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In a nonrelativistic formulation employing noncovariant perturbation theory in the Born approximation and
including exchange effects, the differential cross section for bremsstrahlung is derived for scattering by identical
charged particles of arbitrary spin. The problem is first treated in a general manner, giving the expression for the
total direct amplitude for the complete process (photon emission in scattering) for the case where the scattering
potential is arbitrary. The derivation by means of perturbation theory demonstrates the critical role played by the
small momentum associated with the emitted photon. Graviton bremsstrahlung is discussed briefly and the
corresponding quadrupole cross section is given by a simple comparison with the photon bremsstrahlung formula.

I. INTRODUCTION

The special problem of bremsstrahlung in the
scattering of two electrons has been considered
by a number of authors. Most investigations have
treated the relativistic problem by modern quan-
tum electrodynamics with recent progress made
with the help of computers for numerical evalua-
tion of angular integrals over outgoing particle
coordinates.! Unfortunately, because of its com-
plexity, the general case requires these numerical
evaluations and it is not possible to derive a for-
mula for the cross section that is differential only
in the outgoing photon energy. Actually, in the ex-
treme relativistic limit, there had previously been
some confusion associated with the problem, and
several well-known textbooks? quote wrong formu-
las for the cross section. These questions now
seem to have been cleared up.

Less attention has been paid to e-e bremsstrah-
lung in the nonrelativistic limit. Compared with
“single-particle” bremsstrahlung, such as in
electron-proton scattering, the e¢-e cross section
is smaller by a factor ~p%/c®. This is because
e-p emission is of a dipole nature while ¢-¢ radi-
ation is necessarily by the quadrupole process.
The rate of e-¢ radiation is comparable to that
from relativistic corrections to e¢-p bremsstrah-
lung. It is of interest for “practical” applications
in the analysis of high-temperature laboratory
and astrophysical plasmas. Because e¢-¢ brems-
strahlung is very small at low energies, its most
important energy domain corresponds to scatter-
ing fast electrons. Thus, the most relevant non-
relativistic domain is that of the Born approxima-
tion which, Coulomb scattering, requires E, >1 Ry
(or v/c> o =e?/fic =1/131).

Even in the nonrelativistic Born-approximation
limit there has in the past been some question® of
the appropriate formula for the e-e bremsstrah-
lung cross section. Neglecting exchange effects
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and taking a semiclassical approach starting from
the classical quadrupole emission formula, Lif-
shitz* derived a formula for the e¢-¢ cross section;
his essential result is contained in results of an
alternative derivation given in this work. Fedi-
ushin® generalized the Lifshitz work to include
exchange and obtained a formula for the cross-
section differential in the outgoing photon ener-
gy, that is applicable to the e-e¢ problem. Fedi-
ushin’s result, which is also contained in a gen-
eral formula derived herein for the special spin
case s =3, has been found to be in agreement
with the numerical evaluation by Haug® in the non-
relativistic limit of his more general treatment.
Because of the semiclassical foundation of the

‘Lifshitz~Fediushin work, it is of interest to rein-

vestigate the e-e problem in a completely quan-
tum-mechanical formulation. A rigorous treat-
ment can be made simple, however, without in-
troducing the formalism of quantum-field theory.
The basic amplitude for the process is given by
the second-order perturbation Hamiltonian result-
ing from the combined action of the scattering
potential and the “photon-emission” perturbation.
Further, there is a certain simplification inherent
in quantum electrodynamics in the nonrelativistic
limit. It is that the photon momentum is always
small compared with particle momenta when the
photon energy is smaller than or comparable with
particle energies. The existence of this inequality
provides the fundamental explanation why classical
or semiclassical derivations often lead to correct
results for some nonrelativistic processes even
outside the domain of the classical limit. That is,
in some nonrelativistic problems, even for gener-
al photon energies, the photon momentum is small
and its particlelike character does not manifest
itself in the kinematics. However, as we shall
see, in e-e bremsstrahlung the effects of the pho-
ton momentum must be considered carefully; this
is true even in the soft-photon limit. Thus, the
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only safe derivation of the ¢-e bremsstrahlung
cross section is one which is purely quantum
mechanical. '

For the bremsstrahlung problem it is possible
to derive a general result for the total direct
amplitude for the process in terms of a general
central scattering potential, and the derivation
is outlined in the following section. Results are
then applied in Sec. III to the special case where
the scattering potential is Coulombic and where
the particles have the same charge and mass but
are somehow distinguishable. An expression for
the photon-emission probability is obtained therein
and is identified with a factor in a previous semi-
classical treatment by Lifshitz. The general
cross section for bremsstrahlung in Coulomb.
scattering is derived in Sec. IV; this formula,
which includes exchange effects, is derived for
the case of arbitrary spin s and is exhibited as an
explicit function of s for the case where the inci-
dent particles are unpolarized. In the nonrela-
tivistic limit spin interactions are negligible, but
the value of s determines the number of symme-
tric and antisymmetric spatial-coordinate states
and the associated coefficients for the squared
respective total amplitudes. Graviton bremsstrah-
lung is discussed briefly in Sec. V.

II. PERTURBATION THEORY FORMULATION

A. Effective perturbation Hamiltonian

For the combined process of scattering with
the emission of a photon the amplitude is essen-
tially given by the perturbation Hamiltonian ma-
trix element, which is the second-order expres-
sion

1
1= 20 Vi g M +(V = 4) (1)
i 0 i

In this expression f, 0, and ¢ refer to the final,
initial, and intermediate states, respectively, and
1 and 2 are the charged-particle labels. The in-
terparticle scattering potential is designated by
the perturbation V and A denotes the photon-emis-
sion (electromagnetic) perturbation. The (1, 2)
superscript on A means that the particle-photon
interaction can involve either charged particle
and the added terms denoted by (V- A) mean that
the photon can be emitted “before” and “after”
scattering. Thus there are four terms in the ma-
trix elements (1), each with a sum over interme-
diate states, and, although this formulation is
noncovariant, the terms can be represented by
Feynman-type diagrams (see Fig. 1) similar to
those in a relativistic covariant development.!*?
The V interaction in this nonrelativistic treatment
can be represented by a“vertex”with two incoming
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FIG. 1. Perturbation-theory diagrams for brems-
strahlung in two-particle collisions. The fixed Coulomb
potential is designated by X, and I, II, III, and IV refer
to the intermediate states. There are four additional
exchange diagrams.

and two outgoing charged particles. The four
terms (1) then correspond to photon emission from
each of the four legs of the diagram and, as in
noncovariant relativistic formulations, the energy
denominators correspond to Feynman propagators
in covariant perturbation theory. Thus, in two

of the four terms in (1) a final-state photon is
present in the intermediate state. In addition to
the four terms of the total direct amplitude (1)
there are four exchange terms obtained by inter-
changing the particle final-state coordinates
(momenta).

The amplitudes (1) and the corresponding dia-
grams (Fig. 1) correspond to bremsstrahlung in
which photon emission is associated with the per-
turbation A acting only “in the external lines.”
This is a good approximation when the scattering
is due to the action of a Coulomb potential, espe-
cially at nonrelativistic energies. Effects of
“emission from internal lines” in Coulomb scat-
tering are of higher order (in a) and of negligible
magnitude. However, this would not necessarily
be true for other scattering potentials. For ex-
ample, in proton-proton scattering when the ener-
gy is sufficiently high that the nuclear forces con-
tribute to the scattering, emission from these
internal lines (exchanged virtual pions) must be
included.

B. Photon-emission perturbation

The treatment of the bremsstrahlung problem in
this paper is identical to a field-theory calcula-
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tion. However, the basic results can be obtained
in an elementary way without employing the de-
tailed formalism of quantum-field theory. The
simplified procedures are, at the same time,
totally rigorous. Since there are relatively few
systematic treatments of nonrelativistic quantum
electrodynamics, it may be useful to give a brief
outline of the derivation of the perturbation Hamil-
tonian associated with photon emission.

In the Coulomb gauge the Hamiltonian associated
with the linear interaction of a system of charges
with an electromagnetic radiation field is

in e -
Hog =55 22 K- 7, (2)
o o

where e, and m, are the particle charge and mass,
respectively, and A is the radiation field vector
potential. What is needed is essentially the vec-
tor potential A =3y associated with a single out-
going photon. One approach that is convenient is
to consider the diffevential perturbation H,,,= A
corresponding to the production of a photon in the
direction defined by the solid angle A2 and having
wave-vector magnitude within Ak, In the end, if
required, an integration over these final-state
variables can be performed. The amplitude for
this process of spontaneous emission can be ob-
tained through consideration of the closely related
process of induced emission in which the system
of charges is perturbed by an external field from
a beam of photons defined by the same AQ and

Ak, The vector potential for such a photon beam
can be written

A=Ea,cos(kT- wt), (3)

where € is the polarization unit vector and A, is the
the amplitude. The electric field of the wave is
E=-(1/c)oA/at and A, can be related to the pho-
ton-beam occupation number 7 by writing the
differential photon flux as

AT =c(2m) 3K AR AQT = (BR) T Au (4)

where Au is the photon-beam energy density.
Since

Au=((EY?)/An=kA2/8T , (5)
we have
A, =(ckARASQ /T2 272, (6)

Since the probability for the overall process will
be proportional to the square of factors in Hpq,
we can obtain the expression for Zo, associated
with the spontaneous production of a single out-
going photon by simply taking the expressions
(3) and (6) with the factor /2 left out. This is
because for any process involving an outgoing
photon the total rate for the induced plus sponta-

neous process is obtained from the induced rate
with the replacement® 7 —~#+1. Further, we can
simplify the formulas by ignoring the time depen-
dence in the expression (3), if we impose energy
conservation and also rewrite the cos (E- 1) factor
in terms of complex exponentials. Then, since
the perturbation matrix elements inherently re-
quire “momentum conservation at the vertices”,
we find that only the part 3 exp(- ¢k * ¥) contributes.
Thus we obtain, in this very elementary but
rigorous way, the following expression for the
interaction Hamiltonian corresponding to photon
production within A% and A2 and with polariza-
tion €:

A=(i/2m)(RARAR)Y2 Y (¢q/m,) exp(— ik *F,)E" Y, .
()

This expression, in which units with Z =c=1 are
used, represents the differential Hamiltonian
corresponding to a vertex with a single outgoing
photon associated with all electromagnetic inter-
actions involving “orbital” motion. Further, one
can readily show that for particles with intrinsic
magnetic moments _ﬁa there is an additional inter-
action term of the form (ZF=c=1):

A =(k/2m)(RARARY2 D exp(—iK T, )& * 1y ;
3
(8)

here €’ is now the unit polarization vector in the
direction of the photon’s magnetic field [¢ in (7)
is in the direction of the electric field]. The in-
trinsic magnetic moment interaction term (8) is
much smaller than the interaction term (7) for
nonrelativistic particles. However, for the cal-
culation of radiation processes involving neutral
particles with magnetic moments the term (8)
would be of prime importance. There is, of
course, an additional interaction term associated
with a two-photon vertex that is of higher order
and is important in photon scattering.”

C. Total direct amplitude

The amplitude for the two-particle bremsstrah-
lung process is determined by the second-order
perturbation Hamiltonian martix element (1). In
the Born approximation the particle wave func-
tions are plane waves and the sum over intermedi-
ate states in (1) yields momentum-conservation®
(Dirac or Kronecker, as is convenient) 0 functions.
The scattering potential matrix elements are, of
course, just the Fourier transforms of V with,
however, slightly different arguments in the four
terms in (1). At this stage let us assume that
the Fourier transform satisfies the condition
V(ﬁ) =WV- IE) which is guaranteed if the interpar-
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ticle scattering force is central. In simplifying
the resulting expression for Hy, it is convenient
to make use of the smallness of the photon mo-
mentum kK compared with the particle momenta
(e.g., K,). The energy denominator terms in
H;, can then be expanded and the terms involving
the above-mentioned Fourier transforms can be
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expanded to express them in terms of transforms
with a common argument.®

Further, it is convenient to express results in
terms of center-of-mass frame (c.m.) particle
momentum variables'® E;, k;, and c.m. photon
momentum K. We then find, after some elemen-
tary manipulations,

1
BEARAQ)Z o . o -\ 1 alnV R
Hjy= RN o @ (2 B)E Ry - @ RIER)) g 5 HEDED) (©)
T

where .

- > Aw= =% H,, ]2 14

q=ko_ ” (10) !V;‘olz ?EK l fol ’ ( )
and where the sum is over photon polarization and

=l R=mk . (11) momentum states. If i, and iz represent particle

We see how the amplitude for the process is
determined by the form of the scattering potential
through the third term in large parentheses in (9).

When the scattering is by means of a Coulomb
field, V(d‘=4me®/q?, and

4¢3 (ARAR)L/2 A

H;o= m? B2 ’ (12)
with
A’ =g (TR K,) - (2 Kp)(k K,
+(B/P)EDE D] . (13)

The expression (13) is the fundamental direct
amplitude for the process.

III. PHOTON-EMISSION PROBABILITY
IN DISTINGUISHABLE PARTICLE SCATTERING

Let us consider briefly the scattering of two
particles which have the same mass and charge
but which are somehow distinguishable. This
simplified problem illustrates some basic dif-
ferences between the two-particle (quadrupole)
and one-particle radiation problems. The neglect
of exchange simplifies the problem because of the
complicating effect of the third term in large
parentheses in (9) and in (13). This is because
the exchange amplitude is obtained from the direct
amplitude Hj, by (see Ref. 10) the replacement
K, ~ — K, for which the momentum transfer  be-
comes d, =k, +K;. Thus the factor in large paren-
theses in (9) and in brackets in (13) associated
with photon emission is not symmetric under ex-
changeand, moreover, is dependentonthe charac-
ter of the scattering potential.

For photon emission in distinguishable particle
scattering, however, one can obtain a simple
expression for the emission probability defined by

momentum direction unit vectors and I represents
the direction of the photon momentum E, the pola-
rization sums in the individual terms in (14) are
of the form

-
i

Z(z-i’a)(z'?ﬂ) =i, Tp- )T, . (15)

If we integrate over all angles of emission of the
photon, the results

f A 1)ET)de/anr=11,1, , (16)
f(i*.i*a)z(}’.i*s)zdsz/:m:1—15+§—5(’1'af'i;)2 , (1)

can be employed. For Coulomb scattering of dis-
tinguishable particles of charge ze we then obtain
for the differential probability of emitting a
(quadrupole) photon of momentum (or energy)
within AZ:

AT = (8a/15m)2%(Ak/R) 4(R - B)? +3RBF sin® 0];
(18)

in this expression a=e¢?/fic, f=v/c, and 6 is the
scattering angle (83,, f;, and 6 are c.m. frame
variables).

Although not identified as such, the expression
(18) appears as a factor in one of the equations
in the paper by Lifshitz.* It is well to emphasize
again, however, that the formula holds for the
special case of scattering by a Coulomb field.

In single-particle scattering (by, say, an “exter-
nal” potential), on the other hand, in which the
emission is dipole in nature, the corresponding
formula for the photon-emission probability is
more general and is independent of the nature of
the scattering potential. Defined as in (14), one
readily obtains by the methods outlined in the
previous section, the well-known result
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Ay =(2a/3m)2X(AR/R)B, - B . (19)

Classical derivations also yield the dipole for-
mula (14), but, because photon recoil plays a
more critical role in quadrupole emission, a
purely classical approach!! does not give the cor-
responding formula (18).

IV. BREMSSTRAHLUNG CROSS SECTION

In terms of c.m. variables the cross section
can be written in terms of a sum' over polariza-
tions and directions of emission of the outgoing
photon and an integration over the momentum-
transfer variable ¢:

. f e
ao= g Zk) |H'Fgdg . (20)

In the integration over ¢ the limits are, for
indistinguishable particles, gmin =%y~ Es; Gmax
= (k2 +k3)'/2. The squared Hamitonian in (20) is
obtained from the direct amplitude (12) but with
a proper mixture of an exchange amplitude with
a sign determined by the spin state and intrinsic
spin of the charged particles involved. .
Since spin coordinates are not involved in the
process, we can speak of a direct amplitude a
[see Egs. (12) and (13)] and an exchange ampli-
tude a, in terms of momentum variables with

a,=a(k,~ -k . (21)

The weighting of the (squared) total amplitudes
a+a, and a - a, is determined by the number of
spin states of the colliding particles having the
corresponding required spin-exchange symmetry.
For unpolarized incident particles one then easily
obtains an intensity or properly symmetrized
squared amplitude given by*®

S=a®+a?+2(2s+1)*(~1)%%q, . (22)

This expression holds for both bosons (2s =even
integer) and fermions (2s =odd integer).

The cross-section (20) differential in the magni-
tude of the photon momentum or energy is ob-
tained by summing over polarization [using (15)],
integrating over angles of emission employing
(16) and (17), and then integrating over the mo-
mentum-transfer variable and can be expressed in
a general form for arbitrary charge, mass, and
spin. In terms of the electron charge (e) and
mass (m) and o =e%/fic and A =#%/mc we obtain,
for unpolarized incident particles,

6
14;“4 a"Az%S , (23)
where z and p are the charge and mass in units
of e and m; S is given by (22) with the correspond-

Ac=

ing terms
@ a2=6(1+¢?) 1nll_‘i§+205, (24)
JTA-D243(1- g3t 1+g BE(1+EY
aa,= 2(1+£2)3 ln1_£+ (1+§2)2’
(25)
with
£=k,/kq. (26)

For the special case s=3, z=1, p=1 the result
agrees with the formula derived by Fediushin®
from the semiclassical formulation of Lifshitz.*

V. GRAVITON BREMSSTRAHLUNG

From the basic result (23) for photon brems-
strahlung, one can readily obtain the cross section
for the production of a graviton in Coulomb scat-
tering. If we compare the classical formulas for
quadrupole photon and graviton production,'* we
find that the graviton formula is obtained by simp-
ly replacing (ze)? by 4G(um)? in the photon for-
mula, where G is the gravitational constant. The
two formulas are very similar; in one case the
total energy radiation rate is proportional to the -
sum of the squared third time derivatives (Ei ;) of
the electric quadrupole moments, while in the
other case the gravitational quadrupole moment is
involved. Now the present paper has, through a

- purely quantum-mechanical derivation, provided

a justification for the semiclassical approach of
Lifshitz* to the quadrupole photon problem which
begins from the classical formula. Lifshitz re-
places b'” by three commutations with the Hamil-
tonian (excluding the photon interaction part). If
this works for the photon problem it should also
yield the correct result for graviton bremsstrah-
lung. As I have emphasized in this paper, for
nonrelativistic problems, photons (or gravitons)
are always soft in that their momenta are small
even when their energies are comparable to the
particle (electrons, etc.) energies; basically this
is why classical radiation formulas often give cor-
rect results. Thus, even though we have not given
a field-theory derivation of graviton interactions,
as was done in Sec. IIB, we can with confidence
infer the graviton bremsstrahlung cross section.
Simply replacing (ze)® by 4G(um)? in (23) we have

1 4
62\ azn2 g (27)

AOsra.viton = 1 5 “2 Fa 3

where S is again given by the expressions (22),
(24), and (25), and agEsz/h'c is the gravitational
fine-structure constant.!®
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The graviton bremsstrahlung formula (27) holds
for scattering by identical particles of arbitrary
mass, charge, and spin, and is valid for arbitrary
graviton energy. It agrees in the soft-graviton
limit with a result given by Weinberg!* to “logar-
ithmic accuracy” (where the cross section has a
logarithmic factor whose argument is large but not
determined accurately). Quadrupole emission is,
of course, the lowest-order mechanism for gravi-
tational wave (graviton) emission. The result
(27) could, for example, be used to compute the
graviton luminosity of the sun** as a result of e-e
collisions. However, it would also be necessary
to include contributions from graviton production
in e-p and e-a collisions.

VI. APPLICATIONS

The most important application of the results
given here is to the correction from e-e¢ brems-
strahlung to the total emission rate per unit vol-
ume in a hot plasma. Most of this emission is
due to electron-ion bremsstrahlung and the e-e
contribution is of relative magnitude ~2T/mc?. It
is thus of the same order as the relativistic cor-
rections to electron-ion bremsstrahlung. Because
of the application to the interpretation of emission
from cosmic x-ray sources such as galaxy clust-
ers (T~10® K), results for a thermal averaging
of e-e bremsstrahlung and relativistic corrections
to electron-ion bremsstrahlung are given in Ref.
16. :
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APPENDIX: MAGNETIC-MOMENT INTERACTIONS

The Hamiltonian associated with photon emission
through interaction with a particle’s intrinsic
magnetic moment was introduced in Sec. IIB. In
the nonrelativistic limit the effects of this interac-
tion are small compared with that associated with

the interaction with the particle’s electrical charge.

Although this may not be immediately obvious for
the case where the lowest-order emission is elec-
tric quadrupole, the relative unimportance of the
magnetic-moment effects can be demonstrated
without difficulty.

The charge and magnetic-moment interaction

Hamiltonians for photon production by particles
of type a are, in the Coulomb gauge,

Hy=—(e,/my0)A P, (A1)
H! =, curlA (A2)

mag

where A is the vector potential associated with
the outgoing photon. But [curl& |~%|A|, where
k(=w/c) is the photon wave vector, and |1, |
~ei/m c for any sensible particle. Thus, one
readily obtains the result

H} o/ Hy ~Hw/pc<1, (A3)

since 7iw < p? /m,. That is, the magnitude of the
interaction due to intrinsic magnetic moments is
much smaller than that associated with the electric
charge.

However, one might question whether these
higher-order effects might still be important in
the problem treated in this paper, namely, brems-
strahlung in identical particle scattering. In quad-
rupole bremsstrahlung the principal terms in the
total amplitude, while surviving in the dipole pro-
cess, cancel and it is necessary to expand the ex-
pressions in the energy denominators and the scat-
tering potential matrix elements. This is how the
expression in large parentheses in (9) arises.

A cancellation also occurs in the total amplitude
associated with photon interaction with particle
magnetic moments, so that the inequality (A3) still

" determines the unimportance of the magnetic-mo-

ment interactions. This can be demonstrated

most simply by considering the amplitude from,
for example, the top two diagrams in Fig. 1, where
now the photon-emission vertex is associated with
the L, curlA perturbation. Let G denote the par-
ticle spin operator, |m) the spin state, and €’ the
photon polarization unit vector in the direction of
curl A. The amplitude associated with the two
diagrams has the form

1 - -
AptAp > val<mflmI>E _E <mx|°'€' lmo>
I o~ L1

- - 1
+ ; (m, |G+ € |myyp) E-E., (m iy |mo) Vigg -
(A4)

Because of the orthogonality of the spin eigenfunc-
tions both terms yield the factor (m,|G+¢ |m,) and
to lowest order the scattering potential matrix ele-
ments are the same in both terms. However, the
energy denominators are different:
EO—EI=—h’w+[-50’§/m ,
- - A5
Eo‘EII=ﬁw_pf’p/M, (45)

where p is the photon momentum. The term 7w
is much larger than the others in the denominators



and, as a result, since it appears in one with the
opposite sign, the two principal terms in A; and

A;; cancel. A similar cancellation would occur in
amplitudes (A, and A.y) associated with the bot-
tom two diagrams of Fig. 1 when representing the
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I, curl A perturbation. In bremsstrahlung as-
sociated with the scattering of nonrelativistic iden-
tical charged particles, spin is important -only in
exchange effects and (23) is a general formula for
arbitrary spin. '
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mentum, although small, cannot be neglected. In
single-particle (dipole) bremsstrahlung the photon
momentum does not play such a critical role; for ex-
ample, in that case the corresponding H{, has only a
proportionality dependence on V(§) and not an addi-
tional dependence on the form (9 InV/8q) as in the
brackets of (4). An equivalent statement concerning
the intricacies of the kinematic effects in quadrupole
bremsstrahlung could attribute effects to “ retarda-
tion’

- gere (&y)g=—(Ky)o =K, and [&);~ —(Ky); =k,

Uy g purely classical approach in the soft-photon limit
the term in (13) with sin%0 is obtained, but a different
coefficient ) is found for the (82— [3})2 term. This
latter term does, however, approach zero in the soft-
photon limit, but in the evaluation of the cross section
for Coulomb bremsstrahlung it gives a contribution
(~1), additive to a dominating (~10) logarithmic term.
Thus, even in the soft-photon limit, for quadrupole
bremsstrahlung quantum mechanics must be inserted
into the problem at an early stage. In dipole brems-
strahlung these effects are not as critical.

121f the polarization and angular distributions of the out-

going photon are required, one would, of course, not
sum over these variables.

13This formula is obtained by writing (in the case at

hand the amplitudes are not complex) S=c(a+a,)?
+(1-c)a—a,)?, where c is the fraction of two-parti-
cle spin states having the required spin-exchange
symmetry to go with an even spatial coordinate total
amplitude. For bosons, c¢=(s+1)/(2s+1); for fer-
mions, ¢=s/(2s+1) [cf. L. D. Landau and E. M. Lif-
shitz, Quantum Mechanics Nonrelativistic Theory,
2nd ed. (Addison-Wesley, Reading, Mass., 1965)].

4¢f, 1. D. Landau and E. M. Lifshitz, The Classical

Theory of Fields (Addison-Wesley, Reading, Mass.,
1962); S. Weinberg, Gravitation and Cosmology (Wiley,
New York, 1972). -

151 have used the notation @, in order not to confuse it

(4
with the other gravitational fine structure ag =GM%/he

" in which M is the nucleon mass.
18R, J. Gould, Astrophys. J. 238, 1026 (1980); 243 (1981)

(in press).



