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We present a method for generalizing the traditional two-term Legendre expansion solution of the Boltzmann
equation in the context of electron swarm experiment analysis. The method is applied to the calculation of the
distribution function and transport coefficients in N, and in two model cases. We find that the two-term
approximation is of limited validity for the cases considered here, and that four to eight terms in the Legendre series
are required for convergence of the transport coefficients to the accuracy required for the determination of cross

sections from swarm experiments.

I. INTRODUCTION

Some of the most accurate values of low-energy
electron scattering cross sections for atoms and
molecules have been deduced from electron-swarm
experiments,*”® studies of the motion of a cloud of
electrons through a neutral gas under the influence
of an electric field. The parameters measured in
swarm experiments*”® include transport coeffi-
cients such as drift velocities and diffusion coeffi-
cients, and rate coefficients for processes such as
ionization, attachment, and excitation. In these
experiments the scattering is multicollisional and
the determination of scattering cross sections from
the experimental data is necessarily statistical.
The link between the microscopic cross sections
and the measured macroscopic swarm parameters
is provided by the Boltzmann equation.*®° Given
the cross sections for the relevant processes, one
can determine the statistical behavior of an ensem-
ble of particles and thus derive theoretical predic-
tions for the transport coefficients. Conversely,
given the measured transport parameters, one can
iteratively refine a set of assumed cross sections
to achieve agreement between the given parameters
and those derived from the solution of the Boltz-
mann equation.

Experimental determination of the transport pa-
rameters can be made with high precision. Robert-
son® and Milloy and Crompton’ for example, re-
port, respectively, an uncertainty of 1% for the
drift velocity and 2% for the diffusion measure-
ments. The calculation of transport parameters
via a Boltzmann analysis for a given set of scatter-
ing cross sections can in principle be carried out
with comparable precision, although this would re-
quire a Boltzmann equation solution more accurate
than has traditionally been achieved. Computation-
al simplicity has commonly dictated a number of
approximations, most notably that the velocity de-
pendence of the electron distribution function is
isotropic or nearly so, and that the angular depen-
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dence is thus adequately represented by only the
first two terms of an infinite expansion in Legendre
polynomials.®® In terms of atomic or molecular
processes, the assumption underlying the putative
isotropy of the distribution function is that the
cross sections for inelastic processes are much
smaller than those for elastic processes.’ This
condition is well met at low energies, for example,
in the rare-gas atoms, for which electronic ex-
citation requires several electron volts and for
which the usual low-energy inelastic channels in
rotation and vibration are absent. For diatomics
or polyatomics, however, these two channels may
be available for inelastic scattering at low ener-
gies so that the conditions required for the validity
of the traditional two-term expansion may not be met.

At the cost of computational complexity, one may
of course retain higher terms in the Legendre ex-
pansion. The extension to three terms has been
investigated by Ferrari,'®!! Wilhelm and Winkler, *?
and more recently by Makabe and Mori.*® As ex-
pected, the results of these workers suggest that
in cases where the ratio of inelastic to elastic
cross sections is large, the two-term approxima-
tion begins to break down, and it remains uncertain
whether the addition of one more Legendre com-
ponents is sufficient. Lin, Robson, and Mason*
have recently presented a general moment method
for calculating transport coefficients from the
Boltzmann equation in which a multiterm Legendre
expansion is employed. In this approach, it is the
velocity moments of the distribution function rather
than the function itself that are calculated.

All the methods mentioned above convert the
Boltzmann partial differential equation (PDE) into
a set of coupled ordinary differential equations
(ODE), one such equation for each term retained in
the Legendre expansion. Alternately, one might
make a more direct attack, avoiding the Legendre
expansion entirely and employing the techniques
available for the solution of partial differential
equations. This has been carried out in the work of
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Kleban and Davis, !> ¢ and Kitamori et al.'” The
drawback to this latter approach is that the state of
the art for PDE’s is not nearly as advanced as that
for ODE’s, so that while a direct solution of the
Boltzmann equation as a PDE is an interesting and
promising alternative, it is currently not computa-
tionally competitive.

In the Boltzmann equation, the electron ensemble
in a swarm experiment is described by a probabil-
ity distribution which reflects the statistical nature
of the macroscopic behavior of the electrons due to
a large number of individual interactions. An al-
ternate approach, perhaps closer in spirit to the
actual experiment, would be to calculate a series
of electron trajectories through a gas, with the ex-
act outcome of the collisions modeled by a random
variable for each process considered.'® Although
a single such trajectory is simply evaluated, these
Monte Carlo procedures are generally inefficient
since they require a vast number of trajectories to
achieve an accuracy comparable to that available
from a Boltzmann treatment. This relative compu-
tational inefficiency is magnified to the point of in-
feasibility when the iterative extraction of the scat-
tering cross sections from accurate experimental
data is carried out. Such methods do, however,
offer a means for verifying a solution independently
derived from a given set of cross sections.

In Secs. II and III we present a new approach for
the accurate solution of the Boltzmann equation
describing electron swarm experiments. We em-
ploy the traditional Legendre expansion but retain
as many terms as are required for convergence.
The analysis is a straightforward generalization of
that which leads to the two-term expansion. The
resulting set of coupled ODE’s is solved with a
basis set Galerkin technique!® which yields the
components of the distribution function directly and
which is efficient enough to allow for an iterative
refinement of assumed cross sections, if neces-
sary. Inelastic and superelastic collisions as well
as anisotropic scattering are easily included in
this method. For the present we ignore attachment
and require that the average electron energy be
low enough to preclude any appreciable change in
the electron density due to ionization, although
these restrictions could be lifted within our general
scheme.

In Sec. IV we apply this method to two model sys-
tems and to N,. The models chosen for investiga-
tion were methane and an ideal atom of mass 4 amu
with a ramp excitation cross section. The N, cal-
culations were carried out using a set of cross sec-
tions recently derived by Phelps et al.?° Results of
the calculations of drift velocities and transverse
diffusion coefficients as functions of the number of
Legendre terms are shown for these three cases.

II. TRANSPORT EQUATIONS

The dynamics of an ensemble of electrons drawn
through a neutral gas by an external electric field
is much too complicated to admit any considera-
tion of the detailed results of the repeated scatter-
ing events involved, although the result of an in-
dividual event is described by.the relevant scatter-
ing cross sections. Rather, the scattering pro-
cesses are described statistically by considering
particles of the neutral gas to be interacting with
electrons described by a time-dependent probabil-
ity distribution F(F¥,V,t), given in terms of the
position and velocity coordinates of the electron.
The electron number density n(¥,t) is given by the
integral of F(F,¥,t) over all velocities, n(T,t)
= [FF,%,0d%.

If we restrict our interest to cases for which
there is no ionization or attachment, the total num-
ber of electrons is conserved, although electron
density may flow from one region of phase space to
another through the action of the external field and
the interactions with the buffer gas. The precise
description of how the density flows is given by the
familiar Boltzmann equation®:

9 > > = > - = -
a-t_F(f’V’t)+ a'qu(f:V;t)+V'er(f:V;t)

= J[FGE¥,0], (1)

which gives the evolution of F in terms of its space
and velocity gradients, the acceleration produced
by the applied field (a= —e—f:/m), and the collisions
with the gas as represented by the right-hand side.
Transient effects and the detailed nature of the
early-time evolution of the swarm are of little in-
terest in most swarm experiments, so the distri-
bution function can be taken to obey the so-called
“hydrodynamic conditions.” A detailed discussion
of these conditons is unnecessary here, but the ap-

. propriate picture is that of a swarm evolving with-

out memory of initial conditions or influence of
boundary constraints. Making use of this “smooth-
ness” and in preparation for the subsequent sepa-
ration of position (and time) and velocity variables,
we follow the procedure of Skullerud®''?? by expand-
ing the distribution function in a series in powers
of the spatial gradient of the number density:

F@&,¥,1) Z SO (<), 1), ()

where (3)” represents a k-fold outer product of the
gradient operator with itself and ® indicates a k-
fold inner -product operation. The coefficients in
the expansion, _f_(“)(ﬁ), are velocity-dependent ten-
sors of rank k. When coupled with the appropriate
power of Vn(F,#), f® yields the kth-order correc-
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tion to the simple situation in which F(¥,7V,t) is a
separable product of velocity and density distribu-
tions.

The hydrodynamic regime admits an alternate
but related description®! based solely on the num-
ber density and a hierarchy of tensorial transport
coefficients, w®. In this description the evolution
of the number density is given as

LnE,0=Y o6 (F)n(E, ). 3)
k=0

For a uniform electron density [ (V)*z=0, for all
k>0], this reduces to the familiar first-order kin-
etic rate equation, with - identified with the
reaction rate. The higher-order effects of a non-
uniform density are included with the drift velocity
@2 =W, the diffusion tensor &® =D (the diagonal

components of which relate to measured quanti-

ties), and the remaining members of the hierarchy.

The first few transport coefficients are the param-
eters measured in a swarm experiment, and they
thus provide the link between the theoretical de-
scription of the dynamics of a swarm and some of
its experimentally determined properties.

The hierarchy of transport coefficients can be
determined by developing a corresponding hier-
archy of kinetic equations. Following the standard
procedure,?! we substitute the form of F given by
Eq. (2) into the Boltzmann equation, (1), and after
interchanging the order of differentiation, simplify
the result by using Eq. (3). Noting the linear inde-
pendence of the various (V)*z(%, ) by virtue of their
differing rank, we arrive at the desired hierarchy

3. i,f(O) (‘7) —J[f(O)('\7)] + w(O)f(O)W) =0, (42)
39,00 @) ISP @)]

l R
=“’,Ik—l(";)_ Z: g(f)fk-j)(;). (4b)

For the conditions we mentioned previously, in
which no attachment or ionization is allowed to in-
crease or decrease the total number of electrons,
the reaction rate '@ is identically zero and the
only effect of the collision operator is to redistri-
bute the density in phase space. With a unit nor-
malization of the distribution function, we see that
integration of Eq. (4b) over velocity then gives w®
directly in terms of f*~%): -

g(k)=f7'_f(“‘”(‘7)d7-

Knowledge of terms up to _f(") and g(“) thus pro-

vides all the information required to determine
w**? and hence f**7.
Since w” vanishes, f© can be determined from

Eq. (4a) alone. Rather than solving this partial
differential equation as it stands, we follow the
usual procedure and expand the vector dependence
of the scalar function f@ as a Legendre series in
the angular coordinates of the velocity

FOG) 2P0 w) Py (coss). (5)

1

Substituting this into Eq. (4a) and employing the
orthogonality of the P,’s, we obtain an infinite set
of tridiagonally coupled ordinary differential equa-
tions in the scalar variable v =|¥|. In practice this
infinite set is truncated at some finite /=L, with L
chosen large enough to ensure “convergence” of the
expansion in Eq. (5), as discussed in Sec. IV. Sim-
ilar equations result from Eq. (4b) for 1Y, In what
follows, we discuss f©(%), and, dropping the sup-
erscript for simplicity, let fO%)=f ). It is un-
derstood that the same discussion applies to each
component of the tensor _f(")(?) for all k.

The form of the collision operator J has been de-
scribed in detail by Holstein,® Allis,® and others* %2
and may be written as

I @)] = -NoQ()f ()
#2530 [0 EQM, 008 (0" - g
k=0

(6)

Here N is the neutral number density and
Qi (v, 6,) is the cross section for electrons incident
at velocity v and scattered by a particular process
(the Rth such process considered) with a scattering
angle §,. Q(v) is the sum of all the individual
cross sections evaluated at an identical argument
and integrated over all angles. The first term on
the right side of Eq. (6) thus represents the deple-
tion of density from the region of ¥ due to all scat-
tering processes. The second term is then the ac-
cretion of density into the region of ¥ from all
other regions of velocity ¥/ and the sum is over all
possible channels, with 2=0 denoting the elastic
one. The presence of the Dirac delta functions
simply reminds us that if the kth scattering pro-
cess is to take place, then the final energy of the
electron must be consistent with whatever energy
was required for ( or released by) the alteration
of internal states of the neutral particle mediating
that process.

At this point we display explicitly in energy
space the infinite set of tridiagonally coupled or -
dinary differential equations resulting from sub-
stituting the Legendre expansion (5) and the colli-
sion operator (6) into Eq. (4a): -



23 EXTENDED BOLTZMANN ANALYSIS OF ELECTRON-SWARM... 297

c dé-l(e) _l'l 1_1(5))+ i+1 A(e %H(e) + l;z ,4“(6))

l
21—1( de 2 21+3 de

= % eQ(e)/} (€) - —g— e/; (€) fP, (c0os8,)Q,(€, 8 )dw’ +2

N d.,
% T acle Qnfi (€)] 85,

- %Z (e +€k)/§(e +€g) fP, (cosO,)Qpu(€ +€p, 0)dw’ , forl=0,...,L. (7)
| k=1

Q,, is the momentum transfer cross section for
elastic scattering, i.e., the integrated elastic
cross section weighted by the factor (1 —cosf), and
€, is the threshold energy for the kth process. The
details of the rearrangement of the collision terms
are given by Holstein.® The next-to-last term on
the right is the recoil energy loss.. The only con-
tribution from elastic scattering in the /=0 equation
arises from this recoil term. The recoil term also
contributes to the />0 equations, but, as indicated
by the Kronecker delta function, it is neglected be-
cause its contribution to the total collision term
will be small. In going from Eq. (4a) to Egs. (7),

a partial differential equation has been converted
to L +1 ordinary differential equations. The prin-
cipal merit to this step comes from the fact that an
accurate solution can be found with L relatively
small.

Besides retaining more Legendre components,
Egs. (7) offer the additional generality over the
usual two-term equations that anisotropic scatter-
ing is included up to order P, in the cross sec-
tions. In addition, the inclusion of superelastic
processes in Egs. (7) can be done in a natural
and straightforward manner,® replacing N in the
last term of Egs. (7) by the populations of the ap-
propriate excited states and the positive energy
offset (¢ +¢€,) by a negative offset (¢ —¢;). The total
cross section must then include the superelastic
contributions.

III. SOLUTION OF THE TRANSPORT EQUATIONS

The development reviewed in Sec. II casts the
Boltzmann equation for an electron swarm into the
form of a coupled system of linear ordinary differ-
ential equations in the scalar variable v:

®f=7, (8)

where T can be identified with the right-hand sides
of Eq. (4). The components of the vector f are
the Legendre expansion coefficients /,(v). The ele-
ments of the matrix ® are the differential, multi-
plicative, and integral operators displayed explic-
itly in Egs. (7). ® is a nonlocal operator if it re-
tains terms in Egs. (7) which represent nonelastic
collisions, i.e., terms in which the argument of
/, is € €.

The backward prolongation method of Sherman®

T
has been utilized extensively in solving Eq. (8) for
the nearly isotropic case (L =1). Following
Sherman,?® Frost and Phelps,® for example, as-
sumed that in the high-energy regime the solution
of (8) matched the solution for purely elastic scat-
tering and used these initial conditions with a di-
rect numerical integration of (8) to propagate the
solution to lower energies. If superelastic proces-
ses are important, this procedure is inapplicable
since the information required to calculate f at
any given € includes knowledge of f (e —€,), a quan-
tity which is not available until later (smaller €)

in the integration. Similar difficulties result if the
solution is started at e =0.

An alternate approach’ replaces the differential
terms in (8) with their finite-difference approxima-
tions at a number of grid points. The resulting lin-
ear algebraic system is then solved for the value
of the function f at the grid points. This algorithm
is easy to implement and circumvents the difficul-
ties arising from the nonelastic terms, but con-
vergence as a function of the grid spacing % is
typically proportional to only %22, so that a highly
accurate solution requires very small z, and thus
very large algebraic systems.

The Galerkin method retains the generality and
ease of implementation characteristic of a finite-
difference approach, but possesses much more de-
sirable convergence characteristics. It has been
well presented elsewhere,® but in order to fix
ideas, we review how it applies for the simple case
where (8) is a single integro-differential equation.
Galerkin’s method calls for the expansion of the
unknown function in terms of a finite but flexible
set of basis functions [S;]:

f(e)=ﬁj C,S,(€)+ b(e) ©)

with the S’s known functions, the C,’s as yet un-
determined, and 6(¢) a small error term. Equation
(8) now becomes

2‘; €,@5,(e) = () = 6(e). © (10)

For any finite set of basis functions the error term
in (10) will be nonzero. The error can, however,
be forced to have zero projection in the linear
space spanned by the basis by requiring that
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(Si(e)|®|d(e) =0, fori=1,N, (11)

where for any two functions %z and g the inner pro-
duct is

<h|g>=£wh(€)g(e)de .

Substitution of (10) into (11) gives a set of N linear
algebraic equations in the N unknown coefficients
Cy:

2 (S @IS, =(Si(e)#)=0,i=1,2,...N
! (12)
or in matrix form with obvious notation

BC -R=0. (13)

The boundary conditions which augment (13) to
completely specify the solution to the system (8)
follow from the normalization

[r@a=1. (14)
In light of Eq. (5), the orthogonality of the P,’s,

and after converting to energy space, the normal-
ization conditions become

N 1 (2e\*"
1/2 =
j; €2/ (e)de 5 ( ) ,

f e‘/zf,(e)de <o, forl>0.
(]

(15a)

(15b)

Provided that each member of the basis is inte-
grable, the mild conditions of (15b) are ensured if
each component of C is finite. The normalization
(15a) can be enforced explicitly.

There are several advantages of this method.
The original set of coupled integro-differential
equations is converted to a system of linear alge-
braic equations which can be solved accurately and
highly efficiently, especially on modern vector pro-
cessing computers. The nonlocal nature of ® is
simply and directly accounted for in evaluating the
projection integrals in Eq. (12), and does not ap-
pear explicitly in Eq. (13). For special choices of
basis functions, the elements of the matrix B can
be easily and accurately evaluated analytically,
while for more general bases the elements can be
evaluated numerically by appropriate quadrature
techniques. Finally, the extension to coupled sys-
tems, such as those treated in Sec. IV, is straight-
forward.

The primary criteria in selecting a particular
basis [S;] are flexibility and ease of manipulation.
By aflexible basis we mean one that not only repre-
sents all members of a coupled set equally well but
also which represents the solutions equally well in all
energy regions of interest. An easily manipulated
basis is important if the integrals appearing in

(12) are to be evaluated efficiently. A basis which
well satisfies both these criteria is provided by a
set of cubic B-splines.?® These are piecewise con-
tinuous cubic polynomials defined on a partition
(€6=0, €,,..., €,=€ ). The value of S;(e) is zero

S (e)

ENERGY (€)

S (€)

ENERGY (€)

FIG. 1. (a) An expansion basis consisting of 9 cubic
B-splines defined on an equally spaced grid, with the
basis function S5 accentuated. The basis shown can be
used for the approximate expansion of a smooth function
which vanishes at zero and €,,,. (b)Anexpansionbasis
set consisting of 9 cubic B-splines defined on a grid which
is nonuniform near the endpoints. The basis shown can
be used for the approximate expansion of a smooth func-
tion which is finite at the points zero and €_,,. For the
expansions discussed in this work, the range [0, €_,]
was spanned by up to 100 such basis functions.
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outside the range [e;, €;,,], and within that range
S; is greater than zero and has a single maximum.
For a uniform partition, with €;,,—€;=h for all 7,
the basis is composed of individual B-splines re-
plicated along the energy axis, as shown in Fig. 1.
In practice it is more efficient to ‘adjust the parti-
tion so that the grid points €; (and therefore the
spline basis functions) are more closely spaced in
energy regions where the solution is expected to
vary rapidly or display fine structure. For the
calculations discussed in the next section, the
spacing (;,, —€;) was proportional to €}/2.

For this basis all the integrals required for our
model problems can be evaluated analytically by
taking advantage of the piecewise polynomial na-
ture of B-splines. But in applications to experi-
mental systems, for which the electron-neutral
cross sections are not usually available in simple
analytical form, some of the integrals would re-
quire numerical quadrature. We therefore chose
to evaluate all the integrals numerically using
range-splitting, with a Gauss-Legendre quadrature
rule applied in each grid range [€;,€;,.].

The solution of the coupled differential system
(8) will depend on the boundary conditions and the
physical parameters appearing in (7), i.e., the
positions of thresholds, the cross sections, etc.
The solution of the Galerkin projected equations
(12) will in addition, depend on the mathematical
parameters which specify the basis [S;]. For the
Galerkin solution to be reliable, we must insist
that, within some prescribed tolerance, it is inde-
pendent of the nonphysical parameters, although its
mathematical form will usually retain some depen-
dence. In the case of our B-splines basis, we re-
quire that the computed solution be independent of
the number of splines, the precise position of the
grid points €;, and the energy limit € nx. In prac-
tice this is achieved by increasing the number of
splines and the value of € max until the numerical .
value of /}(e) in the energy range of interest sta-
bilizes to several significant figures. Although the
number of basis splines necessary to achieve such
convergence depends on the cross-section data, we
find that 100 splines is sufficient in the worst
cases.

One drawback to the choice of a B-spline basis
is the large number of basis functions needed, and
hence the size of the coefficient matrix B which
must be stored. Although some economy— results
from the block tridiagonal form of B, it is true
that the advantages of this basis are best realized
on modern large-scale vector processors. In
this environment, the disadvantage of storing a
large B matrix is more than offset by the speed
with which the linear system (8) can be formed
and solved. A typical calculation for the methane

model, using a basis of 120 B-splines and retaining
Legendre terms through L =3, required about 3
sec of Cray-1 time to form the linear system (13)
and 5 sec to obtain the solution vector. Direct
comparison of this efficiency with that of alternate
methods is difficult because our approach was in-
tended to take advantage of the vector processing
capabilities of a particular computer.

IV. NUMERICAL RESULTS

Many of the properties of the calculated distribu-
tion function, in particular the convergence prop-
erties, can be seen in simple model cases. In this
section we discuss the numerical solutions for a
model atom and a methane model,. each with a sin-
gle inelastic cross section. We then examine the
results for N,, using a set of cross sections deter-
mined from a two-term Boltzmann analysis of
swarm data. In all three cases the scattering is
assumed isotropic, and superelastic collisions are
neglected. The transport coefficients discussed in
this section are the drift velocity, W=|W|, and the
characteristic energy, D,/i. The electron mobil-
ity, i, is W/E, and the transverse diffusion coef-
ficient is D;=w® =w§§?. The parameters W, D,/pu,
and the average electron energy are functions
of E/N, the ratio of the electric-field strength to
the neutral number density.*

A. Model atom

The simplest system we have examined is the
model atom of Reid. His Monte Carlo results® are
available for comparison with our own, and the
model allowed a thorough convergence study. The
elastic cross section for this model is constant at
6x 10~* cm? and the inelastic cross section is of
the form (e —0.2)x 107* c¢m?, i.e., a ramp with a
threshold energy at 0.2 eV. The neutral mass is 4
amu. The E/N values considered range from 1
x 10717 to 24x 107" V ecm?, yielding corresponding
distribution functions with average energies rang-
ing from well below the inelastic threshold to well
above.

Since calculated values of transport coefficients
are directly comparable to the corresponding ex-
perimental quantities, it is these quantities on
which we focus. In particular, we would like to ex-
amine how these quantities are affected by truncat-
ing the Legendre expansion for the distribution
function at L =1, as is usually done. We have cal-
culated values of W and D,/u, using as many terms
as are required to converge W to 0.1% and D;/u to
1%. Table I shows the calculated transport coeffi-
cients as a function of L for the model atom at
three values of E/N. The two-term values of W
and D,/u are always greater than the converged
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TABLE I. Model atom.

E/N ' w Dp/p
(10-17 V cm?) L (10% cm sec™) (10% cm™ sec!) ev’
1 1 1.275 0.9905 0.0777
1 3 1.272 0.9746 0.0766
1 5 1.272 0.9750 0.0766
1 7 1.272 0.9749 0.0766
1 MC 1.255+0.013 0.9861 +0.020 0.0786
12 1 7.029 1.369 0.234
12 3 6.841 1.110 0.195
12 5 6.838 1.134 0.199
12 7 6.839 1.134 0.199
12 MC 6.87 +0.069 1.168 +0.023 0.204
24 1 9.143 1.438 0.377
24 3 8.887 1.095 0.296
24 5 8.885 1.132 0.306
24 7 8.883 1.130 0.305
24 MC 8.890 +0.089 1.194 +0.024 0.322
values, and D;/u is more sensitive than W to the B. Methane

two-term truncation. The values of W and D,/u
appear to converge quite rapidly with increasing L.
As expected, the largest changes occur between
L=1and L=3, with much smaller changes from
further increases in L.

The rows labeled “MC” in Table I are results of
a Monte Carlo calculation.?® The uncertainty indi-
cated in the table reflects the estimated accuracy
of the Monte Carlo calculations; 1% for W and 2%
for D;/1. Our converged results compare well
with the Monte Carlo values, providing an inde-
pendent check on our numerical methods.

A more sensitive test of convergence is furnished
by examining the individual Legendre expansion
coefficients /;. Figure 2 displays the £ for 1=0 to
5 at an E/N of 24x 107 Vcm?. At this field
strength the two-term approximation is clearly in-
adequate. The zero in each of the higher-order co-
efficients occurs at successively higher energies,
and the extrema in each /, (I= 2) are separated by
approximately the same energy. On the high-ener-
gy side of the zeros all of the /ﬂ’s decay at approx-
imately the same rate. It can also be seen that
successively higher-order components dominate as
the energy increases, due to the increasing ratio of
inelastic to elastic cross sections.

Figure 3 shows the convergence of /, and /, as L
is increased from 1 to 5. The two-term results
(L = 1) underestimate the converged values at both
low and high energy and overestimate them at the
intermediate energies. This pattern is reflected
in the values of the integrals determining W and
Dr/u, for which the intermediate-energy region
contributes most heavily. Thus, the converged
values of these transport coefficients are corres-
pondingly less than the two-term results.

Methane is particularly interesting because of
the large value of the inelastic cross section in the
region of the Ramsauer minimum in the elastic
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FIG. 2. The first six Legendre expansion coefficients,
/£ for 1=0to 5, as a function of energy for the model
atom with E/N =24 x 10717 vV cm?.
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FIG. 3. Comparison of /) and /4 from the two-term
(dashed lines) and six-term (solid lines) solutions for
the model atom with E/N=24 x 10" Vem?.
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FIG. 4. Model methane cross sections used in the
calculations here. The elastic cross section @y(¢) is
equal to the following: 2,14 x10~1¢ cm?, €< 0.169
eV; (0.654/€—2.36) x 10716 cm?, 0.169 <€<0.256 eV;
0.2 x 1016 cm?, 0.256<€<0.712 eV; (9.88€!/2-8,133)

x 10716 cmz. €>0.712 eV. The inelastic cross section
rises at threshold in a step from zero to a constant for
Q,(€) equal to the following: 0, €<0.169 eV; 0.63

x 10716 cm?, €>0.169 eV.
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cross section. The previously noted criterion for
the validity of the two-term approximation, i.e.,

a small ratio of inealstic to elastic cross sections,
thus fails in this case and we may anticipate a cor-
responding inaccuracy in the two-term results
themselves.

For our model methane calculations we adopted
the cross sections of Kleban and Davis,!* ' and in-
troduced a modification below 0.169 eV to avoid
the singular behavior in their zero-energy elastic
cross section. These cross sections are some-
what crude, but do qualitatively reproduce the gen-
eral features of the transport data. The cross sec-
tions are presented in Fig. 4.

Figure 5 shows results of calculations of W and
Dy/p for L=1 and 5 over a range of E/N around
the maximum in W. As E/N increases, the con-
verged (L =5) results and the two-term approxi-
mate results differ by as much as 34% for D;/u
and 6.4% for W. The point of maximum error cor-
responds roughly to the E/N where the average
energy of the swarm passes into the region of the
Ramsauer minimum. At that point, most of the
collisions the electrons suffer are inelastic. The
six-term values of the expansion coefficients /; are
shown in Fig. 6 for E/N=2.42x10""" Vcm?®. The
main features seen in the case of the model atom
can also be seen here, in particular the zeros and
two extrema in the higher-order coefficients. Fig-
ure 7 shows £, and £, for L=1and 5. The two-
term solution again tends to overestimate /0 and /,

|oe._ T T T TTTII] T T T rrir
L 0-2 TERM CH ]
[ x-n TERM (4-6) 4 ]

L i
IO7: —!.0
S F j -~
a [ 1 >
~ L
E - - ~—
° F 14 1
~ ~
2z 1 &
108 —o.1
105 1ol a1 1tlo.ol
0.1 10

1.0
E/N 110717 v em?)

FIG. 5. The transport coefficients W and D/ as a
a function of E/N calculated for L =1 (two terms) and
L =5 (six terms) in methane at 2.42 x 10"} Vem?.
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FIG. 6. The first six Legendre expansion coefficients,
/; for 1=0 to 5, as a function of energy for methane at
2.42 x 101" vem?,

for the intermediate energies and underestimates
their values at higher energies. These results
demonstrate that the two-term approximation is in-
accurate for CH, at this range of E/N, although the
error seems to be decreasing slightly as E/N is
increased beyond 3.9x 10”% Vcm?.

C. Nitrogen

As a final study, we have used our general elec-
tron swarm Boltzmann method to examine trans-
port in N,. Our aim is to apply the method devel-
oped above to a case in which many inelastic chan-
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FIG. 7. Comparison of /; and /4 from the two-term
(dashed lines) and six-term (solid lines) solutions in
CH, at 2.42 x 10" Vem?.

nels are open. The cross sections used were those
derived by Phelps et al.,? and include eight vibra-
tional and twelve electronic excitation processes.
Tables II and III shows the results for W and D,/
i as a function of L for L =1, 3, and 5 for six val-
ues of E/N. The calculated transport parameters
have converged as a function of L to 0.1% for W
and 1.8% for D,/u. It is expected on the basis of
the results seen in Table III that the convergence
of Dy/1t could be improved with the addition of a
few more terms. We note again that in N,, as in
the two model cases, most of the error in the two-
term approximation is removed by extending the
calculation to four terms, but for very precise cal-

TABLE II. N, drift velocity (W).

E/N L =1
(1017 vV cm?) (108 cm sec™)

L=3 L =5
(10% cm sec™!) (108 cm sec™)

1 0.4118
40 5.636
70 8.589
83.3 '9.735

100 11.11

200 18.67

0.4118 0.4118
5.559 5.558
8.439 8.434
9.580 9.572
10.96 10.95
18.54 18.53
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TABLE IIl. N, diffusion coefficient/mobility (Dp/u).

E/N L=l L=3 L=5

101" Vem?) ev) ev) (%)
1 0.3213 0.3203 0.3203

40 1.239 1.161 1.174
70 1.461 1.340 1.348
83.3 1.624 1.488 1.515
100 1.888 1.739 1.773
200 3.698 3.379 3.426

culations six terms are necessary for all except
the lowest values of E/N.

The error in the two-term values of W and D,/u
does not seem to increase with increasing E/N
past about 7.0x 107 Vem?, but rather levels off
and even declines slightly. It is interesting to note,
however, that the difference between the four-term
and six-term values of W and D,/ also reaches
a peak at an E/N near where the average energy
of the swarm “sees” the largest total inelastic
cross section. Based on our results in methane,
we might expect the slowest convergence of the
Legendre series in this region.

Figure 8 is a plot of the two-term and six-term
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FIG. 8. Comparison of /£, from the two-term (dashed
lines) and six-term (solid lines) solutions in Ny at
1x 10" vem?.

values /, as a function of energy in N, at 1x 1071°
Vem?. The high-energy tail is significantly higher
for the six-term calculation. Any integrals over
the tail, such as those entering the calculation of
excitation rates, will be correspondingly greater.

V. CONCLUSIONS

The determination of low-energy electron scat-
tering cross sections from swarm experiments has
previously relied almost exclusively on the two-
term Legendre expansion of the Boltzmann distri-
bution function. We have presented a generalization
that retains an arbitrary number of terms, and
have applied it to the calculation of the distribution
function and transport coefficients in two model
cases and in nitrogen. For each of the cases we
considered, we found the two-term approximation
to be of limited validity, incurring errors in D;/
i, for example, which varied from less than 1% in
the best case to 35% in the worst. For methane the
error is large enough to cast considerable doubt on
cross sections derived from methane swarm exper-
iments via an analysis based on the two-term ap-
proximation.

As a function of electron energy, the error in the
distribution function introduced by the two-term
approximation is a complicated function of the
cross sections. We find that the distribution func-
tion is most slowly convergent for electron ener-
gies at which the ratio of the inelastic to elastic
cross section is maximum. For CH, this occurs in
the region of the Ramsauer minimum and for N,
around 2.0 eV where the total vibrational excitation
cross section peaks. For our model atom with its
inelastic cross section linearly increasing, the
maximum discrepancy occurs in the high-energy
tail of the distribution function.

As a function of E/N, the deviations between our
converged transport coefficients and those calcu-
lated with the two-term approximation correlate
well with the above observations. The error is
greatest at values of E/N which produce mean
electron energies close to the values where the in-
elastic to elastic cross-section ratio is greatest.
Thus, in CH, the error in the transport coefficients
reaches a maximum at values of E/N for which the
mean energy of the electron swarm is near the re-
gion of the Ramsauer minimum. Similarly, the er-
ror in the N, transport coefficients begins to fall
slightly for E/N large enough to produce a mean
electron energy beyond the peak in the total inelas-
tic cross section.

Convergence to within 0.1% for W was achieved
for all cases considered with six or fewer terms
in the Legendre expansion for the energy distribu-
tion function. While the convergence of D,/L was
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slower, six terms were sufficient to converge our
calculated values to 1% or less in the two model
cases and to less than 2% for all values of E/N in
N,. We conclude from this that the Legendre ser-
ies is indeed appropriate for the solution of the
Boltzmann equation in the present context, as the
series approximating the distribution function con-
verges sufficiently rapidly to make accurate multi-
term solutions practical.

Kumar, Robson, and Skullerud®® have recently
suggested that theoretical calculations of W and
D7 N should ideally be accurate to within 0.1% and
1%, respectively, in light of the extremely accur-
ate experimental measurements with which they
must be compared. Our results indicate that while
the two-term approximation cannot generally deliv-

V. ONEIL, AND J.

R. RUMBLE, JR. - 23

er such accuracy, the generalization to six or eight
terms can be expected to reliably and efficiently
yield transport coefficients which fall within the
suggested error bounds.
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