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We show that in order to satisfy the condition of relativistic invariance for the one-photon radiative transition
amplitudes of a composite system to relative order 1/c' in an approximately relativistic canonical theory, the
position operator in the theory should satisfy a condition which encompasses the world-line condition of Currie,
Jordan, and Sudarshan. We.also obtain the expressions for the E1 and the M1 single-photon transition'amplitudes
of the composite system in the center of momentum frame, including the relativistic corrections of leading order.
These expressions show that the relativistic corrections are qualitatively different for the electrically charged and
neutral composite systems. They also depend, especially in the case of the M1 amplitudes, rather sensitively on the
binding interaction among the constituent particles. There are also relativistic corrections which depend
simultaneously on the recoil momentum of the composite system and on the use of the relativistic center-of-mass
variables in the problem and which so far have not been considered in the literature.

I. INTRODUCTION

In this paper we like to consider the interaction
of a composite system with the quantized radiation
field within the framework of an approximate
relativistic theory (correct to relative order
1/c ) of the composite system. In this approxi-
mate relativistic theory all the operators involved
are constructed out of the position (r, ), the mo-
mentum (p, ) and the spin (s„) variables of the N
constituent particles making up the composite
system. The constituent particles have charges
e, and masses m, (p=1, 2, . . . , N). To be spe-
cific we also assume that all the constituent par-
ticles have spin —,'. The case when soxne or all
the particles have no spin can be studied by setting
the spin terms involving those particles equal to
zero in the various expressions. Two of the
-characteristic features of our theory are that the
position and momentum variables of the constit-
uent particles satisfy the canonical commutation
rules and that the wave functions, representing the
state of the composite system involve only one
time, namely, the time of the observer. So the
formalism is very much similar to that of the
Schrodinger theory, except that now the theory is
correct to a higher order in 1/c. The basic idea
of the theory is to make the Hilbert space of the
composite system a reducible representation of
the Poincare group, correct to relative order
I/c, by constructing the ten generators of the
group, namely, the Hamiltonian, the total momen-
tum operator, the total angular-momentum oper-
ator, and the Lorentz-boost operators in terms
of the. position, . momentum, and spin variables of
the system such that the I ie algebra of the Poin-
care group is satisfied among them to, order 1/c'.

There are several advantages in considering
this approximately relativistic theory which is
correct only to relative order I/c . First of all
the "no-interaction. theorem" of Currie, Jordan,
and Sudarshan will not be valid in an approxi-
mately relativistic theory. According to this
theorem, in an exactly relativistic classical-
mechanical theory of N particles, there can be no
interaction among the constituent particles pro-
vided the space-time coordinates of the events on
the world line of a particle transform in the re-
quired manner under Lorentz transformations,
and the position and the momentum variables are
canonical. The condition that the points on the
world line of a particle transform correctly under
a I orentz transformation gives rise to an equa-
tion which involves the Poisson brackets of the
position variable with the Lorentz-boost generator
and the Hamiltonian. This equation is usually
referred to as the world-line condition. If we
take it to be valid also in quantum mechanics (al-
though there is no rigorous reason for it) as an
operator equation with the Poisson brackets re-
placed in the usual manner by the commutators,
then the no-interaction theorem will also be valid
in an exactly relativistic quantum-mechanical
theory. On the other hand, in an approximately
relativistic theory, the world-line condition and
the canonical commutation rules are consistent
with a nonzero internal interaction among the con-
stituent particles. We consider this to be an
attractive feature of the approximate theory. An-
other attractive feature of the present theory is
that the interaction terms can be introduced into
the Hamiltonian in such a way that the resulting
formalism is consistent with the results of the
relativistic quantum-field theory to order 1/c .
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For example, by expanding the scattering ampli-
tude of two charged particles (corresponding to
the one-photon-exchange diagrams) in powers of
1/c, and keeping only terms of order up to 1/c,
then, by determining what kind of interaction
terms in the Hamiltonian of our theory will re-
produce this approximate scattering amplitude in
the Born approximation, we can derive the Dar-
win-Breit Hamiltonian' '" of two charged parti-
cles. Since the theory is correct to relative order
1/c, we can use it to derive the relativistic cor-
rections of leading order. For example, the
hyperfine-structure splitting of the energy levels
of the positronium can be derived in this way. '

We can also derive the I amb shifts and other
radiative effects by considering the appropriate
Feynman diagrams and then deriving the corre-
sponding effective interaction terms' in the Ham-
iltonian. Needless to say, the theory is also use-
ful in situations where there is no underlying
field theory.

In this paper we like to discuss the interaction
of the composite system with the quantized radia-
tion field within the framework of the above ap-
proximately relativistic theory. As we will see
later this discussion is very useful in calculating
the relativistic corrections of leading order to
the electric- (E1) and magnetic-dipole (Ml) one-
photon transition amplitudes of the composite sys-
tem. In the radiation or the Coulomb gauge the
quantized radiation field can be represented by
the transverse vector potential A(r, f). Moreover
in the interaction picture this vector potential sat-
isfies the free-wave equation so that it can be ex-
panded in terms of the plane waves. The coeffi-
cients of expansion are proportional to the photon
creation and annihilation operators. If we also
impose the periodic boundary conditions in, a box
of volume V, the vector potential A(r, t) can be
written as

equations should retain the same mathematical
form under the simultaneous replacements

A(r„, f) -A (r„,f) =A(r„, f) + &,y„(r„,f) (3)

(11 e (48 @/ c)x@(rg, t ))y(r r f) (4)

where

A„=A(r„t) .

That is,

H'=H p„-—'A

if H= H(p„) and the interaction Hamiltonian is

In Eqs. (3) and (4), y, (p, = 1, 2, . . . , N) represents
a gauge function of the variables r„and t, and V„
represents the gradient operator with respect to
the variable r„(2).In the limit when the internal
interaction among the constituent particles goes
to zero the Hamiltonian of the composite system
in the presence of the vector potential should be a
simple sum of N terms, each term being the
Foldy-Wouthuysen (FW) reduced (to order 1/c )
Hamiltonian of a single spin--, particle in the
presence of a vector potential. The first princi-
ple can be satisfied if we generate the Hamiltonian
H' in the presence of the vector potential from
the original Hamiltonian H (without the vector
potential) by the minimal replacement,

H'- H

[(2 (0)elf re iet + t e-.tk r-g+ hatt]
~Q t

where

S~ k=0 . (2)

We will derive the Hamiltonian representing the
interactions of the composite system with this
quantized radiation field (correct to order 1/c )
by means of two principles: (1) The Schrodinger
equation in the presence of a vector potential
should be gauge invariant in the sense. that the

If the particles have no spin, we find that the
second principle is then automatically satisfied.
If they have spin, there are some additional spin-
dependent terms which involve the electric and
magnetic fields and they cannot be obtained by the
method of minimal replacement in the approxi-
mately relativistic Hamiltonian. ' But these addi-
tional terms are all known from the known re-
sults" on the FW reduced (to order 1/c4) Ham-
iltonian of a single spin--,' particle in the presence
of time-dependent external electromagnetic fields.
Thus for the composite system made up of N--spin-~
point particles (Dirac particles) the interaction
Hamiltonian satisfying the two principles is
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HI=H pu A~ H p~ — s„B„

+
P 2 Sff, P@ XE~ —E~ XP~~1 4m„c

+ 3 3 p~„s@'B~ ~„., 4m„c (8)

ing interaction among the constituent particles.
This is due to the fact that the terms in H(p )
representing the internal interaction depend, in
general, on the constituent momenta (p„). As a
a consequence, in general, HI of Eq. (8) is not a
simple sum of the FW reduced Hamiltonians of
the individual particles. There will also be non-
FW terms in HI which depend directly on the in-
ternal interaction. For the purpose of later cal-
culations it is better to rewrite Eq. (8) in another
form. In Eq. (8) let us Taylor expand H(p„
—e„X„/c) about the point p„. Then

Since in this paper we are only interested in the
one-photon transitions, in Eq. (8) we have kept
only those spin-dependent terms which are linear
in the fields. The fields E and B are related to
the vector potential X by the equations

1 SA

c et

and

B=V'XA .

HQ ——"A =Hp„

N

2c I
' BP„,. BP, ,

Next we notice that

(io)

It should be mentioned that the spin-dependent
terms in Eq. (8) are applicable only to spin--,'
point constituent particles (Dirac particles) with
no anomalous magnetic moment. If the constituent
particles have anomalous magnetic moments there
will be additional spin-dependent terms, some of
which will involve the derivatives of the electric
and magnetic fields. We would also like to em-
phasize that Eq. (8} is correct to order 1/c if
the original Hamiltonian H =H(p„) is given correct
to order 1/c . The reason for this is the follow-
ing: Since H is expanded in powers of 1/c, the
next higher-order terms in H beyond those of
order 1/c will be the terms of order 1/c . Be-
cause we generate the interaction Hamiltonian HI
by the gauge-invariant method of minimal substi-
tution, the terms of order 1/c in H(p ) can give
rise to only terms of order 1/c or higher in H~.
Also the spin-dependent terms in Eq. (8) are
given correct to order 1/c by means of the FW
transformations of the original gauge-invariant
Dirac Hamiltonian of a single particle in the
presence of an external electromagnetic (em)
field. Since the lowest-order electric (El) and
magnetic-dipole (M1) one-photon transition am-
plitudes are due to terms of order 1/c and 1/c,
respectively, in the interaction Hamiltonian HI,
Eq. (8) should be capable of providing us with the
relativistic corrections of leading order (of rela-
tive order I/c ) to the El and the Mi amplitudes
of the composite system.

It is important to notice that there are terms in
Hz of Eq. (8) which depend on the internal or bind-

Therefore using Eqs. (10}and (11), Eq. (8) be-
comes

H =i —(A„[r,H]+[r„,H] ~ A )-g s„B

+g 4 2 ~ s„[(p,xE, ) —(E,xP,)]„,.4m~c

—i p 2 2 s~' (V,x E~)+g 3 3 [p„,s„.B„],.
PÃgC ii, j Vlp C

(12)

It should be emphasized that in Eq. (12) we have
kept only those terms which are linear in the fields
and in the potential and that Eq. (12) is correct to
order 1/c .

There are at least two reasons for believing
that we are correct in dealing with the Hamiltonian
of Eq. (12). First of all, Eq. (12) is consistent
with the two principles we listed before, which
are of course the necessary conditions for the
correctness of any Hamiltonian. We may note
that since the spin-dependent terms depend only
on the E and B fields they obviously do not spoil
the gauge-invariance property required by the
first principle. Of course this is not at all sur-
prising since the spin-dependent terms are ob-
tained by the FW reduction of the original gauge-
invariant Dirac Hamiltonian of a single spin--',



INTERACTION OF A COMPOSITE SYSTEM .%ITH THE. . . 2813

particle in the presence of a vector potential.
Second, when we apply Eq. (12}or Eq. (8} to the
special case of a two-particle composite system,
bound by internal em forces, the results obtained
coincide with those obtained from calculations' '
based more directly on quantum electrodynamics.
But Eq. (12) has the virtue that it is also appli-
cable to situations where there is no underlying
well-established relativistic quantum-field theory.

Before applying Eq. (12}to specific examples,
there is one more thing we should do to make sure
that it is indeed correct relativistically to the re-
quired order. In the relativistically invariant
quantum electrodynamics the interaction Lagran-
gian density and hence the interaction Hamiltonian
density (since the interaction Lagrangian density
does not involve derivatives of fields) is relativ-
istically invariant. Hence the Soperator is also
relativistically invariant. So the 8-matrix elements
can be written as the product of an invariant matrix
element and some kinematical factors involving
the energies and the momenta of particles. From
the structure of these kinematical factors, we
can immediately infer that the S-matrix elements
have the required Lorentz-transformation prop-
erty. For example, it is a trivial. matter to verify
that the lifetimes calculated from the decay ma-
trix elements in a relativistic quantum-field theory
transform correctly under Lorentz transforma-
tions. We should note that this situation comes
about because the formalism involved is mani-
festly covariant. On the contrary our approxi-
mate relativistic theory is, of course, not mani-
festly covariant. We know that our theory in the
absence of an external em field is relativistically
correct of relative order 1/c2, because we have
constructed the ten generators of the Poincarh
group in terms of the variables r„, p„, and s„
(y, = 1, 2, . . . , N), such that their commutator s
satisfy the Lie algebra of the Poincarb group to
order 1/c . With the introduction of the quantized
radiation field, in order to verify the relativistic
invariance of the theory to relative order 1/c,
we should again verify that the generators of the
Poincarb group constructed out of the basic var-
iables r„, p„, s„, and the vector potential X(r, t),
satisfy the Lie algebra in the required approxima-
tion. Since this has not been accomplished we
should explicitly demonstrate that the transition
amplitudes calculated from the Hamiltonian of
Eq. (12) has the required Lorentz-transformation
properties. For this purpose we will split the
one-photon transition amplitude calculated from
Eq. (12) into two parts, the parity-odd part T„
which is nonvanishing only when the initial and
the final internal states of the composite system
have opposite parities, and the parity-even part

T, which is nonzero only when the initial and the
final states of the composite system'have the same
internal parities. The parity-odd (TJ and parity-
even (T,) amplitudes defined in the above manner
do not mix under Lorentz transformations because
the operation of space reflection commutes with
the operation of Lorentz boosts. When expanded
in terms of multipoles the parity-odd part T, will
contain the electric-dipole amplitude (Tsq) and the
parity-even part T, will contain the magnetic-
dipole amplitude (T„~). We will explicitly demon-
strate that the one-photon transition amplitudes
T, and 7.', separately satisfy the required relativ-
istic condition (to be derived later) on the one-
photon transition amplitude to relative order 1/c .
This result gives us one more reason to believe
that the interaction Hamiltonian of Eq. (12) will
indeed correctly give us the relativistic correc-
tions of leading order (of relative order 1/c ) to
the E1 and M1 amplitudes. The above investiga-
tion is also important for another reason. The
twin requirements of gauge invariance from which
we have derived Eqs. (8) and (12) and the relativ-
istic condition on the one-photon transition ampli-
tude may put some interesting constraints on the
structure of the theory, which, needless to say,
are worth understanding. In fact we will find that
in order to satisfy the relativistic condition on the
one-photon amplitudes 7, and T„ the position
operator of the theory should satisfy the morld-
line condition of Currie, Jordan, and Sudarshan
at least mithin the matrix elements taken between
the eigenstates of the Hamiltonian with different
energy eigenvalues. We think this is an interest-
ing result especially because of the fact that the
world-line condition need not be valid in quantum
mechanics, in contrast to the situation in classi-
cal mechanics, ' where it has to be valid. As a,

result of our investigation, we also find that the
interaction dependent part of the Lorentz-boost
operator should satisfy certain constraint equa-
tions. We would like to emphasize that our re-
sults are applicable to any composite system made
up of an arbitrary (but fixed) number of constit-
uent spin--,' or spin-0 particles and bound by
arbitrary internal interactions.

In the course of this investigation we also de-
rive two interesting expressions [Eqs. (8V) and
(88)], which are valid to relative order 1/c, for
the one-photon electric- (El) and magnetic-dipole
(M1) transition amplitudes in the center-of-mass
(c.m. ) frame of the composite system. They can
be used to calculate the relativistic corrections of
relative order 1/c to the El and Ml transition
amplitudes of any composite system bound by any
kind of internal forces. These expressions mill
clearly show that the leading-order relativistic
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corrections are qualitatively different for the
electrically charged and neutral composite sys-
tems. It is interesting to observe that there are
relativistic correction terms which depend simul-
taneously on the recoil momentum of the compos-
ite system and on the use of the relativistic c.m.
variables in the calculation. To the best of our
knowledge these terms were not considered pre-
viously in the literature. ' On the other hand,
from our discussions to follow, it will become
obvious that the use-of the relativistic c.m. vari-
ables is absolutely necessary in a consistent
approximate relativistic theory of the composite
system to relative order 1/c . There are many
applications of our results —especially with re-
gard to the relativistic M1 transitions. ' ' They
will be explored in future publications. The appli-
cation of our expression for the E1 amplitude
IEq. (87)] to calculate the relativistic corrections
to the electric-dipole transition rates of char-
monium is discussed in another paper. '

The format of the rest of the paper is as follows. '

In Sec. II we describe the relativistic condition on
the one-photon transition amplitude of the com-
posite system. In Sec. III we investigate the con-
ditions under which this relativistic condition can
be satisfied for the parity-odd (T,) and parity-
even (T,) amplitudes in the first-order time-de-
pendent perturbation theory, and in Sec. IV we
discuss the results of our investigation. In Sec.
V we write the expressions for the electric- and
magnetic-dipole one-photon transition amplitudes
of the stationary composite system and point out
some of their interesting features. %e also men-
tion some of the possible applications. Finally,
in Sec. VI we make some concluding remarks.

erage energy and momentum being & and k. %e
assume that t, is large enough so that ~ =~»
=E~ -E„. To the observer 0', the time interval
between the two sets of measurements is t,'
=t,/(1 —v'/c')'~'. Also, the corresponding sets
of measurements conducted by 0' will determine
the probability of finding the composite system at
t' =t,' =t,/(1- v'/c')'~', in the energy eigenstate
~A'&, with the simultaneous presence of photon
of average energy and momentum ~' and k' with
a spread given by d'k', if originally at time t
=t'= 0 the composite system was in the energy
eigenstate ~B'& with no photons being present.
The primed quantities are obtained from the un-
primed ones by a Lorentz transformation of rel-
ative velocity -v. Since we take the states to be
simultaneous eigenstates of H and P we can write

fB& = iB&,e i 0&, .
and

(14)

where ~A&, and ~B), are eigenstates of the internal
Hamiltonian h related to the Hamiltonian H by the
relation

H = (h '+ c 'P') ' '

In Eqs. (13) and (14), ~0&„and
~

—k), are
eigenstates of the total momentum operator P
with the eigenvalues zero and -k, respectively.
The momentum -k is the recoil momentum of the
composite system in the state ~A). Since the
states ~A '), ~B'&, and ~k', C'&,h are obtained from
the states ~A&, ~B&, and ~k, e ),„by a Lorentz
transformation, we can write,

[A ) =e*'"" )A&= (A&,e ~X k).. . (18)

II. RELATIVISTIC CONDITION ON THE QNE-
PHOTON TRANSITION AMPLITUDE

/B &
=e'g' fB& = fB&,e f

p&... (17)

Let us consider two Lorentz frames L and
L', the second one moving with a relative velocity
-v with respect to the first. The origins of the two
frames coincide at t =0. To the observer 0 sta-
tionary in the first frame (L), the composite sys-
tem is stationary, whereas to the observer 0'
(who is stationary in the second frame (L')], it
is moving with a velocity v, or with total mo-
mentum equal to P. The observer 0 in L makes
a set of measurements and finds that at t =0 and
composite system is in state ~B), an eigenstate
of H, with no photon being present. Subsequently
he makes another set of measurements and finds
the probability of finding the composite sys-
tem in another eigenstate ~A & at time t =t„with
the photon being emitted with its energy and mo-
mentum lying in the small interval d'k, the av-

(k, e.&„=e' '"~k, &.&,„, (18

where K and K~ are the Lorentz-boost operators
of the composite system and the free radiation
field, respectively, and

u =tanh '(v/c) . (19)

It is interesting to note that the internal states
remain invariant under the Lorentz boosts be-
cause of the relativistic separation between the
internal and the c.m. variables. There is not
even the "signer spin rotation'4" of the state
~A') since it can be neglected to relative order
1/c'. To relative order 1/c the energy, mo-
mentum, and polarization vectors of the photon
in the two Lorentz frames are related by the equa-
tions, "
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Qp' = (0+v ' k + g v /c (d ~ (20)

v 1 g'v)k' =k+0—+ — vc 2 c'
1 f vg& 1 v

O', =0, ——0, v
I
1- I&+ ——

~c
I I, c ) 2 c (22)

IT(V I'd'~ =
I
~ (f.) I'd'~ .

Since

( (g1)
(d )

we obtain from Eq. (23)

I7' &V I
= I7'(V

I
.

(23)

(24)

(25)

Because of the continuous nature of the Lorentz
group; the phases of the amplitudes can be chosen
so that Eq. (25) can be rewritten as

The probabilities measured by the observers
0 and 0' should be the same since both of them
are observing the same physical events but frum
different Lorentz frames. If we define T(t,) to be
the probability amplitude, acco.rding to observer
0, of observing the composite system in state
IA) with the simultaneous presence of a photon
of energy (d, momentum k, and polarization vector
4,, at time t„ if the composite system were
originally (at time f = 0) in the state IB) with no

photon being present, and T' [f,'= f,/(1 —v'/c')'~'I
to be the corresponding probability amplitude
according to observer; 0', we obtain

photon transition amplitude. In the next section we
will seek the conditions under which this equation
wi11 be satisfied for the composite system.

I =Mc'+I ")+a~"+ (26)

where I("' is of the ith order in 1/c', and Eq. (15)
to order 1/c', takes the form

*2
H Mc2+ h(0) +

*
+ h(i)

2M

III. VERIFICATION OF THE RELATIVISTIC
CONDITION FOR THE ONE-PHOTON

TRANSITION AMPLITUDE

For reasons of clarity and for setting up the
notation we will first quote the results of pre-
vious authors, '" especially those of Krajcik
and Foldy, ' which will be pertinent to our cal-
culations. To order 1/c', we can write the Ham-
iltonian of the composite system as

N
( 2 4

H= g I
—,, I

+U"'+ U"' (27)
(2m 8'~ c j

where U"' and U"' represent the internal inter-
action terms of the zeroth and first order in 1/c',
respectively. The other generators of the Poincare
group, except for the Lorentz-boost operator
K, will have the simple additive or free-particle
forms. ' When expressed in terms of the c.m.
variables the generators should have the single-
particle forms. ' The single-particle form of the
Hamiltonian is given by Eq. (15). If we expand the
internal Hamiltonian h in powers of 1/c as

(~~i '~'
7"(V = 7'(V (26)

g(0) P .I
2M'c' 8M'c'

where

f' = t /(1 v'/c')'I

Equation (26) is the necessary and sufficient con-
dition for the relativistic invariance of the one-

Krajcik and Foldy' have shown that in order to
convert the constituent forms of the generators
into the single-particle forms, correct to order
1/c', the nonrelativistic relations between the
constituent and the c.m. variables should be modi-
fied to27

1 p„p (w„$ ( 1 (((„p„&i (p x((„)xp—p(+H-
2 2 I I

+
2M

(+H.c. —
2 ~

I 2 I+H.c.~+
C I, m~ c „(m„j „c

~ W Pc„x(g„xp) i [ — (()
0

fP
(x)dp. W, p„

dP. W (l)~ r
~ . 0 ~II

(30)

(31)

(32)

The internal variables in Eqs. (30)-(32) satisfy the following constraint equations'.
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g~ =0,
g =1

m~ p~ =0. (33)

In terms of the above internal variables, the internal Hamiltonians h"' and h"' take the forms'

I [0) Q ee II(0&
2fP't ~

N 4

am c

(34)

The operator W"' entering into Eqs. (30)-(32) is an interaction dependent part' of the Lorentz-boost op-
erator. Since &"' will turn out to be quite important in our discussions we list here the conditions it
should fulfill so that the Lie algebra of the Poincare group is satisfied to order I/c'. In order to satisfy
the commutation rule

[z;,If] =a,.
to order 1/c' we should have

(35)

2c' M " s" U&o) + g[g xp p[0)j
2M

P

From the commutation rule

[&„K&]= —i eijk J't/c

we also find that

[Rt, W[t')]-[Rt, Wtt')]= 0.

(36)

(3V)

(38)

With these results in mind, we will now turn to the calculation of the one-photon transition a.mplitudes
of the stationary and the moving composite systems. Using the interaction picture and the first-order
perturbation theory we can write the one-photon transition amplitude of the stationary composite system
as

et 0
T(t,) =-s „%,e„]3 A Ht(t')dt' 8 ]8[ 00 ph & &]

~ I
pb

I

Using Eqs. (12) and (1), Eq. (39) can be rewritten as

T{g,]= c(—~

A —e([ ee] e ee
' ''e+e ' 'ee [ee, p])e I, " se (kee le

(d ] mJ, P= 1 P

(39)

", , s ~ [(p»xe„)e '"'»+e '»(p» e„}]
4mpc

+ k ", , s „~(fx 8„)e '"'»
SlpC

e P t
[p2 s . (f x& )e-tk t» ] R et(u vttet)t dgi-

3 PP P cc +
P=& 0

(40)

In order to verify the relativistic condition of Eq. (26} we must express all the constituent variables in
Eq. (40) in terms of the internal and c.m. variables by means of Eqs. (13), (14}, and (29}-(32}.In the non-
relativistic limit the parity-even part of T(to} is of relative order 1/c compared to the parity-odd part.
So if we want to express both parts to relative order 1/c' we have to express all the operators in the
matrix element of Eq. (40) to relative order 1/c'. In doing this it is crucial to note that the photon mo-
mentum k is of order 1/c compared to the internal momentum v . We also note that, to order 1/c',
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p2

and

p
(I) (0) (0)

2m Mcm
+ ~ 2Mmcm -M J dP ~ W, h, h

e '~'&=e '"'R~ 1 if -p„--,'(k p„)'+ —(f p )'

(41)

Also,
e-(% Rio) .

i f)
(-f/e-*+' = (0(.

Using Eqs. (13), (14), (29)-(32), and (41)-(43), Eq. (40) now takes the form

(2(( 'h " eT(t)= c/ A ~ (e [p, h +h(']
WV ((e r, 2c

x ~-fk'p ——k'p + —k p6

2c „„I,2m„M „m M

(42)

(43)

+ 1-gk pp -~ k'pp + —k pp

2c' „(2m„M „2m„Mc' M

r' g„xg„
+ (1-ik'p„)e ~ —,P " " + H.c.

~
+ g ",——W(')(0), h(o)

%2

2 2 0'p mp&eat 1-jk pp + & —ik p m xc~ gg

4
Q

(44)
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In arriving at Eq. (44) we have also made the assumption that we can Taylor expand W"' (P) about P = 0
so that

W"' (-%)= W ' (0) —
(1&. V )W '

i j,
and

8 P

dP ~ W = -% ~ W&)(0).
'A

p

(45)

Next, as mentioned in Sec. I we split the transition amplitude T(t,) into two parts, the parity-odd part
T,(t,), which is nonvanishing only when the internal states i A)z and i B)i have opposite parities, and the
parity-even part T, (t,), which is nonvanishing only when the states iA)~ and )B), have the same parities.
That is,

T(t. ) = T.(t. ) + T.(t. ) .
In order to achieve this splitting we write

(46)

W&'& = W&'&+ W&.'&, (47)

where W'," and W',"are the parts of W"' which are, respectively, even and, odd under the inversion of the
internal coordinates. Even though W"' is an odd-parity operator with respect to the inversion of r„or
equivalently the combined inversion of the internal and the c.m. coordinates, we do not know, in general,
its transformation property with respect to the inversion of the internal coordinates alone. Using Eqs.
(34) and (36) we also note that

F2 X2 7f

(48)

V~U&'&i~, is necessarily an odd-parity operator with respect to the internal variables since V~U"' i~,
cannot depend on R or P. Therefore the right-hand side of Eq. (48) is an odd-parity operator with respect
to the internal variables. Using Eqs. (47) and (48) we now find, to relative order 1/c',

T, (t.)= c —
) A Q -a(~ ~ [p„,k"' k+"'j[1--,'$ p )']+[1--'$ p )']e ~ [p k&0'+k"']].1 2'»l 0 I a

p= 1

and

N

—Z - 0''
m„c

+i —~ V U('i

$x~ )$ ~ p„) —kg, ", g„(«„xe )
2%$p c

1 2 I f t'r g„jy i g'& - a~&
t

P=o 2MC
P l Sly

' I Jo
(49)

T.(f.)= c —
i

A P .„[p k'+k ]2c

p + p + H c

+ —% VS~&0))+E (V,V(') g ' -, )@.& )+8,
0 2Mc v

m2

+g ' o x~ 1+ +

+fk g
p=l

~iI

0'& ~
(&&& x 6 z)(R ~ p&) + (% ~ p&)(j&& xf ~)

+kg —«

1 2
1 (p„%)

2c' M

+k Z„[(t' V,)W&'& i,j

+H.c. i+—[tt. W',"(0), p„]1R
p

f' to j( ~ ~») ~ dg '
I "0

(50)
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where Q =P„",e& is the net charge of the composite system.
In order to verify the relativistic condition on the one-photon transition amplitude [Eq. (26)] we should

next consider the analogous expressions for T'(t', ) (the transition amplitude of the moving composite sys-
tem as defined in Sec. II). In the first-order perturbation theory

tf

T(t,')=-t %', e' e A' a (t')dt' a' c 0
ph

Using the expression for Hz given by Eq. (12) and the equation for the vector potential given by Eq. (1),
Eq. (51) can be written in the form

/~l 1/2 ~2~ ~»'r'(t')= c
(

A' Q ([r,a] e'e '~'&+e '~'"') ' [ „,If])
&() /

N

+ -" s„~ 'x-~„' e '"" 'p
m&c

-k'Q ", , s„[(p„xe„')e '""') +e '"'') (p„x~~)]
p=l P

N

+ k' " s ~ (R'xe')e '~"'(
4m' c' tX

P=l P
N t'

)i [p2 s ~ (fixp )e-&k'I)(] gy e&( - ed() '
dt (52)

4 m'c'P=l p 0

In order to compare T'(t,') with T(t, ) we have to express the right-hand side of Eq. (52) in terms of the

internal and the c.m. variables and also in terms of the unprimed photon variables e„, %, and &d. We do

this by making use of Eqs. (16), (17), (20-22), (41-43) and the equation

p tl ~to
e&( ~' &&)d&)t-' dt i (1.+ v2(/c2) Jl e&( &-(d()~)t &it

i (53)
0 0

After some straightforward but lengthy calculations and by splitting T" (t', ) into the parity-odd and parity-
even parts by the equation

r'(t'. ) =r.'(t.')+s', (t.'), (54)

we finally find that

/~d ~(/2 1 2 )&/2
j r.'(t.') = T'. (t. )+ c —'

[. P e W g ~
~~ e~-[—[W"'(P)-W »((O)], k')

c.rn. ~ & l 2C ( M

dP ~ W"'
&&

d"& ~ d I B) «&& P)
2t I $r

C.ill. (55)

and

x Jd d4 ~ I-—I{(P ~ p )E ~ [p, U ] E+[p, I/"l](P. p )}
I( ik (

i dm 2c

ckcd('[ Wd (P) —W (0)]- ck dP ~ W& ),p
' e„.p SP

0 e.m.
N

+.. P & Z;" I e. [p„,k"']]M& ~ [W& (P)-&&(V&]-—'r ~ dPW »&, p„/p=1 0
t' p

) ~

+d, [W&"()-(&'P&( )]+))i0, (. W&,'&&d, &&&„, d&'& —5 &&&) +H.c.)e p

+e ~ —(k V )0&')] k&0&
tX P e

( to
X g~ & ~~ax& t'

dg ~ .
p

+M e '[[(&'[W (P) —W~ (0)], p ], k& l]
~

8 (3) p
i c.m.

(56)
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In order that the parity-odd amplitude T, satis-
fies the relativistic condition of Eq. (26) the sec-
ond term on the right-hand side of Eq. (55) should
vanish. This means that the matrix element in the
second term should vanish for any two internal

' states whose energy eigenvalues differ and whose
parities are opposite. Since the operator involved
has odd parity, its matrix elements are automat-
ically zero when the internal states have the same
parities. Also since the operator involved is a
commutator with h"' and is of order 1/c', the
matrix element vanishes when the internal states
have the same energy. Now, if we assume that
the Hamiltonian is invariant under space reflec-
tion, the energy eigenstates should have a def-
inite parity, either even or odd; so the matrix
element involved should vanish for all eigenstates
of the internal Hamiltonian jg. Since the result
should be true for arbitrary values of the charges
e&, and the photon parameters e„and%,

p

[0&"(P)—W"~(0)]+1 dP W~~~, p, h'o' =0,
I

II 0

where Z, „ is a vector operator of even internal
parity which comutes with the internal Hamiltonian

Differentiating Eq. (61) with respect to P, ,

(p„, [p„ I/ ]+[p„U ]p„,

8W"' ~I/II'

+[W&.'&, ]=-' .-' . (62)
4

In order to obtain the operator condition corre-
sponding to the vanishing of the second matrix
element we first notice that this matrix element
can be simplified considerably by making use of
Eqs. (5V) and (58). After the simplification we will
obtain the operator condition

8
(p„, ,&„„,,+z., „,,p„;)—

, p w',",(p)

1
+ —[W",,

' (P)-W", ,
' (0), p„,]=q, (63)

where Q,.&
is a tensor operator which commutes

with h&" . Using Eq. (62}, Eq. (63) can also be
written in another form, namely,

or equivalently,
(5V)

(PP ~ ~ o ~ P ~ &+ o. P ~ SPY ~ ~ +2 2 (PP ~ &[PA.&

[Z. „, I 1=o. (59)

Differentiating Eq. (59) with respect to P, , we

obtain

i[%'-"( P)- W"'(0)]+ l dp ~ W"' p = Z
0

(58)

where Z, „ is a vector operator of odd parity with

respect to the internal variables and

+[p„.. .IT'"]p„,, )+[W. , (0), p„,]=q,„, (64)

where q,-& is a tensor operator of even internal
parity, which commutes with Q"'.

IV. DISCUSSION OF THE RESULTS

In order to satisfy the relativistic condition of
Eq. (26), Eqs. (60), (62), and (64) should hold
true. Adding Eqs. (60) and (62) we obtain

(&)Wo +[W(1) ~
] Zo. u

es (60) 2,. (P„, ([PP U"']+[P„,U"']P„,)

In order that the relativistic condition should
. hold true for the parity-even amplitude 7, , the
second term on the right-hand side of Eq. (56)
should be zero. There are two matrix elements
in the second term, the second matrix element
being of relative order 1/c with respect to the
first. So the two matrix elements must be sep-
arately zero. Since the matrix element has to be
zero for any two internal eigenstates with differ-
ent energy eigenvalues and since e„and e„are
arbitrary, we obtain, from the vanishing of the
first matrix element, the operator. condition,

, . f (p P„}[P„,U"']+ [P„,U"'](p p, }]

P p
—z[W '(P) —W (0)]+ dP'W '

p = Z
~lo

(61)

i +[W'", p ]= -"- (65)&P] P 8P

where Z „(Z„=Z, ~„+Z, „) is an operator which
commutes with h"'. In arriving at Eq. (65) we
have made use of Eq. (47).

We will now show that Eq. (65} is very closely
related to the classical world-line condition of
Currie, Jordan, and Sudarshan. ' In fact, if we
choose the right-hand side sZ„/sP; equal to zero
(which we can), Eq. (65) is the same as the world-
line condition. In order to show this let us first
describe the classical world-line condition. Cur-
rie, Jordan, and Sudarshan' have shown that in a
classical mechanical Hamiltonian theory, if the
space-time coordinates on the classical world line
of a particle transformed in the usual manner un-
der Lorentz transformations, the position variable
in the theory should satisfy the following equation:
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1
[r„~,,K»]=—,r„»[r„,, ff] . (66)

where the square brackets now represent the com-
mutators. For particles with spin there could be
additional spin-dependent terms on the right-
hand side of Eq. (6V). Coester and Havas2' have
derived the classical world-line condition for par-
ticles with spin in quantum mechanics by demand-
ing that the world-line condition required (by def-
inition) that the commutation relations of the in-
dividual particle positions r with the Lorentz gen-

P
erator K be the same with or without the interac-
tion. They thus obtain

In Eq. (66), the square brackets denote the Pois-
son brackets and x&, is the i th component of the
position variable of the p. th particle. Using Eq.
(66) they have then shown' that in an exactly rela-
tivistic classical mechanical theory of two par-
ticles there can be no interaction. Lewtwyler"
has generalized it to the general case of any finite
number (N) of particles. In a quantum-mechani-
cal theory the value of the position of the particle
at a particular time has to be replaced by the ex-
pectation value of the position at that time. . If we
then insist that the expectation value as a function
of time should transform in the expected manner
under Lorentz transformations we cannot derive
Eq. (66) with the Poisson brackets replaced by the
corresponding commutators. But we can take
another point of view that we can always get the
corresponding quantum-mechanical equation from
a classical equation if we replace the Poisson
brackets and the products of dynamical variables
in the latter by the commutators and the symme-
trized products of operators, respectively, in the
former. Then, in a quantum-mechanical theory of
spinless particles (remember that the classical
particles are necessarily spinless) we should have

[r„„K']=»2, (r„,.[~, „H]+[r„„&]r„»),1

(67)

(VO)K=Ky+ V,
where Pz and R~ are the forms of H and K when
there is no interaction among the particles (free-
particles). If we now substitute Eqs. (69) and (VO)

in Eq. (68) and then make use of the fact that for
free-particles, Eq. (68) is exactly satisfied with

K,. and H replaced by K~ and H&, we obtain

[r„„V,] =2, (~„,[r„„U]+[r„„U]r„,)
1

[r„„U](g„xp„)»
(If„+m„c')'

To relative order I/c', Eq. (71) becomes

(V2)

where V"' is the term of order I/c' in an expan-
sion of V in powers of 1/c'. Krajcik and Foldy'
have shown that

V"' = (HU"' U+"'R) +W"'
2c

(V3)

Since Eq. (72) is to be satisfied only to order
1/c2, and since V"' is already of order 1/c, r„
which occurs on both sides of Eq. (V2), can be
replaced by its nonrelativistic expression, namely,

(74)r@ ~p~+B.
Substituting Eqs. (73) and (V4) in Eq. (V2) we then
obtain

will not go through for an approximately relativ-
istic theory which is relativistic only up to a par-
ticular order in 1/c. So in approximately rela-
tivistic theories the world-line condition and non-
zero interaction are mutually compatible.

Next we define

(69)

['v. » If»]=2 ~ (~v. »[~.. » «+[~~.. «~~, »)
=1

(g, XP „),

(68)

Equations (6V) or (68) now demand that in an exact.-
ly relativistic quantum-mechanical theory. of a
system of N particles there can be no interaction
among the particles. The proof will be exactly
similar to the ones given by. Currie, Jordan, and
Sudarshan' and by Lewtwyler. " But this proof

We see that Eq. (75) is the same as Eq. (65) if we

choose BZ„/sP, =O and when we recognize Eq. (38)
and the result that

8 gr(&)
[W&",II,]=-» (76)j 1 f.

We are free to make the choice s Z„/sP» = 0, since
the only requirement on Z„ is that it commutes
with h'O'. In other words, if Eq. (75) is satisfied,
the relativistic condition on the one-photon transi-
tion amplitude is also satisfied although the rela-



2822 KUNNAT J. SEBASTIAN

tivistic condition on the one-photon amplitude does
not necessarily require the validity of Eq. (75),
but only the validity of the weaker condition given
by Eq. (65).

The result that the twin requirements of the
relativistic invariance of the one-photon transi-
tion amplitude and of the validity of the Hamil-
tonian of Eq. (12) lead to Eq. (65) which encom-
passes the classical world-line condition, is
quite interesting because in general' the world-
line condition need not be valid in quantum-mech-
anical theories. %e see that the theory based on
the Hamiltonian of Eq. (12) has several appealing
features, the gauge invariance in the sense de-
fined in the introduction, the relativistic invari-
ance to relative order 1/c', and the consistency .

of these conditions with the classical world-line
condition to order 1/c .

Coester and Havas" have shown that if the clas-
sical world-line condition is satisfied to order
1/c', the nonrelativistic limit of the potential is
either independent of the internal momentum or
if it depends on the internal momentum it should
be of the form

and

X=+&&, . (78)

We will now show that Eqs. (65) and (36) deter-
mine the interaction dependent term in the rela-
tivistic relation of Eq. (31) between the consti-
tuent momentum variable p, and the c.m. varia-
bles, at least in the special case when U"' is
independent of momenta. From Eq. (65) we can
get a more useful equation (which will have no
reference to the unknown quantity Z„) by taking
the commutator of both sides of Eq. (65) with t&&0&.

Using Eqs. (76) and (38) we then obtain the equa-
tion

[t& "&, [w&",z,.+p„,.]]=o, (80)

[z,.+p„„a&'&]=t "
we then get from Eq. (80),

provided U"' commutes with p„. Using the Jacobi
identity and the equation

fI'"=f.(p. ~.) +1&f2(p., u.»
where

(77)
[w&'&, tw„,/m, ]= fa,.+p. „[w&'&,a&»] J. (82)

l= p &&@ (78)
As a result of Eq. (36), after a simple integration,
Eq. (82) then leads to

~ W P P

M
dP W&'& 77 = — " U&o&P+tm [p +ll U&'&(P) -U&»(O)]~2 2

Z"0

+, [[(p„P)f, +f„(p. .P)]+~„xP, U&'&] . (83)

Equation (83) gives the interaction dependent term in the relativistic relation of Eq. (31).

V. ONE-PHOTON E1 AND N1 TRANSITION AMPLITUDES IN THE CENTER OF MOMENTUM FRAME OF THE COMPOSITE

SYSTEM

The parity-odd and parity-even amplitudes T0 and T, of the stationary composite system given by Eqs.
(49) and (50) are not of pure multipole types. When expanded in terms of multipole fields, T,(t,) contains
the electric-dipole (El) amplitude T&&,(t,) in addition to higher multipoles of odd parity, whereas T, (tg con-
tains the magnetic-dipole (Ml) amplitude T»(t,) in addition to other higher multipoles of even parity. But
we can extract the El part from T,(to) and the Ml part from T, (t,) by noting that the E1 and Ml transition
operators are vector operators of odd and even parities, respectively, in the Hilbert space of the internal
states of the composite system. After some algebra we obtain the expressions below for the E1 and the
M1 one-photon transition amplitudes.

A. E1 transition amplitude

0
e BA dt

where
E

X =D=g e„p„
/~1

T„(t,) = c~
~

n" ~(A
~
X, X,+(a), ~ (84a)

(84b)
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N N"
&2(p'. .+ .p'. } [p-. (p. .)+(. p. }p.l]+ I

& U"'i ..-2M . ', „i. (84 )

The operator X, gives the relativistic corrections of relative order 1/c to the nonrelativistic E1 transi-
tion operator X . The last term in the expression for X, of Eq. (84c) comes specifically from the use of
the relativistic c.m. variables. This term depends explicitly on the internal interaction U"' and vanishes
when the net charge Q of the composite system is zero. So the relativistic corrections to the El transi-
tion amplitudes are qualitatively different for the electrically charged and neutral composite systems.
From Eq. (84c) we also find that the relativistic corrections of order 1/c' to the El transition operator
are spin independent except for any possible spin dependence of U"'.

B. N1 transition amplitude

The Ml transition amplitude, extracted out of Eq. (50), is

(85a)

where
g

Yo= p, = " (p x& +2&7)
V= V

and

N 21&2

(85b)

[p„x(T„&xf„)—(~„xf„)xP„]

2
—

5 (p.'[(p. x~.)+4~.] V.[p. -(ap. x~. +~.}]+[(&'&p.x~. +~.} p„]p„]}

7r2

(g&» xD D xg&'&)+ ' f/&»(0) x[D g&'&] —[D l&'"] x4"'(0}]~o 4MC o 0 (85c)

The operator Y, gives the relativistic corrections
of relative order 1/c' to the nonrelativistic Ml
transition operator Y,. In the expression for Y,
of Eq. (85c) the second and third terms wouM have
vanished had we neglected the 1/cm terms in the
relativistic relation of Eq. (30}between r, and the
c.m. variables. The last three terms on the right-
hand side of Eq. (85c) would have vanished if we
had neglected either the recoil of the composite
system or the 1/c2 terms in Eqs. (30)-(32). The
first term in Eq. (85c) would have survived even
if we had used the nonrelativistic c.m. variables.
We should also note that the leading relativistic
corrections to the kf2 amplitude depend on the in-
ternal interaction among the constituent particles
even when the net electric charge of the composite
system is zero. However, most of the interaction
dependent relativistic corrections vanish when the
electric-dipole moment D of the composite sys-
tem vanishes. The correction terms, arising

where

EI gI
o C

(86a)

(ssb)

l

specifically due to the use of the relativistic c.m.
variables and the recoil momentum of the corn-
posite system, are especially interesting since,
to the best of our knowledge, they were neglected
in the literature so far. But these corrections
become negligible when any one of the constituent
masses is large compared to all the others. In
fact, the new corrections are of order m/M com-
pared to the old ones. So they can be neglected
for electronic atoms. But they are crucial for
composite systems such as positronium, char-
monium, deuteron, and mesic atoms.

The E2 and the ~2 decay rates coming from
Eqs. (84) and (85) are given by
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and g is X or Y depending on whether we are
dealing with the E1 or the M1 transitions. In
Eq. (86a), IA&I and IB&z are the eigenstates of
the nonrelativistic Hamiltonian h =h"'+h"'. It
may be useful to write

IA&, = IA&, + IA&,

and (87)

IB&.= IB&.+ IB&.

where IA), and IB&, are the eigenstates of the
nonrelativistic Hamiltonian h'0', and IA), and IB&,
are their relativistic corrections of order 1/c'
due to h"'. In the first-order perturbation theory,
for example,

,(kl a"'IA&.Z I & (@(0) E(0) (88)
&A A

One can think of many applications of Eqs. (84)-
(87), the calculation of the relativistic corrections
to the E1 and the M1 transition amplitudes, and

' especially the calculation of the so-called "rela-
tivistic E1 and Ml transitions"" (transitions
which proceed only because of the relativistic ef-
fects since the matrix element of X, or Y, be-
tween the eigenstates of h"' vanishes) in posi-
tronium, charmonium, and mesic atoms, the
computation of the relativistic corrections to the
photodisintegration cross section of deuteron,
etc., just to mention a few. Using Eqs. (84), (86),
(87), and (88) we have estimated the relativistic
correction to the one-photon electric-dipole tran-
sition amplitudes of charmonium. They are dis-
cussed in another paper. "

VI. CONCLUDING REMARKS

Since we were concerned only with the calculation of the one-photon transition amplitudes, in the inter-
action Hamiltonian Hz of Fq. (12) we had included only those terms which were linear in the vector poten-
tial and in the fields; but in order to calculate the processes of the composite system involving two pho-
tons and for calculating the Zeeman effect, etc. , +e need the expression for HI including the quadratic
and the higher-order terms in the potential and the fields. To relative order 1/e, the expression for Hz
which can be used to calculate the one- and two-photon processes and the Zeeman effect of the composite
system to relative order 1/c', is

N

HI=i —r, H ~ A +A ~ r„,H
N N 3 3

y'„,, y'„., H A,.A„.+A,.A„y„
4C 0 0 . ~ ~ ~

~
~

N

y P 2 2 y L p. p, Pp.tps~c ~ ~ 4&l~c
N 2 N

~ [(A p +p„A„)s 8„+H.c.) -P (s ~

;, [~. ..rf )l)

;, s„~ (v, x E,)+Q;, [p,', s„~8,],
N

8„)'-g;, s„~(g x E„-E x A,) . (89)„~8m c i

We have shown elsewhere" that the two-photon transition amplitude calculated in the second-order per-
turbation theory on the basis of Eq. (89) satisfies the relativistic condition on the two-photon amplitude,

( ~r ) y/2 ~r )yf 2

! (1) k)IP(2) B;Ak~Sof (1), k2&P(2) (9O)

where the notation is self-evident from our discussion in Section II. Using Eq. (89) it is especially inter-
esting to calculate the leading relativistic corrections of the Zeeman effect of any composite system since
the accuracy of the experimental results here can be very high.

i
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