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Use of local exchange potentials in the calculation of photoionization and electron-ion scattering
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Several local approximations to exchange are investigated. These are compared against exact static-exchange
results for e,Li+ scattering and for the photoionization of the 2S and 2P state of Li. All except one are found to be
fairly accurate for these cases. Calculations are also performed for photoionization of the 5D state of Cs, which
exhibits an f-wave resonance. All exchange models studied for this case (including the Slater Xa) are found to give
widely differing results on the position and width of this resonance. Calculations are also performed for the
photoionization of the Cs 6P state and compared against experimental results.

I. INTRODUCTION

Riley and Truhlar' have studied the use of local-
exchange approximations for the elastic scatter-
ing of electrons from closed-shell atoms. These
approximations were then studied in electron
molecule scattering' and atomic photoionization. '
In the present paper, further work is reported on
the use of local-exchange models in atomic photo-
ionization.

Local-exchange potentials, in particular the
Slater4 Xn, have been used extensively in the cal-
culation of atomic' and molecular' ' photoelectric
cross sections. In the case of the photoionization
of the 5D state of Cs, an f-wave resonance, which
produces a very deep, narrow minimum in the
cross section, has been reported' based on re-
sults of the Xn model. Since the prediction of this
"new minimum" has generated some experimental
interest, ' it would appear worthwhile to study the

behavior of the resonance as a function of various
loca1 atomic fields which can be shown to produce
reliably accurate nonresonant photoelectric cross
sections in such atoms as Li and Cs.

Molecular photoelectric cross sections' ' have
shown a profusion of resonances based on the use
of the multiple-scattering Xo. (MSXo. model. ")
Here the atomic fields used in the "muffin-tin"
approximation are based on the Slater model. The
study of the details of the molecular field which
are responsible for shape resonances is a com-
plicated task, beyond the scope of the present
studies. It is certain' "that in the photoioniza-
tion of N„ for example, the Slater Xa. model
atomic N fields produce no f -wave resonance.
However, the model dependence of the atomic
cross sections should be known by workers per-
forming molecular calculations based on the use
of superposed atomic fields; thus the calculations
reported here are expected to be of interest in the
field of molecular photoionization.

II. THEORY

First, we tested several local-exchange approximations against exact static-exchange results for Li.
The radial equations for electron-atom scattering in the static-exchange approximation are well known,
but for completeness we give them here. For e, Li they are (in atomic units)

—2V(r)+k' p, (r; 0) = -ru„(r) 2
dr'r'u„(r'), „p,(r'; k)r

((~ (( - )f ar' rr'r „(r' )( ~
(r kl)

0

V(r)=- —+2 dr'r"r)'u' (r')3

0

(1a)

(ib)
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where u„(r) and e„are the Li' 1s is orbital and
orbital energy in Ry. The phase shifts for modi-
fied Coulomb scattering are determined from the
well-known relation

lim g, (r; k) = cosq, E, (kr) + sinq, G, (kr), (2)

4x
a(2s)=

3
na()(402 —s„)Ado, , (3a)

where I', and G, are the regular and irregular
Coulomb waves, respectively. In the calculation
of the radiative-dipole matrix element for photo-
ionization of a given initial orbital, the partial
waves g, (r; k) are multiplied by the factor i'(21
+ 1)e "~&' "&' (normalization for incoming boundary
conditions), where a, [Eq. (6c) below] is the Cou-
lomb phase shift. The specific photoelectric cross
sections for Li(2s) and Li(2p) are

Froese." In Eq. (3c) we replace —e» by the ex-
perimental ionization potential. " This replace-
ment is often used in order to improve the agree-
ment with experiment. In this paper we use the
replacement to compare with the results of Gez-
alov and Ivanova, "who use the same replacement.
Equations (1) are defined by use of the ionic or-
bital u„; thus Eqs. (3b) and (3d) should be multi-
plied by the overlap factor

s = dr r'u„r (4)

where Qy „is the 1s orbital for Li. We have cal-
culated these and find that their deviation from un-
ity has a negligible effect on the cross sections
[Eqs. (3a) and (3c)]. The asymmetry parameter
P(2P) of the photoelectron angular distribution for
Li (2P),

dog k err y
r k ru„r

a(2p) =
9 nao2

(k' —e»)k(d,', +2d,',),4m

dyg Q drr, r; k ru» r

(3b)

(3c)

(3d)

I~(0) =
4 [1+p(2P) P,( cos8)],o(2p)

is given by the Cooper-Zare formula"

2(d,', —2d„d» cosh. q)

QYf —0'0+ 'go 0'2 —
Yj2 q

(6a)

(6b)
where l = 0 or 2 and u~, u» and e„, e» are the
Li 2s and 2p orbitals and orbital energies in Ry,
respectively. We take u„and u~ from the analy-
tic Hartree-Fock (HF) calculation of Roothaan
et aL" and u» from the numerical HF code of

a, =argI'(l +1 —i/0) . (6c)

Finally, the angular distribution for e, Li' elas-
tic scattering is given by"

)-1 -1
4, (S)=(44'sin' —

l
+ 4'sin' — (4)+1)cos 4 ')n sin' — +2(o, —o, ) —(), s(no, s, (coco)

2

+ k 'M(21 1+)e" )""~si nq, P, ( cos0)

The photoelectron cross sections have been
studied only in the length form of the dipole am-
plitude [Eqs. (3b) and (3d)]. The agreement of the
length and velocity forms of the amplitudes is a
test of the accuracy of the initial and final quantum
states, and this point has been studied by oth-
ers" ~ for the noble gas atoms. In the present
calculation we are concerned with the effect of
different exchange potentials on the dipole ampli-
tudes and phase shifts, that is, with choices of
approximations in the final state, while a single
choice, the HF, is made throughout for the initial
state. Length-velocity forms should be compared
in studies in which the accuracy of both states""
is probed. Another motivation for the use of the
length form is the prescription" that polarized-
orbital calculations (easily calculable corrections

Vscp = 2( [ k 2 V(r)]

([Q2/2 p(r)] 2+ n2) & &2) (Sa)

n~2 = 2u„(r)', (gb)

where V, the static potential, is defined by Eq.
(1b). The second term on the rhs of Eq. (1a)

I

to the final-state motion due to core polarization
by the photoelectron), required for the quantitative
comparison with experiment, "should be performed
using the length form of the amplitude.

According to Riley and Truhlar' the right-hand
side (rhs) of Eq. (1a) can be replaced by a local
approximation to exchange. One such approxima-
tion is the semiclassical exchange (SCE) potential
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arises from the nonorthogonality of the s wave
with the I.i' 1s orbital. It cannot be removed in
any local-exchange approximation; however, it is
assumed to be small for an electron scattering
from a closed-shell target and is dropped in Ref.
1. In our static-exchange calculations, the inte-
gral

(10a)

drru„r, r;k (9)
0

is 0.0415a' ' at k=0.1a ' and 0.289a' ' at k
=1.1a,', where c is the normalization constant
determined from the statement given by E|I. (2).
Thus it appears to be non-negligible; neverthe-
less, the use of Eg. (8a) on the rhs of Eg. (la)
(Tables I-III) gives results which are in good
agreement with the exact results, obtained by
solving Eg. (1a) iteratively.

Riley and Truhlar study another local-exchange
potential, the free-electron-gas-exchange (FEGE),
proposed by Hara. ' It is,

V„(r)= --Z, Z(q),
2

Static Static-exchange SCE NCS

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

0.0346
0.0354
0.0369
0.0388
0.0412
0.0441
0.0474
0.0510
0.0550
0.0591
0.0636
0.0682
0.0728
0.0777
0.0824
0.0874
0.0911
0.0970
0.1017

0.1108
0.1130
0.1164
0.1210
0.1266

' 0.1329
0.1399
0.1470
0.1543
0.1615
0.1685
0.1752
0.1815
0.1874
0.1928
0.1977
0.2021
0.2061
0.2096

0.1413
0.1429
0.1455
0.1489
0.1529
0.1574
0.1621
0.1668
0.1716
0.1761
0.1805
0.1847
0.1885
0.1921
0.1g53
0.1984
0.2010
0.2036
0.2058

0.5578
0.5555
0.5520
0.5478
0.5430
0.5380
0.5330
0.5281
0.5232
0.5184
0.5138
0.5093
0.5049
0.5007
0.4966
0.4927
0.4888
0.4852
0.4815

TABLE II. The l = 1 phase shifts (in rad) for e, Li'
modified Coulomb scattering.

E(q) = —+ ln
1 1 —'Q 1+Yj

4q

q =Z/Z, ,

K (r)=[3m'p(r)]' '

K(r) = [0'+ I +Z '(r)] '~'

(10b)

(10c)

(10d)

(10e)

where I is the ionization potential in Ry and p(r)
is the total electronic density of the target. Two
special cases of this potential occur when E(q) is
replaced by' —,' or by" —,'. These are expressed in
a general form, the X potenti:al,

V, = ——u [3n'(r)]'~',3

TABLE I. The l = 0 phase shifts (in rad) for e, Li'
modified Coulomb scattering.

TABLE III. The l = 2 phase shifts (in rad) for e, Li'
modified Coulomb scattering.

k (p 0 ) Static Static-exchange SCE NCS k(pp ) Static Static-exchange SCE NCS

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

0.9635
0.9616
0.9585
0.9543
0.9488
0.9421
0.9343
0.9253
0.9154
0.9047
0.8932
0.8813
0.8690
0.8566
0.8440
0.8315
0.8191
0.8068
0.7948

1.2334
1.2307
1.2263-
1.2202
1.2122
1.2026
1.1912
1.1781
1.1635
1.1476
1.1304
1.1123
1.0g35
1.0742
1.0545
1.0348
1.0151
0.9955
0.9762

1.2134
1.2105
1.'2057
1.1991
1.1907
1.1805
1.1687
1.1552
1.1403
1.1241
1.1068
1.0887
1.0700
1.0509
1.0306
1,0122
0.9930
0.9739
0.9552

1.4874
1.4829
1.4757
1.4661
1.4543
1.4406
1.4254
1.4087
1.3908
1.3720
1.3523
1.3319
1.3112
1.2902
1.2691
1.2481
1.2272
1.2066
1.1863

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

0.000 41
0.000 45
0.000 53
0.000 66
0.000 83
0.001 1
0.0.01 4
0.001 7
0.002 2
0.002 7
0.003 3
0.004 1
0.004 9
0.005 9
0.006 8
0.008 1
0.009 2
0.0107
'0.012 0

0.0011
0.0012
0.0015
0.0018
0.0023
0.0029
0.0037
0.0046
0.0058
0.0071
0.0086
0.0101
0.0120
0.0139
0.0160
0.0181
0.0204
0.0227
0.0251

0.0022
0.0024
0.0029
0.0035
0.0042
0.0052
0.0063
0.0076
0.0090
0.0106
0.0123
0.0141
0.0160
0.0181
0.0201
0.0224
0.0245
0.0268
0.0290

0.0552
0.0602
0.0681
0.0782
0.0901
0.1028,
0.1159
0.1287
0.1409
0.1524
0.1628
0.1724
0.1809
0.1886
0.1954
0.2015
0.2067
0.2115
0.2155
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where ax is 1 or —'„respectively. When I of Eg.
(10e) is replaced by zero, such that K-k' at large
r, then we have the asymptotically adjusted FEGE
(AAFEGE) potential. We note that at zero energy
(k'= 0), E(q) = —,

' at all r for the AAFEGE potential,
in agreement with the nx = —', form of Eq. (11).
When a Coulomb tail is present, then I should be
replaced by —2/r in the AAFEGE approximation.
In this case VH is distinct from V, at all energies.
The e, Li' s-wave phase shift (see Fig. 1) and
Li (28) photoelectric cross section show slight
differences for the FEGE or AAFEGE approxima-
tions. However, the e, Li' p-wave phase shift
does reflect a significant difference (Fig. 2) at
small energies. In the Cs calculations we have
used the AAFEGE throughout.

Additional remarks should be made about the
definitions of V [Hartree potential of Eq. (Ib)] and

p(r) of Eq. (11) in the Xn model. It turns out that
Hartree-Slater (HS) calculations for atomic struc-
tures" in this model replace the second term on
the rhs of Eq. (1b), which is the average interac-
tion of the ejected (scattering) electron with the
ionic core electrons, with the average interaction
of the ejected (scattering) electron with the elec-
trons of the neutral atom, when the latter is cal-
culated using bound HS orbitals which are made
self-consistent for a given energy. Likewise,
Eq. (11) is calculated using p(r) belonging to the
self-consistent field neutral atom. Equation (1b),
so modified, decays exponentially. The potential
V+ V, is forced to be asymptotically correct by
the "Latter tail" procedure, "which is just the
replacement of the modified V+ V, with —1/r at
a radius r, at which the former becomes less at-
tractive than the latter. This procedure is also
used in the self-consistent-field determination of
the orbitals used to calculate V and V, .

There are examples in the literature, however,
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FIG. 2. e, Li' p-wave phase shifts for modified Coul-
omb scattering. Symbols same as in Fig. 1.

6.0—

for use of the Slater X„exchange potential (called
NCS for no cutoff Slater) in e-atom scattering"
and photoionization" in which, for the latter pro-
cess, Eq. (1b) is used unmodified and p(r) of Eq.
(ll) is calculated using the target atom or ion
orbitals. We have included these results for Li
(Figs. 3-6 and Tables I-III) and find that the re-
sults are quite bad owing to the spuriously long
range of p(r)' '/in V, . Riley and Truhlar' have
noted a factor-of-2 error in the exchange correc-
tion for the e, Ar phase shifts of Ref. 27, presum-
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FIG. 1. e, Li s-wave phase shifts for modified Coul-
omb scattering. o: Static (S); &&: Free-electron gas ex-
change (FEGE); 8:Modified Slater (MS); o: Semiclass-
ical exchange (SCE); ~: Static exchange (SE).

0 I I I I I I I I I I I I I

0 O. l 0. 2 0. 3 0.4 0. 5 0.6 0.7 0.8 0.9 1.0 1.1 1, 2 1.3
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FIG. 3. Li(2s) photoelectric cross section. g: No cut-
off Slater (NCS); 8,: Coulomb (C); other symbols same as
in Fig. 1.
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ably caused by the spuriously long-range attrac-
tion. When the Latter procedure [i.e., Eq. (1b)
replaced by the Hartree potential for Li targets,
calculation of V, using p(r) for Li, and matching
the modified V+V, to —1/r at r, ] is used, then
the results become quite reasonable. %e call this
set MS (for a modified Slater); however, we
remark that this procedure is different from the
standard plater scheme in that we have used HF
(Ref. 12) rather than HS (Ref. 25) orbitals for
Li. %e expect this difference to be slight.
MS calculations for Li were made for n~ =-', in
Eg. (11)(Figs. 1-5), and standard SlaterXa calcu-
lations for Cs were made for n» = 1 in Eg. (11)
(Figs. 7-9). The latter choice was made in order
to reproduce the results of Ref. 5 for the Cs (5D)
photoelectric cross section.

The theory is the same for Cs when the rhs of
Eq. (1a) is replaced by one of the local-exchange
potentials and when the electronic density is that
for Cs' or Cs, as appropriate. Specifically, in
Eg. (1b) the number 3 is replaced by 55 and 2u,',

l
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FIG. 4. Li(2p) photoelectric
same as ln Figs, 1 and 3.
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FIG. 5. Li(2P) asymmetry parameter. Symbols same
as in Figs. 1 and 3.
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FIG. 6. e, I i' angular distribution at k =0.5ao .. Solid
curve: SE; other symbols same as in Figs. 1 and 3.
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FIG. 9. Cs(5D) asymmetry parameter. a: Xn; o:
AAFEGE; ~: SCE; b, :DHF.

I

1.2

cn 5

Ct' is replaced by [see Eil. (Sb)]

n,'=2I Q u'„, +3 Q u'„~+5 Q u'„~ I, (12)N,S
t1 = 2 n=3

2

O. I 0.2 0.3 0.4
PHOTOE LECT@ON ENERGY ( Ry )

0.5

where the N„s 's are numerical HF orbitals '3 or
in the case of the Xn model, the u„, 's are genera-
ted from a HS calculation" for the initial-state
orbitals, and the spherically averaged contribution
of the orbital photoionized, namely u'„, /(2l+1), is
added to the rhs of Eil. (12).

III. RESULTS FOR Li

10'

X
100

O
I-
UJ
v)

(0
O
K" ~0-2

0.2
I I j I

0.4 0.6 0.8 1.0
PHOTOELECTRON ENERGY (Ry)

I

1.2 1.4

FIG. 8. Cs(5D) photoelectric cross section. &: X&;
&: Dirac-Hartree-Fock (DHF) results of Ref. 32; o: S;
o: SCE) e: AAFEGE.

FIG. 7. Cs(6p) photoelectric cross section. +: S, no
polarization; &&: S, with polarization; o: Xn; ~: SCE, no
polarization; a: asymplotically adjusted free-electron
gas (AAFEGE), with polarization; o: SCE, with polariz-
ationi $:data of Ref. 30.

Our results for cr(2s), v(2p), a(2p) and I (8) in
the various approximations are displayed in Figs.
1-4, respectively. For o(2p) it has been necessary
to Schmidt orthogonalize the s wave to the 1s core
of I.i, producing a small but non-negligible effect
on &r(2p). The phase shifts for the s, p, and d par-
tial waves in the various approximations are given
in Tables I-III, respectively, and in Figs. 1 and
2. In the static-exchange approximation, these
were obtained by solving Eq. (1a) iteratively until
the phase shifts were unchanged in the fourth dec-
imal place. We compare our p-wave shifts (Table
II) against those of Matese and Labahn" and note
that we obtain agreement to three places. We ob-
tain two-place agreement with the s-wave phase
shifts of Bhatia et al.", however, we note that the
latter authors use different choices for u„and
u„. We also note the excellent agreement of our
static-exchange a(2s) with that of Matese and
I abahn" in the same approximation.

In Table II we note the very large error in the
NCS approximation p-wave phase shifts. The large
p-wave error is also reflected in o(2s), which is
about a factor of 4 too large near threshold. In
contrast, the s-wave phase shifts (Table I) show
a smaller error. However, the d-wave phase
shifts (Table III) shows a Very large NCS approxi-
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mation error. This d-wave error seriously af-
fects the accuracy of u(2p) and p(2p) above 1 Ry.

We believe that the relatively small s-wave
error derives from the unimportance of the ex-
change relative to the static potential for this Par-
tial suave. For example, the static s-wave phase
shift is only 22% too small, while the NCS approx-
imation s-wave phase shift is 17% too large at
k=0.leo' (Table I). The importance of the static
potential is a result of the s-wave probe of the
small-r part of the potential where it tends to be
dominated by its static component. On the other
hand, the static phase shifts are much too small
for P. and d waves, which probe the region of the
potential farther from the nucleus. ' At the same
time the accurate l &0 phase shifts are not very
large; however, too much large-r attraction in
the NCS potential results in / &0 phase shifts which
are much too large. It appears that this overesti-
mate derives from the spuriously long range of the
Slater potential. The nonloeal nature of the exact
exchange potential makes its large-r behavior .

difficult to analyze. However, the large-r behav-
ior of the SCE potential is easily deduced. ' When
a„' is small relative to 0'/s —V(r), then the lead-
ing term of the SCE potential is

(i3)

Thus it falls off as n,' or as u„(r)', while the NCS
potential falls off more slowly as u„(r)'~'. We
can easily check this point numerically. At k
= o.5a,' and r = 1.35, 2.02, and 3.03a, the deviation
of the SCE potential from the Coulomb tail is about
5.5, 0.4, and 0.004%, respectively, while the
deviation of the NCS potential is about 23, 13, and
4%, respectively.

The dominance of the 2p- kd dipole amplitude
and the small deviation of the d wave from a Cou-
lomb wave at k=0.1a,' are responsible for the
good agreement of all of the results near thresh-
old for u(2p) (Fig. 4). In fact, the 2p-kd am-
plitude is nearly a factor of 3 larger than the 2p
-ks amplitude at k=0.1a, ' by all methods of
calculation except the pure Coulomb wave cal-
culation, where it is a factor of 20 larger. Thus
from Eq. (3c}, 2d,', is nearly a factor of 18 larger
than d,'o and a factor of 800 larger for modified
Coulomb and Coulomb waves, respectively. Thus
we note (Fig. 4) that the Coulomb approximation
v(2p), which is an almost pure d-wave contribu-
tion, is somewhat smaller than the v(2P)'s of the
other approximations, owing to a small but non-
negligible s-wave contribution in the latter. How-
ever, the huge 2p ks error in the Coulomb ap-
proximation shows up in p (2p) (Fig. 5), which we
note has nearly the d-wave limit of p(2p) = 1 [Eq.

(6a)]. By I:= l.a,' the exact static-exchange
and SCE 2p-ks and 2p-kd amplitudes are about
equal in magnitude, but the NC Slater approxi-
mation d wave is seriously in error, showing too
large a departure from a Coul. omb wave (Table
III), causing v(2p) to be too small by a factor of
2. This large 2P -kd amplitude error is also re-
flected in p(2p) above 1 Hy (Fig. 5). Perhaps sur-
prisingly this incorrect behavior is due almost
wholly to the error in the 2p kd dipole amplitude,
owing to the accidental cancellation of individual
errors in the s- and d-wave phase shifts when
their difference is found [Eq. (6b)].

Finally we note that near threshold our v(2p) in
the static-exchange approximation is about 20%
larger fhan that of Gezalov and Ivanova. " There
are some differences, however, between the two
calculations. The latter authors have used an
approximate normalization based on fitting their
radial waves to the WEB radial waves at large
r, where the latter are calculated using only the
static potential. Our normalization, on the other
hand, is based on Eq. (2) and requires an inde-
pendent determination of the phase shifts.

Figure 6 shows the e, Li' angular distribution
at k = 0.5a,' using Eq. (7) and the phase shifts of
Tables I-III. The large NCS approximation error
for back scattering is due primarily to the large
p-wave error at this energy. This error causes
the s- and p-wave constructive interference to be
exaggerated relative to that of the exact static-
exchange and SCE results.

IV. RES-ULTS FOR Cs

We display our results for the Cs 6P-state pho-
toelectric cross section in Fig. 7 and for the Cs
5d-state photoelectric cross section and asymme-
try parameter in Figs. 8 and 9. For CS (6p),
formulas analogous to Eqs. (3c) and (3d) are used,
where -e,~ is replaced by the experimental ioni-
zation potential. " For Cs (5d),

o'(5d) =—uao2 (k -e M )k(2d 22, + 3822,), (i3a)

(13b)

(13c)

where the phase shifts and radial dipole amplitudes
of Eqs. (13) are defined analogously to Eqs. (2),
(3), and (6). In Eq. (13a), —e,~ is replaced by the
experimental ionization potential. '4

For o(6P) we have used the two-parameter polariza-
tion potential of Noreross" in order to obtain good
agreement with the data of Nygaard et al. ' Ortho-
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gonalization of the s and d waves to the Cs occupied
orbitals of the same symmetry was found to be
negligible, as was the deviation from orthonormal-
ity of the Cs' and Cs orbitals. "

For o (5d) we note the unimportance of exchange
near threshold. As in o (2p) for Li, this is due to
the dominance of the (I,+ 1)-wave dipole amplitude
(where /, is the angular momentum of the initial
orbital). Exchange is of minimal importance at
low energies in the f wave (and in the d wave for
Li) because the centrifugal barrier tends to push
the radial wave outside the range of the exchange
potential. Thus the big defect of the Slater model
is its too attractive exchange, leading to the spur-
ious 0.16 Ry resonance (Figs. 8 and 9). In the
range of energies studied a resonance does not
appear in the static-approximation cross section,
presumably owing to the weakness of static-po-
tential attraction in the region of r in which a
"potential" or "shape" resonance can be support-
ed. Use of the other exchange potentials causes a
shift of the resonance from 0.16 Ry to a range
from about 0.9 to 1.1 Ry, in qualitatively better
agreement with Dirac-Fock (DF) results. " The
resonance causes a minimum in the cross section
(Fig. 8), according to all of the calculations. The
f wave a-mplitude passes rapidly through zero
with energy. This causes the entire cross section
at the minimum to be due to the small P-wave
amplitude.

Near the resonance, neither of the improved
exchange models shows quantitative agreement
with the DF results, and their mutual agreement
is poor. On the far low-energy side of the res-
onance their mutual agreement is good. (The
relative importance of relativistic and exact ex-
change effects has not been unraveled in the DF

calculation; thus an exact HF calculation would
provide a more apt comparison. } The poor mutual
agreement of the exchange models leads us to be
pessimistic that any approximation to exchange is
likely to be reliable for resonant cross sections,
especially if the resonance appears as a deep
minimum in the cross section. Presumably it is
the smallness of the different cross sections of
Fig. 8 at their respective minima which causes
inherent errors belonging to the different exchange
approximations to be greatly magnified.

Schmidt orthogonalization of the P wave to Cs
orbitals was significant only for Cs 5p (although
all were included in the calculations). The f -wave
dominance near threshold thus causes orthogonal-
ization to be negligible; however, at higher ener-
gies, when the p-wave contribution becomes ap-
preciable, orthogonalization is important. Near
the minimum, where the f -wave amplitude passes
through a zero and the P wave gives the entire
contribution, the orthogonalization can cause dif-
ferences of a factor of 2 or more. However, as
suggested above, it is unlikely that any independ-
ent-electron theory, including the DF, is likely to
be very accurate for calculating such small cross
sections.
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