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The logarithmic mean excitation energies that determine, for fast charged particles, the total inelastic-scattering
cross section, the stopping power, and the straggling are bounded from above and below by simple expressions
involving moments of the oscillator-strength distribution. A general condition under which the set of elementary
inequalities gives tight bounds is indicated, and is illustrated in several examples. Effective oscillator-strength
distributions that are constructed on the basis of variational principles lead to tighter bounds in terms of some of the
moments and the oscillator strengths for some discrete excitations.

I. INTRODUCTION

We consider the oscillator-strength density
df/dE of an atom or a molecule in the ground
state. This density is a function of the excitation
energy E measured from the ground-state energy.
The moment of the uth order is defined by

d,
sw=J L prar, M
and its derivative with respect to the order u is

L(u):d_%ﬁﬂ = f%E“lnEdE . )

The integrals are taken over all continua and in-
clude the summation over discrete spectra. The
mean excitation energies I(u), defined by

InI(p)=L(n)/S(k), (3)

are crucial to many properties of the atom or
molecule!™; I(-1) appears in the expression for
the total inelastic-scattering cross section,’ I(0)
in the Bethe formula for stopping power,® I(1) in
the Fano formula for straggling,? and I(2) in the
expression for the Lamb shift of energy levels!

A fundamental electronic property of an atom
or molecule, the oscillator-strength density,
characterizes the response of matter to an elec-
tric field uniform in space and harmonic in time
(at frequency E /f). The study of df/dE in all as-
pects is important from both basic and applied
standpoints. In particular, it is highly desirable
to exploit relations among the indices of the dis-
tribution such as S(u) and L(i) and to obtain es-
timates of their values efficiently and reliably.
The present work was motivated to contribute to
this end.

Precise calculation of L(u) is straightforward,
if df/dE is completely known over the entire
spectrum. Alternatively, one can derive L(u)
from the frequency-dependent polarizability, or
more fundamentally, from the Green’s function$’
Either way, the calculation assumes full knowl-
edge of the electronic structure, which is seldom
available. L(u) may be approximately calculated
on the basis of variational principles.%®13 This
approach is equivalent to approximate determina-
tion of the Green’s function, and involves cumber-
some computations, when accurate results for
many-electron systems are aimed at.

In contrast, S(u) for y=2,1,0,-1,~2,~4, -6,...
are either calculable as ground-state expectation
values ! or deducible from experiment.2 There-
fore, it is useful to establish means of estimating
L(u) from S(u) without recourse to the full knowl-
edge of df/dE or the Green’s function. An example
is to regard given S(u) data as defining a function
of a continuous variable yu, and then to deduce
L(u), either analytically !*™'® or graphically,’ as
the slope of the S(u) curve. Another class of ap-
proaches is to use linear programming19 or the
moment t:heory,20 i.e., general methods for infer-
ring properties of the distribution from its mo-
ments.

The purpose of the present paper is twofold.
First, we shall discuss in Sec. II a set of elemen-
tary upper and lower bounds on InI(u) involving
only oscillator-strength moments. Although the
bounds themselves have been pointed out earlier,’
our interpretation is new and leads to a criterion
for judging their usefulness. Second, we shall
derive, from variational principles, a series of
tighter complementary bounds that are calculable
from S(u) and the oscillator strengths f, for a
finite number of discrete excitations. The elem-
entary bounds in Sec. II will turn out to be the
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simplest of these complementary bounds. Some
of these complementary bounds also turn out to be
identical with the moment-theory bounds of Ref.
20.

II. ELEMENTARY INEQUALITIES

A straightforward generalization of relation (5)
of Ref. 19 gives inequalities

In[S(u)/S(p —1)]< L(p)/S(w)
<In[S(p +1)/S(p)], (4)

if all the quantities that appear here are well de-
fined; S(u) diverges in general at u =3$ because
of the asymptotic expression!:® df/dE c E™"/2,

The equality occurs only if df/dE degenerates into
a single-line spectrum S(0)6(E —E*), E* being a
constant.

Mathematically, relation (4) is a consequence
of Jensen’s theorem about convex functions. One
sets ¢(z)=~Ilnz and ¢(z) =z 1lnz in Eq. (6.14.1) of
Ref. 21, and obtains relation (4) above.

The following alternative proof is more instruc-
tive. Assume that a function

T(u)=1nS(w) (5)

is twice differentiable. If the differentiation with
respect to u is denoted by a prime, one may write

T"() ={S(n)S" (1) =[S’ (W) P}/ [S(w) - (6)
Note Eq. (2) and that

S"(u)——_—L’(u.)=f:—£—E“(lnE)sz ) (7

According to the Schwarz inequality, 7'"(p) =0 for
any u, and the equality occurs only if df/dE
=S(0)6(E —E*). In other words, 7T(u) is convex
downwards. Then, the slope T'(u)=L(w)/S(n) at
any u is bounded from above and below by the
slopes of two chords passing the point (u, T(y)),
namely, by [T(p +v) —T(p)})/v and [T(p)

—T(u —v'))/v’, where v and v’ are any real num-
bers for which T(u +v) and T(u - ') are well de-
fined. Set v=»"=1, and relation (4) follows.

The essence of the proof is illustrated in Fig. 1,
prepared from the data of Zeiss et al.,?? and in
Fig. 2, taken from the paper by Dehmer, Inokuti,
and Saxon,?? who extensively studied S(u) for
atoms. Cummings?! also gave a similar figure.
Indeed, T(u) is convex downwards for all the rel-
evant data on atoms (as quoted in Ref. 23) and on
molecules (as quoted in Ref. 25), apart from one
exception to be noted later. Evidently, relation
(4) should give a set of tight bounds on L(u) if
T"(w) is small, i.e., if the T(u) curve is nearly
linear. Therefore, Fig. 2 im‘mediately shows
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FIG. 1. Dlustration of inequalities (4) for the H;O
molecule. All data are due to Zeiss et al.?? The thin
straight line is the tangent of the InS(p) curve at u =0,
The broken straight lines (- --) are chords passing the
point (0,1). Clearly, the slopes of the chords bound the
slope of the tangent from above and below.

that the bounds on L(~1)/S(-1) of He are quite
tight, and those on L(0)/S(0) of He fairly tight.
For Ne, the bounds on L(~-1)/S(~1) and L(0)/S(0)
are looser than those for He. For Li, the lower
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FIG. 2. InS(u) of lighter atoms plotted as a function of
p. The curve for H is rigorous. The curves for He, Ne,
and Ar are based on the best data available. All the
other curves are based on the calculation? in the Har-
tree-Slater model.
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bound on L(-1)/S(-1) is tight, but the upper bound
is looser. In general, bounds on L(1)/S(1) are
much looser, because T”(1) is appreciable; recall
that S(u), L(n), and T(p) are all divergent at
p=2553

Table I illustrates bounds for u =-1, 0, 1, and
2 obtained from data%8%%2%26 for H, He, Ne, and
H,0, and corroborates all the observations in the
previous paragraph.

An additional commentary concerns three points.
First, relation (4) holds whatever energy unit is
used for S(u) and L(u), but each term in relation
(4) has a value dependent on the energy unit. - The
scale change by a factor o causes each term to
increase by a common additive constant lna.
Then, T(u) increases by an additive term plna,

]
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but 7"”(u) remains invariant. Thus, in Table I,
it is the difference (which is independent of the
energy scale) between two successive entries
that represents the tightness of the bounds.
Second, relation (4) holds also for partial con-
tributions to S(u) and L(u) either from a limited
spectral region or from specified shells or sub-
shells to the extent that shell or subshell contri-
butions are well defined. As an application, di-
vide S(u) and L(p) into two partial contributions,
S0 that S(u) =S() +S,(n) and L(p) =L(p) + Ly(p).
Suppose that S{(u) and L (i) are known in addition
to S(u). Then, applying (4) to L,(u) and S,(u),
one obtains bounds on L,(u)/S5(n), and therefore
on L(u)/S(p):

S, () [L<(u) ““(s S, (1)

S(p) LS,(n) S(w=1)/1 " S(w) ~ S(p) LS, (k)

We recommend that 1nS(y) be plotted against
each time data on any atom or molecule become
available and that the downward convexity of the
resulting curve be verified. To illustrate the use-
fulness of the recommendation, we may quote the
work of Turner et al 2" Figure 1 of Ref. 27 pre-
sents S(u.) data for H, Al, and U atoms. (The in-
dex 7 of Ref. 27 corresponds to our y +1.)
Against our rule the curves for Al and U show up-
ward convexity. Examination of the numerical
work reveals that the values of S(1) (shown at
7 =2 in the figure) for Al and U are too large by
a factor of Z. Correction of the error renders all
the curves convex downwards and resolves the
difficulty.

TABLE I. Test of inequalities (4). S(p) and L(p) are
defined by Egs. (1) and (2) with excitation energies E
measured in units of the Rydberg energy (13.606 eV).
Entries for each column increase steadily from top to
bottom according to the inequalities. Numerical values
are based on data in Refs. 3, 5, 7, 8, 25, and 26.

Terms in Eq. (4) H He Ne H,0
In[S(-1)/8(=2)] -0.1178 0.777 1.04 0.426
L(-1)/8(-1) -0.0733 0.848 1.25 0.607
In[s(0)/s(=1)] 0.0000 0.978 1.67  0.997
L(0)/s(0) 0.0970 1.13 2.31 1.65
In[s(1)/5(0)] 0.2877 1.41 3.46 2.95
L(1)/s(1) 0.5709 1.68 4.65 4.23
In[$(2)/8(1)] 1.3863  2.70 5.79  5.41
L(2)/s(2) 2.9841  4.37 7.19 17.19

)] L) <S>(u)[L<(u) +

(8)

1“(s>s(>”(:)1))] :

IIl. IMPROVED BOUNDS IN TERMS
OF OSCILLATOR-STRENGTH MOMENTS

In this section we shall first consider a set of .
basis functions {,}, in terms of which we shall
define two finite subspaces of the Hilbert space of
square-integrable functions. Projections of the
Schrodinger equation onto these subspaces will be
considered, and two sets of effective discrete ex-
cited states will be defined. Using these sets, we
shall construct two types of an effective discrete
oscillator-stvength distrvibution. These effective
spectra play an important role in this section. If
a certain function, defined later, is included in
the basis set {u;}, the effective spectra reproduce
exactly some of the oscillator-strength moments
S(u), but not L(i). They give, however, upper
and lower bounds on some of the L(u). (These
bounds prove to be the optimum values given by
complementary variational principles, as will be
seen in Sec. IV.)

Choosing a special basis set, we shall derive
simple bounds on L(u) in terms of data available
for many atoms, namely, moments of the entire
oscillator-strength distribution and the positions
E,, and the oscillator strengths f, of some discrete
spectral lines. We shall illustrate on some atoms
the usefulness of these simple bounds for y =-1,
0, and 1; results for p =2 are somewhat discour-
aging. The simplest examples of the bounds in
terms of S(u) are identical with those derived in
the preceding section from the downward convex-
ity of the curve of InS(u) vs u.
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A. Effective oscillator-strength distributions

In the following we use the Rydberg unit for
energy and atomic units for other quantities. Con-
sider eigenvalues E , and normalized eigenfunc-
tions @ of the Hamiltonian H of an atom. Let 3,
be the ground state and ¥, with n> 1 be the excited
states that are coupled with y, by the dipole oper-
ator D =%,;. We assume that the atom is either
spherical or randomly oriented. In terms of a
function ¢‘® defined by

(p(s)z(H_Eo)s/ZDd)o , (9)

the oscillator strength for the transition =,
may be written as '

f,=E5 p,,0@) 12, )

where E,,=E —E, is the excitation energy. The
choices s =0 and 2 give length-form and velocity-
form expressions; recall that

7}
(H —E)Dy, = ‘225.;: Po -

For a real atom there are infinitely many dis-
crete states y and a continuum of ‘excited states
that are accessible from the ground state by a
dipole-allowed transition. For constructing an
effective oscillator-strength distribution, the
Hilbert space X, of these functions may be approx-
imated by a finite subspace X} spanned by basis
functions {u,}}.,; some choices of {«;} will be dis~
cussed later. Assume that the ground-state ener-
gy E, is known, and define matrices 4 and B by

and
By =(u;,uy) . (11b)

Matrix B is symmetric and positive definite. So
is A, because the basis functions «; belong to x,.
Consider a matrix eigenvalue problem

‘i_cn=8n§£n’ (12)

which is the Schrodinger equation projected onto
L. An orthonormality relation

CaBCm=0,, (13)

holds, if the normalization constants are chosen

appropriately. Here, the superscript T indicates
a transposed row vector, and ¢, is a column vec-
tor having components (c,);. An orthonormal set

of approximate excited states are obtained as

¢n=_c_£'2‘_= ﬁ:(cn)dui (=1, *,N). (14)

The eigenvalues € of Eq. (12) are the excitation
energies corresponding to ¢ and measured from

the ground-state energy E .
Choose u; =¢‘®’, Then, A;; =S(s), because

S(1)= (o | D[H —=E)**'D lyy). (15)

Therefore, A,, for s = § are infinite, and we con-
sider only s <3. An effective oscillator-strength
distribution may be defined by the set of the exci-
tation energies ¢, and effective oscillator
strengths

fO=€21(g,,0) 1 | (16a)
=s;'s[§£,,9_£§]“ (16b)

forn=1, »*,N;, compare Eq. (16a) with Eq. (10).
In using ¢ in the definition of f*’, we have as-
sumed knowledge of the exact y,. The effective
spectrum {En,f"" '} differs from the true spectrum,
having only a discrete spectrum and being con-
fined in a finite region of energy. Nevertheless,
it shares some of the overall properties with the
true spectrum. The moment of the effective spec-
trum {€ ,f"} and its derivative with respect to

the order u are

SOw)= 3 rees (17)
and
L) =g/‘:’s‘;ma". - (17b)

Appendix A shows that, because of the inclusion
of the exact ¢®’ in the basis set {#;}, the moments
S®(s —1) and S*’(s) are exact, i.e.,

S®(s ~1)=8(s -1),
S$(s)=8(s)

We shall show in Sec. IV that L (s —1) and L*“(s)
are variationally optimized bounds on L(s - 1) and
L(s):

L®s-1)=L(s-1),
L®(s)s L(s)

fors<3. (18)

fors<3. (19)

Combination of Eqs. (18) and (19) gives bounds on
mean excitation energies. So far the basis func-
tions u; except u, have not been specified. By so
choosing u; that L (s —1) becomes as small as
possible and L'®’(s) as large as possible, one may
obtain good estimates of InJ(s —1) and InI(s).

If the basis set includes both ¢‘*’ and ¢ ¥, it
follows, in addition to Eqs. (18) and (19), that

$™(1)=5(1), S(2)=5(2) (20)
and »
LOM)=LQ1), LO2)<L(). (21)

Next, we construct another effective oscillator-
strength distribution. We assume knowledge of
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both the ground-state energy E, and the energy
E, of the lowest excited state y; belonging to ;.
Instead of {u,}}-;, we consider a basis set
{#H-E)"%,}}),. Then, the Schrodmger equation
projected onto the functional space Er,, spanned by
this set of functions is

Vd,=¢,Wd, (n=2,3,"*,N+1), (22)
where the matrices V and W are defined by

Vi;=(w; I[H -E(][H -E ] luy)

=X,; -EqAy (23a)
o= |H ~E, lu))=A,,~E By, , (23b)

and '
X = I[H -E ) lu). (23¢)

Because of the operator (H -~E), a ¢y component
in #; contributes nothing. Therefore, we choose
functions u; so that y; does not belong to tx},. Then,
both V and W are symmetric and positive definite.
On the othe}_hand, an effective spectrum should
include a contribution from y,;, which will be con-
sidered later. This is the reason why in Eq. (22)
the eigenvalues are numbered from 2 to N+ 1 in-
stead of 1 to N. Due to the orthonormality relation
dawd,=5 (24)

nm ?

we obtain an orthonormal set of approximate ex-
cited states

b =dyH -E)"%u (n=2,...,N+1) (25)
having excitation energies ¢, measured from the
ground-state energy E,. Naturally, we should take
$1=9; and e =E.

Choose u; =¢‘’. Then, because of Eq. (15),
X, =S(s +1), whlch is infinite for s = 3; we con-
sider only s <3. The oscillator strength in Eq.
(10) may be written in a different form

f Eo I(‘/) I[H ~-E ]1/2|¢<S))I2/(Eon -Ey),
(26)
the denominator being the excitation energy mea-
sured from the lowest excited state 7,. Effective
oscillator strengths may be defined as

£ = (0, |l - EJ |9/ (e, - € (2Ta)

=€ (Wd,d; W),/(€, - <) (270)

forn=2,...,N+1. Forn=1, Eq. (27a) has a
zero-over-zero form, and g“ ) is determined so
as to satisfy

N+1

2: g(s) f, 1-S(s-1). (28)

The moment of this effective spectrum and its
derivative are

N+l

8(u)= Z g8 (292)

and
N+1 ‘
£9%p)=Y g% e Ine,,. (29b)
n=1

Acc.ording to Eq. (28) and Appendix A,
§(s=1)=S(s =1),
84)(s)=5(s), (30)
and
§9(s+1)=S(s+1)

for s<3. We shall show in Sec. IV that some of
the £°(u) are variational bounds on L (n):

£(s-1)<sL(s-1),

£(s)>L(s), ' (31)
and

£8(s+1)<L(s+1)

for s<3. For a fixed s, these inequalities give
bounds complementary to those obtained from the
effective spectrum {e,, f'}Y However no upper
bound on L(u) has been obtamed for 3 < p<?%.

B. Examples of simple bounds

In this section we shall assume a special type
of basis functions for constructing effective os-
cillator-strength spectra. Then, all the elements
of matrices A, B, V, and W are expressible in
terms of S(u), and some discrete oscillator
strengths f, and the corresponding excitation en-
ergies E,,. Thus, we can derive from the vari-
ational bounds on mean excitation energies,
studied in Sec. III A, bounds in terms of these -
known quantities. A special case of a single-
member basis set leads to a single-line effective
spectrum that gives bounds equivalent to in-
equalities (4) in Sec. II. If this basis set is aug-
mented by another kind of basis functions, we
obtain inequalities (8). The bounds calculable
from several S(u) and (f,, E,,) will be tested on
H, He, Ne, and H,0. The bounds on L(-1), L(0),
and L(1) will prove to be useful.

Let the basis set {u .} be

— E i) <i<
Y H-E)" ¢ (1<z<N0). _ (32)

b, (N,+1<is<N)

Similar basis set has been used by Goscinski®
in calculations of bounds on frequency-dependent
polarizabilities. For the present purpose, m,
for =1 must be zero. For i>2, m, may be any
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integer, insofar as all the elements of matrices
A and B (for constructing the effective spectrum

Te. ./ or V and W (for {¢,, g{’}) are well defined.

When inequalities (21) are used, s= 0, and «,
with m,=1 must be included. The wave functions
¥,; in Eq. (32) are those eigenfunctions of H which
belong to X,, and may be numbered in any order.
For obtaining the effective spectrum {¢ g%}, ¥,
must be excluded from the basis set, according
to the statement made just below Eq. (23c).

(B =S(s+m +m; -1), By =

(Aa)‘” =S(S +m,+m,), (Ab){l f1/2E(s+2mi*1)/2’

(X)) =Sls+m +m,;+1), (X,),, —fl/zE‘s*z’" i*3)/2

—fl/2 p(s+2m;-1)/2
fnj Eonj i ’

The matrices B, _{1_, and X may be decomposed
into submatrices as

po(Ce B, (33)
- T
Bl B,

etc., corresponding to the division of the basis

- functions into two groups i <N, and i >N,. The

matrix elements are obtained from Eqs. (9), (10),
and (15) as

(B.);;=8;, (34a)
”'=E0,,‘5“., (34b)

(Xc)U:E?)n,-GH . (340)

Here, we have assumed that all the wave functions ¥, are real and normalized, and the signs of the nor-
malization constants have been so chosen that ((/)OIDIz/J )>0. Matrices V and W are given by Eqgs. (23a)
and (23b). Note that all the matrices necessary for calculatmg bounds on L (i) are obtained from data
available for many atoms, namely, moments of the entire oscillator-strength distribution and the oscil-
lator strengths and excitation energies for some discrete transitions.

The simplest basis set {u,} consists of a single member u,=¢*. Then, B and A are one-by-one ma-
trices, and B=S(s = 1) and A =S(s) [Eq. (A5) in Appendix A]. The corresponding effective spectrum is a

single-line spectrum

{e,=5(s)/8(s - 1), £$=[S(s = VI*[S()1*".

Naturally, this spectrum satisfies Eq. (18); f{’%$™=S(s - 1) and f$6$=S(s). From Eqgs. (17b) and (19) we

obtain inequalities

Lis=1) _ L®(s-1) “In ( S(s) ) LéXs) _
Ss=-1) = S(s-1) ~\S(s-1) S(s)

(s<%), (35)

which are equivalent to inequalities (4). Thus, the bounds derived in this section may be regarded as gen-

eralizations of inequalities (4).
If No=1 and u,=9,, for i=2,..

rs(s"l) Bz Bs ctt BNT
B, 1 0--- 0
63 0 1.+« 0

E: (B, ={fniEgr_1:}l/2)9
0 0 1
. By J
and
N
[(S()  EomBy Eonfls -+ EonyB
EonBs  Eon, 0 .- 0

A = EO"S B3 0 E°"3 0

-y N, the matrices B and 4 are

(36a)

(36D)



2920 ISAO SHIMAMURA AND MITIO INOKUTI 23

The eigenvalues and normalized eigenvectors of
Eq. (12) are

£,=F(s)/F(s-1),

(37a)
£,=E,, (i=2,...,N)
and
r 1 7
_.32
cr=[Fs-12| e |
-By
- o
)
0 1
(370)
0]i-1
;= i (=2,...,N),
0 |i+l
0 N
. J
where
N
F($)=S()= 237, B, - (37c)

It follows from Eq. (16b) that

FO=[Fs = DF[FE)I
and o

fO=f,, (=2,...,N).

Therefore, in the N-line effective spectrum, the
positions and the strengths of the N —1 input lines
remain unchanged. The only remaining line
(1,7’) has been determined, in effect, so as to
reproduce S(s -~ 1) and S(s) exactly. Bounds on
L(u) are obtained as

L (S) < L(S¢1)(s)

=F(s) [I;fé:)) +1n( Fl(:(:)l))] (s<3) (39a)

and

L(s)=L%(s)

-r 2 (72 5)] 6<h, @)

where

N
L(s)= X f, Eo, InEq, . (39¢)
i=2

Inequalities (39a) and (39b) are equivalent to in- .
equalities (8), because F(s) and L (s) play the
same roles as S,(u) and L (u) in inequalities (8).

Because S(u) values for several u are available
for many atoms, it is useful to illustrate on the
hydrogen atom, for which the exact value of S(u)
is known for any p, how the bounds in terms of
S(u) are improved as N, is increased, i.e., as
more and more S(u) are used as an input. Table
IT shows that the improvement is very rapid for

=-1 and 0, and fairly rapid for p=1, suggesting
the usefulness of the bounds derived in this sec-
tion. For u=2, however, only a lower bound can
be obtained, and it converges slowly. Thus the
method of this section may often be of little use
for estimating 1n7(2).

A straightforward generalization of Appendix A
shows that the effective spectra of this section ex-
actly reproduce the moments S(u) that are used to
construct these spectra. When discrete oscillator
strengths f,.are not used, i.e., when N=N, in Eq.
(32) an N-point spectrum {g,,f ff’} is, in effect,
determined so that 2N moments be reproduced,
and an (N+1)-point spectrum {in,gﬁf’} is, in ef-
fect, determined so that 2¥+1 moments and E,
be reproduced. In fact this procedure has been
taken by Langhoff and Yates? for obtaining bounds
on the basis of the moment theory. Their upper
bounds on L(0) and lower bounds on L(1) and on
L(-1) are determined from S(u) for p=1,0, ...,

2 - 2N, and their. lower bounds on L(0) and upper
bounds on L(1) and on L(~1) are determined from
E, and S(p) for p=2,1,..., 4= 2N. Thus, the
moment-theory bounds of Ref. 20 are special
cases of the complementary bounds of this section
(cf. footnote c¢ of Table II). Table 1 of Ref. 20 is
indeed consistent with Table II of the present pa-
per within round-off errors, except for the fol-
lowing: If the mean excitation energies are given
in eV, our upper bound on InI(1) in terms of S(2)
~8(-2) and E,, is 3.245 as compared with 3.241

in Ref. 20. In passing, Table 1 of Ref. 20 includes
“upper and lower bounds” on lnl(-1) in terms of
S(2)~S(0) and E,,, but they are really not guaran-
teed to be bounds either by the arguments of the
present paper or by the moment theory of Ref. 20.

Table III illustrates bounds obtained from
data® 814252629 for He, Ne, and H,0, and proves
the usefulness of the bounds for u=-1, 0, and 1.
Naturally, the bounds are rigorous only if all the
input data are exact, which is true only for atomic
hydrogen. When two complementary bounds are
close to each other, we should be careful of the
accuracy of the input data, because either of the
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TABLE II. Bounds on L(p) for the hydrogen atom in the ground state that are obtained from
oscillator-strength moments S(v) and the first excitation energy Ey. Energies are measured
in Rydberg units.

L(2) L(1) L(0) L(-1)
Lower Upper Lower Upper
Input data bound bound bound bound
S(2) ~S(1) 7.39 1.848 0.00002 0.000002
S(2)~S(0), Ey 9.52 1.104°¢ -0.0874°¢
S(2)~ 8(-1) 10.61 0.933 0.0549 —0.02575
S(2)~8(=2), Ey 11.59 0.846°¢ 0.0857°¢ -0.06812°
S(2) ~ S(-3) 12.03 0.820 0.0913 —0.07158
S(2)~ S(~4), Ey 12.61 0.796 ¢ 0.0948¢ —0.07285¢
S(2) ~ §(=5) 12.85 0.788 0.0956 —-0.07305
Lower Upper Lower
Input data bound bound bound
S(1) ~ 5(0) 0.384°¢ 0.2877¢ —-0.11778"%
S(1)~ S(-1), Ey 0.592 0.1305 -0.108 47
S(1)~ S(-2) 0.654¢ 0.1102¢ -0.07984¢
S(1)~ 8(-3), Ey 0.701 0.1015 —0.074 47
S(1)~ s(-4) 0.716¢ 0.0996 ¢ —0.07377°¢
S(1)~ S(=5), Ey 0.732 0.0981 -0.07341
Exact value 15.92 0.761 0.0970 —0.073 25

2Input data: §(0) and S(-1).
®Input data: S(~1) and S(—2).
¢ Bounds obtainable also from the moment theory of Ref. 20.

bounds may cross over the true value owing to an dent Green’s function G ‘’(w) that depends on the
error in the input. function ¢‘®*. We shall derive complementary
variational bounds on G‘(w), and hence, on L(y).
The optimum bounds may be expressed in terms
The mean excitation energies may be expressed of the effective spectra defined in Sec. III. The
in terms of S(u) and a kind of frequency-depen- results have the same form as the definition of

IV. COMPLEMENTARY VARIATIONAL BOUNDS

TABLE III. Bounds on mean excitation energies I(y) in terms of discrete oscillator
strengths f, and oscillator-strength moments S(»). Energies are measured in Rydberg
units. These values should be compared with InI(y) =L (1)/S(p) in Table I.

He Ne H,0
InJ(~1) Upper bound 0.857 (0.87)2 1.28 (1.38) 0.64
Lower bound 0.855 (0.85) 1.24 (1.16) 0.58
Difference 0.002 (0.02) 0.04 (0.22) 0.05
In1(0) Upper bound 1.135 (1.16) 2.39 (2.51) 1.77
Lower bound 1.127 (1.10) 2.18 (1.99) 1.50
Difference 0.008 (0.06) 0.21 (0.52) 0.27
InI(1) Upper bound 1.841 (1.90) 5.08 (5.31) 4.76
Lower bound 1.755 (1.66) 4.25 (4.03) 3.75
Difference 0.086 (0.24) 0.83 (1.28) 1.01
InI(2) Lower bound 3.568 6.06 5.64
Input data S(2)~ §(—4) S(2)~ S(—4) S(2) ~ S(—4)
(f1,Ept) (f1,Ep1) Ey
(f2» Ega) (f2, Ep2)

2Values in parentheses are from Ref. 20.
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the exact L(u), except that the integration over the
continuous spectra in the exact L(u) is absent in
the expressions for the bounds, and is replaced by
the summation over the discrete effective spec-
tra. Thus, inequalities (19), (21), and (31) will
be proved on the basis of variational principles.

Shimamura and Watanabe'® have obtained vari-
ational bounds on L(u) for p=-1, 0, 1, and 2,
which include as special cases bounds obtained
by other authors, namely, bounds on L(2)
by Schwartz® and by Dmitriev et al.,*°*! on L(0)
and L(1) by Chan and Dalgarno® and by Kamikawai
et al.,° and on L(~1) and L(0) by Yuriev.!? The
following formulation is a generalization of that
of Ref. 13.

We begin with two functionals J[x] and I[x] of a
real function x that have been discussed by Shima-
mura®® (See also Ref. 31.):

J[x]=(x, 2u - @x) , (40a)
I[x] =~ Gx,u— @x)/Xg+J[X]. (40b)

Here, u is a real function, @ is a linear and pos-
itive-definite operator, and A, is the smallest
eigenvalue of @. These functionals are variational .
and bound from above and below the expectation
value of the inverse of @ with respect to «, i.e.,

Il < @] @™ u) < Ix,] (41)
for any real x, and x,.*° The first equality holds if
@x,-u=0, (42a)

and the second holds if
(@=2)(@x, —u)=0. (42b)

Inequalities (41) give tight bounds, if the trial
functions y, and x, satisfy Eqs. (42a) and (42b) to
a good approximation.

Set

@=H-E,+w and u=u,=¢ (43)

where w is any positive constant. Let x, and ,
belong to &X,. Naturally, @>0 and A,=E +w >0.

Then, inequalities (41) give bounds on the quantity
]
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G(S)(w)'—'((p(S) ] [H— E0+w]-1'¢(s))

- Tr(EE) <h, (44)

and Eq. (42a) is the first-order perturbation equa-
tion for frequency (w)-dependent dipole perturba-
tion. The solution of Eq. (42a) satisfies also Eq.
(42b).

Assume trial functions of the form

Xi,2(w) = Z clwhu,=cTu. (45)

Then, the variational functionals that bound G ©’(w)
take forms quadratic in c as

I]=2(c"B), - c"(A+wB)c (46a)
and
I[Xo] = (Eoy + 0)*[By, = 2(c™W), +c T(V + wW)c],
(46b)

the matrices 4, B, V, and W being defined by Egs.
(11) and (23).” The optimum values of Egs. (46a)
and (46b) are

I pax(W) = [g(_é+ wg)‘l_f_z]u ‘ (47a)
and
I (w)=(E; +w)? {B -Wl +wW) 'IW]H , (47b)

because both A+wB and V+ wW are positive de-
finite. [See the statements made just below Eq.
(11) and Eq. (23).] Using Eq. (16b) and Eqgs. (Al)
and (A2) in Appehdix A, one may show that

T nax@) = Z f‘s)(8 w) (482)

n=1

Similarly, from Eqs. (27b), (A3), (A6), and (AT),
(@)= (€, +w) S (s = 1 NE” @€ e~ )]
min 1 S - )- En €n+ w

N+l

- Ten(Eg) (48b)

Note the resemblance among Egs. (44), (48a), and (48b); the effective spectra {c,,/'¥} and {en,g‘s’}

give variationally optimized bounds on G ‘*(w) for any w.

A relation between L(u) and G*'(w)

L(u)=lim <S(u) Inw+ “2:18(#—1) (—;’)l
=

w > o

is derived in Appendix B for u<3, s<%, and u—-s=-1,0,1,....
I,i.(w) of Eq. (48b) for G’(w) of Eq. (49) leads to a variationally optimized bound on L ().

hand, a straightforward algebra shows that

LY ()= lim (S‘s’(p)lnw+ ui S @ (- l)( w)!

w—> o =1

_ jo-w (_w)“'s”G‘s’(w)dw) (49)

Substitution of J,,, (w) of Eq. (48a) or
On the other

fo ’ (—w)“'s”Jmax(w)dw) . | (502)
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By comparison between Egs. (49) and (50a), we see that L(p) is a variational lower bound on L(w) for
even values of 4 —s and a variational upper bound for odd values of u-s, if S®)(v)=S(v) for v=s - 1,
S,..., 4. This condition is satisfied for u=s —1 and s [Eq. (18)]. Therefore, inequalities (19) have been
proved. If s =0and ¢(?, as well as ¢(?, is included in the basis set, then both Eq. (18) and Eq. (20) hold;
SO(1)=S(v) for v=-=1, 0, 1, and 2. Therefore, inequalities (21) follow.

For the effective spectrum {e,,,g‘,f’}, it follows that

L£9(p) = lim (s‘s’(u) Inw+ “2“ 8§ (u=-1) (—-—;))—‘— - fw (= w)k-s* lI“M(o.))air.c)) . (50Db)
(4]

wW—> o =1

\

Comparison between Eqs. (49) and (50b) shows
that £%(y) is a variational upper bound on L(u)
for even values of yu-s and a variational lower
bound for odd values of u-s, if 8’ (v)=S(v) for
v=s-1,s,..., u. This condition is satisfied for
p=s-1, s, and s+1 |Eq. (30)]. Thus, inequali-
ties (31) have been proved.

The bounds obtained by Shimamura and Wata-
nabe'? are equivalent to those of this section.
However, their formulation has been given only
for s=0and p=-1, 0, 1, and 2, and for s =2 and
pn=1and 2. Their bounds are expressed as infin-
ite series in terms of B4 and W™V, and are in-
convenient for computi{i(ﬁal pu?pos_es. On the
other hand, the expressions (17b) and (29b) for
the bounds have simple forms that give an ad-
ditional insight into the bounds.
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APPENDIX A: PROOF OF EQS. (18) AND (30)

From the eigenvalue problem (12) and the or-
thonormalization condition ¢7Bc,, =0, it follows
that

N
) cncd =B (A1)
n=1
and that
N
2 cuench =I7AB™ . (a2)
n=1

According to Eqs. (17a) and (16b) we have

N
$s =1)=2, [Beac?Bl, =By, (a3)
n=l
and

N
59 (s) =2 [BectBlue,=Ay , (A9)
n=zl
where Eqs. (A1) and'(A2) have been used to derive
the second equalities of Eqs. (A3) and (A4). From
definitions (11a) and (11b) of A and B, the choice
that », is ¢'® of Eq. (9), and formula (15) for
S(u), we obtain

B,;=S(s-1) and 4,, =S(s) , . (A5)

and therefore, Eqs. (18). Equations (20) have
been derived by Dalgarno and Epstein®® under the
condition that both ¢'® and ¢‘® are included in
-the basis set.

For the eigenvalue problem (22), relations sim-
ilar to Eqs. (A1) and (A2) are

N+l

2 ddE=W" (a8)
n=2
and
N+l
2 dedi=Wivw. (A7)

n=2
We define two new quantities R(u) and &'’ (u) by

R(u)=S(u) = E,S(n—-1) . (A8)
and

RO () =8(u) —€,8(n~1) . ~ (A9)

A discrete oscillator strength at E,, if any,
contributes nothing to R(u) or ®®’(1). There-
fore, it follows from Eqs. (29a), (27b), (A6),
(23b), and (A5) that

N+l

R ()=, (Wd,dEW),,=W,,=R(s) .  (A10)

n=2

In a similar manner we obtain a relation

RO (s +1)= 3y (Wadh Wt

n=2

=V, =R(s+1) . (A11)

" These two relations, combined with the first of

Egs. (30), lead to the other two of Eqs. (30).
The first one follows from Eqs. (28) and (29a).
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APPENDIX B: DERIVATION OF EQ. (49)

From Eq. (44) we have

[ o o= [*[X AE (e - ZE““(—w)’)]dw

' (= w) (B1)

=5 (w)lnw + P(u;w) - L(y) + 2_,‘ S(p-1)

for p<%, s<2,and p-s=-1, 0, 1, 2,

., where

E,
P(u;w)=Z":f"Eg,, 1n<1 +—w<l"—) . (B2)
For p=s -1, the sum over [ vanishes. Consider a quantity
u=s+1 :
tm (5 (1) +P(si) + Z se=0 2 - [ Copie @) (83)
w o

The expression in the large parentheses is equal to L(u) according to Eq. (B1). Because L(u) is inde-
pendent of w, so is this expression. Therefore, its limit (B3) as w — < remains equal to L(u). Then,
Eq. (49) is proved, if the limit of P(u;w) is shown to vanish as w —.

In taking this limit, one must avoid simply interchanging the order of the limit w —« and the summation
over n, because E,, tends to infinity as n— <. We use the fact'? that

% =aE""/% + (higher-order terms) ,

(B4)

which holds for E > E_ if the constant E, is chosen sufficiently large. The summation in Eq. (B2) may

be split into two parts as

lim P(u;w)= hmz faEY, 1n<1 +—9—> + lim f o E#12) 1n<1 +§>dE . (B5)

w= o w=® w=®

The first term in Eq. (B5) vanishes. The second term may be written, after partial integration, as

; 20 u=(5/2) E) ( )
hm[<5—2p)E° 1n<1+——‘= + 5_34

w=

For u <%, Q(u;E,,w) vanishes as »™ or faster
as w ~>°°, because

0< lim Q(u;E,,w)

W= ®

< lim f E‘5/2" = lim

-
w= c w

const ) B7)

More generally, for any p <%, we have

_ECT(E +w)

5~ 2#““‘[ ECTD0(E + )

W~ o

dE ] 2a dE

_ 2 . . '
=5-22 Hﬁ: Q(W;E,,w) . (B6)
< E ) 2 E-(S/Z'u.)
0< Q(u; cr @ E(v/z)- 5_2“ ¢ .
(B8)

This quantity may be made as small as desired,
because one may choose any large constant value
of E,. This concludes the proof of Eq. (49), which
is a generalization of the Appendix of Ref. 13.
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