II
states (secondary mechanism). At high enough
energies the system is well represented by the
diabatic wave functions ¢, 3, ¢{ , of Eq. (5), be-
cause the molecular energies keep close to one
another down to very small distances.

For R =0, the only Il channels appreciably pop-
ulated are x;, x {. Choosing the proton as the ori-
gin of electronic coordinates we find from Fig. 3
that, for R~0, x; = ¢ and X; = ¢{. The limits (8)
then indicate that reaction (1) should be favored
with respect to reaction (2), and the trend of our
results (Fig. 4) confirms this. Choosing the cen-
ter of mass as origin we have a situation which is
not so extreme as that depicted in Fig. 3 for the
He nucleus, and approximately, for R =0, y,
= —chy, X{ = 3. Equation (8) then indicates that
when diabatic behavior is dominant, reaction (2)
is preferred, and that is what we obtain and is ob-
served experimentally at high velocities, up to a
point where radial transitions to higher excited
channels begin to dominate (see above). Choosing
the center of charge as origin yields results which
are intermediate between those of the proton and
the center of mass. The agreement between
theory and experiment may be increased by an
appropriate choice of origin of electronic coordi-
nates; we have not pursued this line for obvious
reasons. From the results presented in Fig. 4,
one might at first sight conclude that the “correct”
origin of electronic coordinates is the center of
mass, or a point close to it. The question of
whether there is a “proper” choice of origin has
been considered by many authors, because if such
a choice existed one could then avoid the use of
translation factors. In particular, this point has
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been studied in detail by Riera and Salin,!” who
concluded that a preferred origin does not exist
in general, and that the so-called momentum-
transfer problem has no general solution within
the standard molecular formalism. Hence, if the
experimental data shown in Fig. 4 were unknown,
and one was asked to predict the outcome of re-
actions (1) and (2), there is no specific reason to
favor the center of mass as origin of electronic
coordinates when solving the set of equations (12).

We summarize the conclusions of our study.

As stated in the Introduction, the momentum-
transfer problem has two unwelcome consequences
for reactions (1) and (2): (a) some rotational cou-
plings decrease like R"! at large internuclear
distances, and (b) at high velocities, the cross
sections depend strongly on the choice of origin

of electronic coordinates.

Contrary to what is often assumed, consequence
(a) is of little importance, provided one is careful
in attacking the numerical integration of the cou-
pled equations. On the contrary, consequence (b)
is a crucial problem; to solve it, translation fac-
tors are required. Work is in progress at our
laboratory to include these factors in the treat-
ment, using a basis set of traveling Gaussian
orbitals,!” and the present work may be viewed as
a preliminary treatment of the problem. It is
more than this, however, because even the treat-
ment with translation factors is not straightfor-
ward, 'and this is an important problem which is
not restricted to reactions (1) and (2). The origin
dependence of our cross sections hinges on the
behavior of the radial couplings for short inter-
nuclear distances, and the discussion as to which
translation factors to choose for these distances
has not reached a definite conclusion. For exam-
ple, an intuitive argument often used in this re-
spect runs as follows: The momentum-transfer
problem is due to the failure of a truncated molec~
ular expansion to fulfill the boundary conditions
of the collision problem, and then it is a long dis-
tance problem [i.e., like (a) above, or the anal-
ogous case of constant radial couplings at infinity];
for these distances the Bates-McCarroll factors
are appropriate, and a cutoff may be introduced
in the exponent of the translation factors in order
to revert to the usual molecular treatment at
short distances. This would be an ideal situation,
but unfortunately our example shows how this
argument can be fallacious: An ad koc cutoff in
the translation factors would yield results prac-

e Ab

i bAE
== g e r e =<2 (43E)

tically identical to those of the present paper, and
just as origin dependent.

It is precisely the difficulty in applying the more
“exact” treatment with translation factors which
shows the importance of testing explicitly the
limitations of the molecular model, as we have
done in this work, in addition to pointing out its
assets: It is obviously no coincidence that, once
the center of mass is chosen as origin, the cross
sections of both reactions (1) and (2) can be well
reproduced with a very simple mechanism, and
up to high nuclear velocities.
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APPENDIX .

We consider the integration of a slowly (R™!)
decreasing rotational coupling between two mole-
cular wave functions,

by , vAb vAD
E;(xlllLy[XQRN R -G (A1)

where b is the impact parameter, and X is a con-
stant. In the region of internuclear distances
where the energy difference AE is approximately
constant, and this coupling takes its asymptotic
form, the system of coupled equations is

iAEz
b

% =Ab (b +2%)"Y 2q, exp (
(A2)

da. -
-;:- =~b (D% +2%)Y %q, exp(

—iAEz

v >

The basic difficulty in solving (A2) (hence, the
exact coupled equations for all R) is that the initial
condition g,(—~=)=06,, must be introduced at a point
~z, where the coupling is negligible. It is clear
then that z,, must increase with b; for large im-
pact parameters this becomes prohibitive because
of the increase in computer time and accumulative
round-off errors.

When ) is sufficiently small in (A2), a pertur-
bative solution is appropriate:

172
~ __(.2_22.) Ae'bAE/”, ’ (A3)

b—> o

AE
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where K, is a modified Bessel function.!® Accord-
ing to Eq. (A3) the contribution of trajectories
with large impact parameters to the cross section
is entirely negligible. Explicit numerical tests
showed that this exponential behavior is quite gen-
eral, but also that A had to be very small (<0.01
a.u.) for the specific perturbation solution (A3) to
be sufficiently accurate. What happens is that,
even if g, is very close to one in modulus, its
phase changes with time, thus violating the basic
assumption of perturbation theory.

We.have not been able to solve the system (A2)
in closed form in terms of well known functions.
However, sufficiently accurate solutions may be
used for values of b and z such that

z
bT-;? «<1 . (A4)
We notice that the higher the value of b, the larger
the domain of z for which (A4) is valid.

To deduce an approximate solution of (A2), one
integrates this system on the formal assumption
that the coupling varies little with z, much as
the potential is assumed to do in the JWKB me-
thod. More specifically, we assume
AP
dz (bz +22) 172
which is easily shown to be entirely equivalent to
(A4). Defining

AE 1 (AE? 4x%? \'/? AE
y W2

«1, (A5)

“= 3 I\ B " e
(A6)
one obtains the approximate solutions
Xzbz -1/2 .
a,(2)= w, (wf + m) exp(iw,?) ,
232 (AT)

A /2 )
a,(z)~ —ixb (w"{ + ZETE) exp(—iw,2)

for the initial condition a ,(—oo) =6,,. The phase
exp(iw,z) oscillates slowly, while |a,| is always
close to unity, as mentioned above. Explicit
calculations showed the excellent degree of ap-
proximation provided by these simple expressions
for a, and a,, for all cases we studied. For large
b, condition (A4) is fulfilled for all z; letting

z —~, we obtain a,(~) =1, a,(») =0, showing again
the steep decrease of a,(») with b, and confirming
that the integration of the slowly decreasing
coupling can be safely neglected for b high enough
that the energy difference AE is constant, and Eq.
(A1) is fulfilled.

This does not solve the problem completely,
however, as for smaller values of b we would
still have to integrate over very large domains
of z. The interest of the approximate solutions
(A7) is that they are also valid for the exact cou-

pled equations, for any impact parameter, pro-
vided that z is large enough that AE is practically
constant and (A1) and (A4) are fulfilled. There-
fore, we may use a semianalytical approach, as
follows.

In the wings of the integration region (-, -z ,)
and (+z,, +=), we use solutions of the form (A7),
and in the region (-z,, +2,) we integrate nu-
merically. The point z, must be chosen such
that (A1) and (A4), or (A5), are fulfilled; this
last condition means that the relative variation
of the coupling is small, which is less restrictive
than asking for the coupling itself to be small. The
initial values for that numerical procedure are
given by Eq. (A7); suppose its final values are
a,(z,)=a,a,(z,)=B. Using these as starting
values, our analytical approximation yields for
the transition probability amplitude, with &31'2
= w1,2(z w>

M

242 -1/2
(at+ ﬁb—,) : (48)
This semianalytical procedure can be easily
introduced in the numerical solution® of the sys-
tem of coupled equations. Moreover, it may also
be used to point out the pitfalls of ignoring the
peculiarities of the rotational coupling (A1), and
integrating for the range z = -z, (initial condition)
to z =+z, for all values of the impact parameter,
as is usually done for couplings which decrease
faster than R™ (Ref. 9). One then finds, instead
of (A8),
~ 9 2 2\=1/2 ~2 )‘sz -
a,(2 )~ 20,\b (2% +b?) (wl + -Z?”Ti)?)
x sin[(3, —&,)2 ). (A9)

If one integrates [2max|a,(z,)| 6db, the resulting
cross section will present strong unphysical os-
cillations as a function of v; see Egs. (A6) and
(A9). Finally, if we let b, — for z, fixed, the
resulting cross section diverges, as a,(z,) of Eq.
(A9) does not vanish in this limit. Clearly, it is
safer to ignore trajectories with large impact
parameters in this case than to attempt to in-
tegrate them partially. However, without a spe-
cial treatment of the asymptotic regions, such
as presented here, it is difficult to know a priori
where one can stop the integration over the impact
parameter.

Besides, one may also point out that in the cal-
culation of inelastic cross sections, the relative
precision of the integration procedure must be
increased for large impact parameters, because
of the factor b in the expression for the total cross
section.
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