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Localized excess-electron states are investigated using the density-functional formalism previously developed by
Ebner, Saam, - and Stroud for nonuniform classical fluids. The electron-atom interactions used contain a short-range
effective core repulsion and a long-range polarization attraction. The interatomic interaction is a 6-12 potential.
Some results are in agreement with previous density-functional calculations by Ebner and Punyanitya, who use a
contact potential for the electron-atom interaction, in that no localized states are found in dilute helium and neon
gases, while localized states are.found in dense helium gas and liquid neon close to the liquid-gas coexistence curve.
However, our present calculations disagree with the earlier ones in that they predict the localized states in liquid
neon to be stable even at pressures much larger than the saturated vapor pressure, a consequence, we believe, of our
inclusion of the polarization potential in the electron-atom interaction. We also find that localized states in the form
of short-lived droplets are possible in argon and xenon gases close to the critical point. This finding is consistent with
recent observations by Freeman and Huang of electron mobilities in these gases.

I. INTRODUCTION

During the past few years much work has been
done with the goal of understanding the physics
of excess-electron states in nonpolar fluids,
especially in rare-gas fluids. ' The investi-
gations have focused on the elucidation of ob-
served small electron mobilities on the order
of 10 ' to 10 ' cm'/V sec in litluid helium, ' '
dense gaseous helium, ' "and liquid neon. ""
Recently it also has been found that in both gase-
ous xenon and gaseous argon near the critical
point there are sharp decreases in the electron
mobility. "' '4 These low-mobility electron states
are classified as localized state in contrast to
quasifree or extended electron states which are
characterized by large mobilities on the order
of 10' to 10' cm'/V sec. Numerous theoretical
descriptions have been given of localized or re-
duced mobility electron states in the rare-gas
fluids. '" " The most generally used descrip-
tion for these states in helium and neon is the
"bubble" model, according to which the electron
creates a cavity or bubble around itself in the
fluid and then becomes trapped within this bub-
bl. Earlier calculations using this model pre-
dict that excess-electron states should be lo-
calized in liquid helium and in liquid neon'"'
but quasifree in liquid argon. ' These results
seem to be consistent qualitatively with experi-
mental observations. ' """

As for the localization of electrons in xenon
and argon near the critical point, it is believed
to be small fluctuations in the local density of
the fluid which serve as trapping centers for the
electrons. " " " A "droplet" model has been
suggested to describe these localized electron
states in highly polarizable gases and it has

been predicted that the localization of electrons
in xenon is possible. '4

From thermodynamics the condition that elect-
ron bubble (or droplet) states be stable relative
to quasifree electron states is that the free
energy of the former be lower than that of the
latter. A relatively simple and qualitatively
correct theory for calculating the quasifree
electron states in monatomic fluids has been
given by Springett et al."'" The Wigner-Seitz
method' which assumes that each fluid particle
occupies a sphere of volume equal to the inverse
particle density was used. Also, the interaction
between the electron and a fluid atom was chosen
to include the long-range attractive polarization
potential and a short-range repulsive potential.
The effective potential acting on the electron
inside the Wigner-Seitz sphere is then the sum
of the bare potential from the atom at the center
of the sphere and the mean potential produced
by the other atoms of the fluid.

A variety of procedures have been previously
adopted to estimate the free energy of the fluid
with a bubble state in it. Some of these theories
have assumed that there is an abrupt boundary
between the bubble and the fluid with the fluid
density equal to zero inside and equal to the
density of uniform fluid outside. "' The inser-
tion of the electron into the fluid and the forma-
tion of a bubble state will produce a free-energy
change which includes the ground-state energy
of the localized electron, the surface and volume
free energy of the bubble and the polarization
energy of the medium surrounding the bubble.
Hence, the condition for a stable- lectron bubble
state is that this free-energy change is less than
the free-energy change accompanying the inser-
tion of an electron into a quasifree state.
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Such a description of the bubble state may be
regarded as a very simple density-functional
theory. A further step along this line of investi-
gation was taken by Hernandez who formulated
the free energy of a nonuniform ideal gas as a
functional of its density and then determined the
equilibrium configuration in the presence of an
electron by minimizing this functional. The prin-
cipal approximations in this work are the treat-
ment of the fluid as an ideal gas and the use of
a contact potential to describe the electron-atom
inter a.ction.

Recently, Ebner and Punyanitya" (referred to
hereafter as EP) have applied the density-func-
tional formalism of Ebner, Saam, and Stroud"
to the problem of localized excess-electron
states in rare-gas fluids. The correlations in
the fluid are built into this formalism as is the
liquid-gas pha, se transition. Among other things,
the formalism is capable of predicting nonmon-
atonic behavior of the particle-density profile.
The intermolecular potential is taken to be the
Lennard-Jones (6-12) potential and correlations
are treated within the Percus- Yevick approxi-
mation. In EP a simple conta. ct potential is used
to represent the electron-atom interaction. This
choice simplifies the computations enormously
but fails to adequately represent the long-range
attractive polarization potential acting between
an atom and the electron.

The results of EP agree with previous theories
in that localized bubble states ar, e found in suffi-
ciently dense helium gas and in liquid neon close
to the liquid-gas coexistence curve. They also
predict that the localized bubble states in neon
become unstable at sufficiently large liquid den-
sities. This contradicts the previous findings
using the ideal-ga, s model" that electron bubble
states are stable even at high liquid densities in
neon. In the search for dropletlike localized
states, they find no such states in any rare
gases and thus fail to give any support to the
recent claim by Huang and Freeman"'" that the
observed decrease in the excess-electron mo-
bility in both xeon and argori vapor near the
critical point is a. consequence of such droplets.
However, if the scattering length in the contact
potential is given a plausible density dependence
as suggested in Ref. 14, then droplet states re-
sult.

The purpose of the present study is to improve
the calculations reported in EP by changing the
electron-atom interaction from a simple contact
potential to a physically more reasonable one
which includes a short-range repulsion and a
long-range polarization attraction. The remain-
der of the paper is organized as follows. Section

IIA provides a. very brief review of the density-
functional formalism as applied to the excess-
electron problem and II B, a description of the
procedure used to arrive at reasonable electron-
atom potentials. Section III presents the results
of the computations, Sec. IIIA pertaining to the
determination of the electron-atom potentials
and Sec. III 8, to the density-functional calcu-
lations of the localized states in the various rare-
gas fluids. Section IV contains a summary.

II. FORMALISM

A. Density functional

The density functional used here is identical to
that in EP which is, in the absence of the elect-
ron, the same as that introduced in Ref. 29. The
difference between the free energies of the lo-
calized state and the lowest extended state is
AQ where &0 is found by minimizing the follow-
ing functional with respect to variations of n(r)
a,t fixed temperature T a.nd chemical potential

444[v] = nn, [n] + f4'r[f (n(r)) —nn(r) + P ]

where &E, [n j is the lowest energy eigenvalue of
the one-electron Schrodinger equation

2

444 (r ) + f r('r' v([r —r' I) [n(r') —n ] 4 (r)
e

=&E, [n]y, (r). (2)

In these equations, n(r) is the atomic number
density in the fluid; v(x), the electron-atom
interaction; f (n), the Helmholtz free-energy
density of the uniform fluid at n and T; and C(y", ]]),
the direct correlation function in the uniform
fluid at I and T. The pressure I, is that
of a uniform fluid at p, and T while n, is the num-
ber density of this fluid. We determine f and C

and choose n in the manner described in Ref. 29.
The interaction between Quid atoms is taken to
be the Lennard-Jones (6-12) potential.

The parameters c and o used for the various rare
gases, taken from Hirschfelder et al."are listed
in Table I. The relationship between this func-
tiona, l and an exact one" as well as the reliability
of the functional in a specific one-dimensional
application are exa.mined in a recent publication. "

Within the context of this formalism, if a, min-
imum of AQ[n] =44)g . can be found for a local-
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TABLE I. Parameters entering the interatomic and
electron-atom potentials for the various rare gases.

Element 0 (A) &/A. (Q ~(a, ') o,(g,)

He
Ne
Ar
Kr
Xe

2.556
2.789
3.405
3.600
4.100

10.2
35.7

119.76
171.0
221.0

1.36
2.65

11.0
16.6
27.0

1.75 10
1.48 10
2.07 10
2.30 10
2.45 10

B. Electron-atom potential

ized electron state with some n, (r ) &n„ then
this state is stable if 40 +0 and metastable if
dQ . 0; n, (r) is the fluid particle density in
this state. If no such minimum exists, then lo-
calized states are unstable. Further, that ex-
tended state which has the lowest free energy ha. s
a constant density n, and an electronic wave
function which is also a, constant. The potential
which the fluid exerts upon the electron is com-
puted as a mean field and so the formalism is
inappropriate if the electron-atom interaction is
not integrable. In order to accommodate this
fact we have chosen this interaction in the manner
described immediately below.

incident electron energy goes to zero.
Those sets of parameters N and 0, which yield

a good fit to the low-energy s-wave phase shifts
do not in general reproduce well the P-wave pha. se
shifts. The reason for this is that the exchange
repulsion arises from the orthogonality require-
ment on the unbound electron wave function; this
requirement varies with the different angular
momentum states and so the repulsion will be
angular momentum dependent. The most extreme
case arises for helium atoms which do not exert
any exchange repulsion on an incident electron
with nonzero relative angular momentum. We
do not concern ourselves with the l = 1 and higher
partial waves because in the applications con-
sidered here electrons have sufficiently low en-
ergy that when they are within an atomic radius
of any given atom, they are predominantly in an
l =0 state relative to that atom.

Equation (4) represents a bare electron-atom
potential suitable for describing the interaction
between an electron and a single atom. In cal-
culations of fluid properties one must include
the screening of the polarization interaction.
Assuming local screening, we write the screened
interaction as

We consider first a bare interaction consisting
of the attra, ctive polarization potential and a para-
metrized repulsive core,

(4)

8 &~ (yapv,', (r) = —;f(r)
2a, r r4

Our choice of the screening function f(r) is the
same as that employed in Ref. 19,

o. is the atomic polarizability and ap and e are
the Bohr radius and electronic charge. We have
used the polariza. bilities given by O'Ma. lley";
these are listed in Table I. The parameters o',

and N are determined by fitting the very low-en-
ergy s-wave phase shifts ~p for electron atom
scattering to experimental or theoretical deter-
minations of these phase shifts for the various
rare gases. "" Our procedure for calculating
the pha, se shifts is straightforward, being ba, sed
on the standard formulation" of phase shifts in
terms of solutions to the radial Schrodinger
equation, the latter being obtained numerically
using an algorithm suggested by Fox and Good-
win. "

The rationale for introducing the repulsive core
into v'(r) is that the wave function of the scat-
tered or unbound electron must be orthogonal to
the atomic orbitals and so must have a, large
kinetic energy in the region of the atomic core.
In the spirit of pseudopotential theory, we have
represented the exchange repulsion effect with
the r " part of v'(r). We must also normalize
the phase shifts in such a way that ~p 0 as the

(6)

where r, =(Sn, /4m)'~' In the. process of making
this choice we performed Wigner-Seitz calcu-
lations of the lowest energy extended electron
states in the rare-gas fluids, comparing the
resulting energies with the ionization potentials
Ep mea sured by Sommer and by Tau chert et ai.
For Ar and Ne, we used not only the screening
function of Eq. (6) but also no screening, f =1,
and full screening, f =(1+ —,

' wn, a) ' for all r
All things considered, Eq. (6) seemed the best
simple compromise.

As for the Wigner-Seitz calculations, we follow-
ed the prescription of Springett et al." but
avoided some of their approximations. In a fluid
of density n„we construct a. spherical cell of
radius r, around an atom located at r =0. The
one-electron potential at a point r in this cell,
V,(r), is taken as the sum of the potential pro-
duced by the atom at the origin, v'(r), plus the
mean potential produced by atoms outside of the
cell distributed with a density n, g(r ) at position
r'; g is the pair distribution function of the fluid
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and was obtained by solving the Percus-Yevick
equation. Thus

V(x)=v'(v)+a f d'x'U„()r —r'))g(Y').
r'&i,

We then solved the appropriate Schrodinger
equation in the cell,

V'P(r)+ V(y)g(r) =E,g(y),

subject to the boundary condition dg/& („=0, to
obtain the lowest energy eigenvalue E for com-
parison with the mea. sured ionization potential in
each of the rare-gas fluids,

The final adjustment that we must make in the
electron-atom potential in order that it be appro-
priate for use in the density functional is to make
it integrable. In any event, an infinite hard core
is not a, reasonable representation of the exchange
repulsion. We use it up to this point principally
for convenience. The change we now make is to
replace ~,', (r) at distances less than the cutoff
radius x, by its value of r„ that is, we use a,n
electron-atom potential in the form

( )
&,', (x, ),;,(r), r&x,

in all density-functional applications. The cutoff
radius r, is determined by the criterion that the
energy of the lowest energy extended state in the
mean-field approximation should be the same as
that computed in the Wigner-Seitz model,

does not depend a great deal on N for 8 & %&12.
Consequently, we have simply taken %= 10 and
then chosen cr, to obta, in the best fit of 6, to
Thompson's calculations in the appropriate wave-
number regime. The results for Ar with &, =2.0'7

ap are shown in Fig. 1; at small k, our s-wave
pha, se shift is virtually indistinguishable from
Thompson's. The P-wave phase shift, is also
shown. As expected from the discussion in
Sec. IIB the fit is not good, but that is of no
consequence in our applications.

For Ne, Ar, and He, twas also set equal to
10 and similar fits to 5p performed; for Xe,
was set equal to 10 and 0, wa, s fit to the measured
scattering length. The resulting values of u, are
listed in Table I.

The next step is to introduce local screening
into the polarization interaction in the manner
expressed by Eq. (5) and then to do Wigner-Seitz
calculations of the lowest energy qua. sifree ex-
cess-electron states using Eqs. ('~) and (8) at

—0.5—
E, =np d'X& r . (10)

III. RESULTS OF THE COMPUTATIONS

A. Electron-atom potentials

The electron-atom potential as given by Eq. (4)
has been fit to calculations of Qp for lleoll RIld

argon, "to measurements of 5p for krypton" and
for helium, '4 and to the scattering length inferred
from the cross-section measurements of Bam-
sauer and Kollath for xenon. " The range of
electron energies that are important in the sys-
tems we consider is easily estimated. An elect-
ron localized in a region of space of size D has
a kinetic energy on the order of e~= N'n'/2 — ~'D
and a wave number k, —= w/D. The typical bubble
size is 10 a . to 20 a, so that k, & 0.3 a, 'and ~, &

&2 eV. Hence we were careful to get the best fit
in this small wave-number regime. The first
and most careful fits, in which both X and o,
were varied extensively, were done for Ne and
Ar using Thompson's calculated phase shifts at
k&2 a,'. We found that the quality of the fit

-1.5 I

0.5

k(ao'}

1.0

FIG. 1. The g-wave and p-wave phase shifts for the
scattering of an electron from an argon atom as functions
of the incident electron wave number. The solid lines
( ) are from Ref. 35 while the dashed lines (—-) are
the result of our fit for 0~=2.07 ao and N=10.
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densities and temperatures close to those at
which the ionization potentials have been mea-
sured. ~'~' In all cases, the screening function
of Eq. (6) was employed; for Ne and Ar, E, was
also found using no screening and full screening.
The results are shown, along with the measured
ionization potential, in Table II; densities and
temperatures are expressed in dimensionless
form with n,*=noo' and T*=kT/-e where v and e

are the range and depth parameters of the inter-
atomic Lennard-Jones potential of the appro-
priate rare-gas element. Comparison of the
various calculated and experimental energies
shows, first, that screening has an increasingly
large effect on E, as the atomic number of the
atoms increases, reflecting the growing impor-
tance of the polarization potential and, second,
that the use of Eq. (6) to describe the screening
seems quite reasonable.

The final adjustment to the potential needed for
use in the density functional is the replacement
of the hard core by something integrable. We
introduce a cutoff radius r, and set the electron-
atom potential equal to a constant for all x& x, as
described byEq. (9). The cutoff radii are deter-
mined from the criterion expressed in Eq. (10)
using the energies from the Wigner-Seitz calcu-
lations. The potential v(r) in the core region is
sufficiently large —on the order of some tens of
electron volts —that had the cutoff potential been
used in place of Eq. (4) to determine the parame-
ter o', from scattering phase shifts at low energy,
there would be very little difference in the out-
come.

B. Density-functional calculations

We now turn to consideration of the results for
the free energies and density profiles of localized

states obtained from the density-functional for-
malism. The relative functional AQ[n] given by
Eqs. (1) and (2) is minimized using a parametrized
trial function for n(r). Choosing r =0 as the
center of the localized state and assuming rota-
tional invariance, we have employed

n(r) =n [1—&/(e " s &+ 1)];
& is positive or negative depending on whether the
nonuniformity is more nearly a bubble or a drop-
let, P is essentially the radius of the nonuniform
region, and y is a measure of the width of its
surface. The parameters P, y, and ~ are varied
on a grid of adjustable size until minima of EQ[n]
are obtained. For any given p, and T, minimiza-
tion is performed for several sets of initial par-
ameters to ensure that the minima are repro-
ducible. The trial function of Eq. (11) can become
negative at small r if & is sufficiently large. For
all r such that this occurs we set n(r) equal to
zero.

A trial function which includes more parameters
to allow for possible oscillatory behavior of n(r)
near the bubble-liquid interface has been used in
E P. Oscillatory profiles have actually been pre-
dicted for a fluid pressed against a hard wall" or
for a fluid in contact with a wall that exerts a
long-range van der Waals force on its atoms. "
The conclusions of EP, however, are that only
monotonic density profiles appear in the bubble
states, even at high liquid density.

One might a prior feel that it is important to
use a trial function more flexible than that in
Eq. (11) to allow for possible oscillations in the
density. We may argue, on.the basis of similar
calculations for a model one-dimensional sys-
tem, "that oscillations are only likely when the
interface is narrow and the fluid density change

TABLE II. Comparison of the measured ionization energies of an excess electron in the
rare-gas fluids and the energy calculated in the Wigner-Seitz model.

Experiment
no Element

Theory
no

0.41
0.70

0.73

0.72
0.75

0.36
0.805

0.846

0.826
0.936

1.05+ 0.05 '
0.67 + 0.05

-0.20 + 0.02

-0.42 + 0.05
-0.64 ~ 0.05

He
Ne 0.70

0.70
0.70
0.70
0.70
0.70
0.70
0.70

0.80
0.80
0.80
0.85
0.85
0.85
0.80
0.90

0.60
0.57
0.65

-0.30
0 44'

-0.09
-0.58
-1.10

Prom ref. 40.
Prom Hef. 41.
With no screening.

d With full screening.
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is large. This is the case only for bubble states
in fluids at high pressure and density. In those
materials for which bubble states are stable any-
where (helium and neon) we find that they are
stable at high densities for monotonic profiles.
Even if nonmonotonic profile should lower the
bubble free energy further, that would not affect
the qualitative conclusion that the bubble is
stable. Hence we did not feel that the added com-
plexity and consumption of computer time neces-
sitated by a nonmonotonic trial function was
desirable.

%'e now consider in turn our results for He,
for Ne, and for Ar, Kr, and Xe. In each case
comparison in made with the calculations of EP.
For helium gas, it is found in Ep that the elect-
ron bubble state is relatively less stable in the
density-functional description than in the ideal-
gas model using the same electron-atom inter-
action. The present calculations, based on an
improved electron-atom interaction, predict
increased stability of the bubble states. In Fig. 2

we plot the free energy difference AQ in units of
e against n,* at T*= V. '7. The curve IG results
from the ideal-gas model while DF1 and DF2
are the predictions of the previous and present

0—

density-functional calculations, respectively.
For no &0.10, our LQ is significantly more
negative than that found from either of the other
theories. This result is consistent with our
inclusion of an attractive polarization potential
in the interaction which tends to lower the elec-
tronic energy in the bubble by lowering the poten-
tial energy of the electron in this region of space.
As the density becomes smaller, the present 4Q
approaches those found earlier. Also, the den-
sity at which the bubble becomes unstable, i.e.,
&Q=0, is n,*=0.106 which is somewhat smaller
than in the ideal gas approximation (ng =0.112)
and in EP (n,*=0.126). This density is consist-
ent with the observed transition from extended
to localized electron states in helium gas.'"

In Fig. 3 we compare the density profiles at
n,*=0.13 arising from the three formalisms.
Curves IG and DF1 are very similar in that
there is a smooth and reasonably broad inter-
face between fluid and the interior of the bubble.
The present calculation results in a sharper
bubble boundary, as shown by DF2, with all of
the fluid excluded from the center of the bubble.
The reason for this is presumably the presence
of a large, positive short-range contribution to
our electron-atom interaction. Any attempt by
the fluid atom to enter into the bubble must raise
the potential seen by the electron in this region.
Consequently, the electron will attempt to expel
the fluid atoms even while keeping them close
enough that the most attractive part of the elec-
tron-atom potential can reach into the bubble.
This balance between the negative and positive
parts of the electron-atom potential undoubtedly
results in the rather abrupt predicted bubble-
fluid interface.

1.0—

-300—
0.1 0.15

n0
0.20

FIG. 2. Reduced free-energy differences AQ/e as
functions of gtI' for the electron bubble in helium at T+
= 7.7; DF1 is the result of the density-functional calcu-
lation in EP while DF2 is that of the present calculations
and IG is from the ideal-gas model found in Ref. 27.

4
r/+

FIG. 3. Reduced density profiles as functions of r/0.
for the electron bubble in helium at T+= 7.7 and nIt:= 0.13;
DFl is from EP, DF2 is the present result, and IG is
from the ideal-gas model of Ref. 27.
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d'r 1 —n x no (12)

Of the other rare-gas fluids, only neon is sim-
ilar to helium in that the localized electron states,
if any, are bubbles rather than droplets. In EP,
bubble states were found to be stable in liquid Ne
in the sense that 40&0 for T* less than about
1.5 at certain densities n,*. Also, these states
were predicted to become metastable if the den-
sity is either decreased or increased. For tem-
peratures less than the liquid-gas critical tem-
perature, a decrease of no will eventually lead
to a regime where the liquid is metastable against
formation of the gas phase. The radius of the
bubble grows indefinitely and 40 approaches
negative infinity. An increase of n, beyond the
region of stable bubbles, on the other hand, was
found in EP to produce AQ & 0 and, at some point,
a collapse of the bubble.

In Fig. 4 we show our 40 in units of c vs n, at
selected reduced temperatures between 0.7 and
1.6; behavior similar to that described in EP
results at low density according to our calcula-
tions, but at high density we predict that the
bubble becomes increasingly stable right up to
the solidification density. We believe that the
difference between the two predictions arises
from the inclusion of the attractive polarization
potential which, at high fluid density especially,
makes the potential well seen by the electron
inside of the bubble considerably lower than the
one which results from use of a contact potential.
We find that at high no the fluid is completely
expelled from the bubble and a sharp interface
appears. In Fig. 5 we show the profiles as
functions of r/o' at T*=1.5 for several fluid den-
sities.

The bubble radius R is defined, as in EP, by

0.8

0.6'

CO
b

c 04

0.2

0.0

FIG. 5. Reduced. density profiles of electron bubbles
in neon as functions of x/fT at T*=1.5. Each curve is
labeled with the value of n f.

In Fig. 6 we show R in units of & vs n,* for re-
duced temperatures from 0.7 to 1.6; the radii
are in general about 0.5 & smaller than those
given in EP at the same temperatures and den-
sities.

For the heavier rare-gas fluids argon, krypton,
and xenon, all theories predict that no bubblelike
states exist; extant experimental results support
this prediction. Our own search also did not yield
any meta, stable or stable bubbles. It has been
proposed, "however, that dropletlike localized

60 7

1.4

-60—
0

oc 4

-120—

-180
0.1 0.4

no
0.7 1.0

1

0, 1

I s I i I g I i I g I i I s I

0.4 07
no

1.0

FIG. 4. Reduced free-energy differences AQ/e as
functions of

&gal

for electron bubbles in liquid neon at re-
duced temperatures between 0.7 and 1.6. Each curve is
labeled with the value of T*.

FIG. 6. Bubble radii R in units of 0 as functions of
z f in neon for a variety of reduced temperatures be-
tween 0.7 and 1.6. Each curve is labeled with the value
of T*.
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states may exist in these materials, if only brief-
ly, in the gas phase at no and T* not far from the
critical point. The calculations in EP fa.iled to
result in the prediction of any such states. Gn
the other hand, a.s Freeman and Huang'4 have
pointed out, if an appropriate density dependence
is introduced into the electron-atom contact poten-
tial used in EP, then droplet states will occur.

In order to exa,mine this question further, we
have performed additional calculations for argon
and xenon using the electron-atom potentials
developed in Sec. IIIA. For Ar gas at T*=1.2,
and very close to the gas-liquid phase boundary,
we find no localized states; at X*=1.3, however,
we find metastable droplets for n,* between 0.10
and the phase boundary (n,*=0.175). The relative
free energy &0 in units of e is 1.9 at n,* = 0.15.
Defining the number of excess fluid particles taking
part in this state by

Ã= d3y' n g —no

we find that N=—45, independent of the density n, .
For Xe gas at T*=1.2 we find metastable drop-

lets a.t n,*-0.05; these droplets have N=15. At
T*=1.3, on the other hand, we find droplets w'ith

EQ&0; specifically, 40/e =-5.1 at n,*=0.10 and
AQ/e = -13.3 at ng =0.15. In the former case
N—= 80 and in the latter one N=—100. Because the
localized states are only slightly lower in free
energy than the extended states, fluctuations in
the energy and particle number of the droplets
can easily prevent them from being long lived.
Vfe have estimated the fluctuations in a region
the size of a droplet at T*=1.3 a.nd n,*=0.15 by
regarding it as a, system in equilibrium with a
reservoir (the uniform fluid) at fixed p. and T.
The system oeeupies a sphere whose radius is
essentially that of the droplet 3.5 0. To estimate
fluctuations in the number of particles N and

energy & we use the standard relations for the
grand canonical ensemble,

((b N )') kT
V

-" 2

((b,E)') =k T'C„+ ((AN)'),(15)
To F

where z2 is the isothermal compressibility of the

system, C„ is the heat capacity at constant vol-
ume, and U is the internal energy. For the energy
we have used the virial expression,

NU=~NkT+ d'x g(x) V(v),

while the compressibility is obtained from the
compressibility equation of state

l
=k T [1-n C(0) ], (17)

t's p&

where C(0) is the zeroth Fourier component of
the direct correlation function. The correlation
functions are obtained from the Percus-Yevick
approximation. The root-mean-square (RMS)
fluctuation in N is found to be approximately 20
while the HMS fluctuation in the energy is about
75 &. Clearly, droplets of the sort found above
will be ea.sily disturbed by fluctuations.

Our predictions for droplet states thus coincide
with the observations of Freeman and Huang' who
find that "of the order of a hundred molecules are
involved in a quasidroplet that localized an elec-
tron, " and "the extent of the electron quasilocali-
zation in dense argon gas near the critical region
is less than in xenon at the same relative density
and temperature. "

IV. SUMMARY

~e have applied the approximate density-func-
tional formalism of Ebner, Saam, and Stroud" to
the problem of an excess electron in cia,ssical
rare-gas fluids. The formalism differs from
that used by Ebner and Punyanitya" in that a.

model potential consisting of an attractive polari-
zation interaction and a short-range repulsive
core has been used to represent the electron-atom
interaction. The parameters of the potential are
determined from considerations involving low-
energy electron-atom +-wave scattering pha, se
shifts, screening of the polarization interaction
by the other atoms in the fluid, and measured
ionization potentials of an excess electron in the
various fluids.

The electron bubble and droplet models were
used for localized electron states by employing
an appropriate trial function with variational
parameters to describe the fluid density in the
vicinity of the localized electron.

In helium gas we find that the bubble state is
significantly more stable than was found in EP
at T*=7.7; also, the boundary of the bubble is
predicted to be sharper than in EP. These dif-
ferences in the predictions a,re entirely the con-
sequence of the difference between the electron-
atom potentials used in the two calculations.

In neon we predict stable bubble states in the
liquid near the gas-liquid coexistence curve.
These predictions agree with those in EP. How-
ever, at higher densities in the liquid phase we
find that the bubble states should remain stable
in contrast to the prediction of EP that the bubbles
will collapse in this region. Further, we find
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here that at the higher densities the fluid is
totally expelled from the bubble and a sharp inter-
face is formed. Once again, these results must
be the consequence of the inclusion in the electron-
atom interaction of both long-range attraction and
short-range repulsion.

Our results have been obtained using a simple
monotonic trial function for the density profile.
It is quite possible that a more flexible trial func-
tion which can describe nonmonotonic profiles
might produce still lower free energies of the
bubble states at large n, where the interface is
very narrow. Even if this is the case, that would
not effect our qualitative conclusion that the bubble
states are stable in liquid neon in this density re-
gime.

The investigation of EP predicted no dropletlike
localized electron state will occur in any of the
rare gases. With our physically more reasonable

electron-atom potential, we find metastable drop-
lets in Ar, and metastable or barely stable ones
in xenon, in the gas phase close to the critical
point. At T*=1.3 the number of pa, rticles involved
in the Ar droplets is around 50 and the number in
the Xe droplets is about 80 at n,*=0.10 and 100 at
n,*=0.15. The thermal fluctuations in the energy
of the droplets are considerably larger in magni-
tude than the free energy difference between the
droplet and uniform gas extended states. Hence
the droplets may be expected to be short lived,
leading to the electrons being not truly localized
but only "quasilocalized. " These results are
fully consistent with recent observations by
Freeman and Huang. "'"
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