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Hartree-Fock-Bogoliubov (HFB) theory is generalized by eliminating the restriction to quasiparticle vacuum states.
However, the fundamental HFB transformation to quasiparticles is retained. The theory is formulated in terms of
the quasiparticle density matrix R, but, in contrast to conventional HFB, there is no restriction to vacuum densities
R =R.

I. INTRODUCTION

Recently, Hartree-Fock (HF) theory was gen-
eralized to apply to nondeterminantal densities,
while retaining the essential HF approximation
of one-body dynamics. " This new generaliza-
tion exploits the fundamental role played by the
group U(n) of unitary transformations in the n

dimensional single-particle space, both in charac-
terizing the restricted space of HF densities and

determining the dynamical law on that space.
For example, in ordinary HF, if p is a fixed,

but arbitrary, determinantal density (p'= p), then
every other determinantal density is in the unitary
orbit of densities,

o,= (gpg 'Ig~ U(s)). (I)

ThiS orbit may be regarded as a surface in the
space of alldensities and atime-dependent Hartree-
Fock (TDHF) solution is a curve lying in this surface
Ateachpoint on the surface, the HF Hamiltonianis an
element of the Lie algebra of U(n), i.e., a one-
body operator, and has the geometrical interpreta-
tion of a tangent vector to the surface at the point.
Furthermore, the Lie algebra structure gives O~
the geometry of a symplectic manifold or phase
space, and the TDHF equations are identical to
classical Hamiltonian equations of motion.

In the extension of HF defined in Ref. 2, the
space of states is again an orbit 0&, but p is not
required to be determinantal. Thus, all possible
orbit surfaces in the space of densities are ad-
missible. The generalized HF Hamiltonian also
has the geometrical interpretation of a vector field
tangent to the surface Oz and is, at each point of
Op a one-body operator. Moreover, the phase-
space structure persists for the general orbits,
and dynamics is determined by the classical Hamil-
tonian dynamical law. Since the surfaces Oz are
co-adjoint orbits of U(n), the interrelated group
and symplectic structures on it are no accident,
but rather reflect a general theorem applicable to
co-adjoint orbits of Lie groups. ' '

In this paper, Hartree-Fock-Bogoliubov (HFB)

theory is generalized using analogous ideas. The
relevant group for HFB is O(2n}, the orthogonal
group in 2n dimensions. "Its Lie algebra prop-
erly contains the one-body operators spanning

u(n}, the HF algebra. In addition, the O(2n) alge-
bra includes the fermion pair creation and pair
annihilation operators. Thus, the HFB Hamil-
tonian is an element of the orthogonal Lie algebra.
The proof of these facts is reviewed in the appen-
dix; reviews of HPB have been given by Goodman

and Mang. ~

In place of the density p, one now considers the
gerieralized HFB density R and its co-adjoint or-
bit ~

0„={gBg '
) g c O(2n) j. (2)

In conventional HFB, the density is idempotent,
8'=R, since it corresponds to a quasiparticle
vacuum wave function. Moreover, every density
in the orbit 0„ is idempotent, (gRg ')'=gag ',
and, conversely, every quasiparticle vacuum de-
fines a density in the orbit O„with 8 a fixed idem-
potent, but otherwise arbitrary, generalized den-
sity. Indeed, the co-adjoint action 8-gRg ' re-
fers to the transformation of the density induced
by the quasiparticle transformation associated
with g& O(2n). But, every guasiparticle vacuum
may be obtained from a fixed quasiparticle vacuum
wave function by an orthogonal quasiparticle basis
transformation.

It is useful to adopt a geometrical viewpoint with
the density matrices. Consider O~, the orbit of
quasiparticle vacuum densities, as a surface con-
tained within the space of all possible generalized
density matrices. The exact Hamiltonian H may
be regarded as a vector field which is directed,
in general, off the surface. On the other hand,
the HFB Hamiltonian H„PB is a vector field which
is everywhere tangent to the orbit surface. Sub-
sequently, it will also be shown that this surface
is a phase space (symplectic manifold) and that
PHD is constructed from II by projection relative
to the nondegenerate symplectic form. An HFB
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solution is defined as a point on the surface for
which the HFB Hamiltonian is the zero tangent
vector.

Physically, constraint to an O(2n) orbit surface
means, by definition, a restriction to quasiparti-
cle dynamics. This is because the generators of
the orthogonal group are precisely the generators
of quasiparticle transformations. The crucial
point is that this physical interpretation applies
not only to the orbit of idempotent quasiparticle
vacuum densities, but also to every O(2s) orbit
surface. Hence, we are led to consider the con-
tinuum of all possible orbits O„each of which de-
fines constrained quasiparticle dynamics. Only
one of these surfaces in the space of all general-
ized densities, the orbit O„with R = R, demands
that the densities correspond to quasiparticle
vacua. The general orbits provide the framework
for the generalization of conventional HFB inves-
tigated in this article.

The plan of this paper is to define the phase
space structure on the generalized orbits in Sec.
II. In Sec. III, this symplectic geometry provides
an explicit construction for the generalized HFB
Hamiltonian from the exact Hamiltonian. A dis-
cussion of this generalization closes the article.

II. CO-AD JOINT ORBITS

The Lie algebra relevant to HFB consists of
the Hermitian bilinear projects of fermion crea-
tion and annihilation operators. Because of the
symmetrical way in which the creation and anni-
hilation operators enter into HFB, it is conven-
ient to define the 2n operators d~, 1-+ ~ 2n,
where for the firstn operators dt =at, the crea-
tion operator for the single-particle state ~, and

for the last n operators d~ =a, the annihilation
operator for the state at. We assume, for simpli-
city, that the single-particle space has finite di-
mension n.

An element Z of the orthogonal algebra o(2n) is
given by

Z = 2 ~Z~gd~ d 8 p'a8

(x r)
(Yt -X )

(4)

with X Hermitian and Y antisymmetric.
Fundamentally, a generalized HFB density R is

an element of the dual of the Lie algebra o(2n),
i.e., a real-valued function of Z«(2n). To be
explicit, let R denote the HFB density matrix
corresponding to the many-particle state 4,

where Z is an Hermitian 2nx 2n matrix of the form

where

p a=&@la~sane&,

t„;&C )a,a.e».
Then, R defines a linear real-valued function of
Z

ft(Z) = &C [ ZC) = —,'tr(ftZ).

The quasiparticle transformation of the many-
body states 4 -g4 for g& O(2n) induces the so-
called adjoint action on the Lie algebra,

Z- gZg '= +Ad, (Z)„sd~d8,
n8

since

da(g) = gdag =Z dn'8a'a ~'
da(g) =gag =Z gin'da'g

and the adjoint action on o(2n) is defined by

Ad (Z)=gZg'

for all Z& o(2n) and ge O(2s). As reviewed in
the Appendix, the quasiparticle transformations
g form a subgroup of the 2nx2n unitary matrices
isomorphic to the orthogonal group O(2n).

The adjoint action induces the co-adjoint action
Ad~ on the generalized densities,

Ad,*(B)=gRg '. (l2)

This co-adjoint action is compatible with the ac-
tion of O(2n) on the many-particie states,

Ad,*(ft)(Z)= &ge) Zge) .
Note that in order to use conventional physics no-
tation, R and Z are Hermitian, whereas in mathe-
matical literature the dual elements R and the Lie
algebra elements Z are skew Hermitian. How-
ever, this discrepancy is purely notational and
has no deep significance.

In order to define symplectic geometry on the
orbit surfaces, it is first necessary to character-
ize O„ in a manageable way. Note that if 4 is a
state with fixed particle number A, , then the pair-
ing tensor is zero. Moreover, by a unitary trans-
formation of the single-particle basis, the HF den-
sity p may be diagonalized. Therefore, the physi-
cally relevant orbits are enumerated by the set

R„s= &4 [dg+4') .
Thus, in terms of the HF density matrix p and the
pairing tensor t,
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of 0„as R ranges over the diagonal generalized
densities,

R= (p p diag(v» v». . . , v„).
(0 1 —pJ

The quasiparticle vacua form the orbit with
p= diag(1, 1, . . . , 1, 0, . . . , 0). The generic orbits
correspond to densities with distinct occupancies,
v„4vs for a 0 p, and v„+vs' 1, Q v =A.

An orbit surface 0„ is in one-to-one corre-
spondence with the coset space of O(2n) modulo
the isotropy subgroup at R,

H„=(hc O(2n) IhRh '=R}. (15)

The identification of the coset space with the orbit
surface is given by

O(2n)/a„- O„,
gH~~ gRg (16)

This mapping is clearly onto the orbit. It is also
one-to-one, since if g, and g, define the same den-
sity, giRgil= g2Rg21t theng~lglc HB and, hence by
definition, g, and g, are in the same coset, g,H~

Geometry on each orbit is determined by the
Lie algebra o(2n). Fix a diagonal generalized
density R and its orbit 0„. Every Lie algebra
element Z in o(2n) defines a curve y, (t) through
the point R and lying entirely in the surface 0„,
y, (t) = exp(itZ)R exp(-itZ). The tangent vector to
the curve z at R may be identified with Z itself.

Note, however, that the elements of the iso-
tropy subalgebra h~ define zero tangent vectors.
This follows because if Ze h„, then exp(itZ) is
in the isotropy subgroup H„da,nhence, y, (t)=R,
a fixed point. Therefore, nonzero tangent vec-
tors must correspond to a complementary sub-
space to h„ in o(2n). Although no unique choice
for this complementary subspace presents itself,
a convenient selection is given by the subspace
h~ orthogonal to h„relative to the Killing form

The tangent space at R is given by

hs —(Zr- o(2n) I g(Z~ Z') —= tr(ZZ') = 0,
for all Z'c hs].

Consider next the description of the tangent
space at an arbitrary point gRg ' on 0~. Once
again, every Z& o(2n) defines a curve through
that point, viz. exp(itZ)gRg exp(-itZ). But,
zero tangent vectors are given now by Z(=- gag ',
j.e., Z=gZg ', Z'e h&. Hence, the tangent space
at gRg ' is identified with the orthogonal comple-
ment (gh„g ')~=gh'„g '=Ad (he~).

In order to complete the geometrical picture of
0~, it only remains to define the symplectic struc-

ture. The symplectic form ~ at the point gRg ' on
the orbit 0& is an antisymmetric form defined on
pairs of tangent vectors Z„Z, at gRg ' by

~,R, -~(Z1, Z2) -=2-tr(gRg '[Zg, Z2]).

In the special case of the orbit of quasiparticle
vacua, this definition agrees with that defined for
surfaces of wave functions in Ref. 1,

~,s,-i(Z„Z,) = -8(gc'I [Z„Z.]g @) .
The orthogonal group is a group of canonical

transformations of 0~ because the symplectic
structure is preserved,

(ue(Zi, Z2) = (@gag-y(Ad~(Z, ), Ad, (Z,)}, (20)

for pairs of tangent vectors Zi Z2 at R. A key
property of ~ is that it is nondegenerate at
every point, i.e. , if ar,„~-&(Z,Z') =0 for every
tangent vector Z', then Z is the zero tangent vec-
tor.

The existence of the nondegenerate form co im-
plies that every orbit 0„ is even dimensional and
can be coordinatized by canonical coordinates q„
P, , if so desired. Moreover, the specification of
co is equivalent to a Poisson bracket operation on
o„[3].

Consider the concrete application of these gen-
eral ideas to the various orbits. A basis for the
Lie algebra o(2n) is given by

@ s=2 ' [@8+Ea )-(E ...s..+Es... ..)],
for n~ a~ P~1,

P~s= -i2 [(E~s—Eax)+ (Ea~ s~ —Es~,aw)l,

& 8=[(E,s -Es, )-(E,s Es,.)], -
0 8 i[(E,sm Es m)+(E m 8 Esm )]

for n~ a&P~1

(21)

where E 8 denotes the 2n x 2n matrix whose only
nonzero entry is one at the intersection of row a
with column P.

For the orbit of quasiparticle vacua, the iso-
tropy subalgebra equals

hR span(Qhh hh Qpp Ppp' pbh i p ] (22)

where h. h' range over the hole states, the first
A vectors with unit occupancy, and P, P' run over
the particle states, the last n-A vectors with zero
occupancy. Thus, the complexification of h„ is
]ust the span of a„a„., aqa~. , a~a~, and a~a„. One
may show that h„ is isomorphic to the I ie algebra
M(n) of the unitary group U(n). In particular, im-
portant subalgebras of h„are also unitary alge-
bras,
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.y j.
IR span~ 4h» qhh' ~hh' q»' f pp') (24}

and its complexification is hence the span of
a~a~, a„a„., a~a~. , and their Hermitian conjugates.
The symplectic form at R is zero for each pair of
tangent vectors in Eq. (24) with the exception of

niR(Qph& Pp„)= -idR(Pph& &iph) -1, -
+R(qhh & t hh') ~RO hh & qhh'} +

&
~ ~

& ( )

idR(qpp'&fl»') = ~R~pp'& qpp'}= -1 &~P

It follows that ro is nondegenerate at R.
The tangent space at gRg ' is gh„g ', which is

spanned by (Q»(g), P»(g), q» (g), Phh (g), qpp (g),
p» (g)}, where IhI»(g) =gQ»g ', etc. Sincetheortho-
gonal transformations are canonical, Eq. (20), the
symplectic structure m at gRg ' assumes the
same form with respect to the basis
Q»(g), P»(g), ... as it did at R with respect to
the basis Q», Pph, . . . , Eq. (25). Thus, &u is non-
degenerate at every point on the orbit O~.

In, the case of the generic orbits, the isotropy
subalgebra is given by the diagonal matrices in
o(2n), and its complexification is spanned by
(a a —h, a=1, 2, . . . , n). The generic isotropy1

subgroup is U(1)x. ..xU(1) (n copies). Hence, the
dimension of the generic orbits is dimo„= 2n(n —1).

Observe that the isotropy algebra elements which
fix a generic density R do not fix the corresponding
nondeterminantal wave function 4. Indeed, there
is only one O(2n) generator which fixes 4, viz.
g (aPa ——,'). Therefore, the O(2n) orbit of wave
functions has dimension n(2n —1)—1, and the
correspondence between the orbit of wave functions
and the orbit of densities is many to one.

The tangent space h~ at R is given by the ma-
trices in o(2n) which have every diagonal entry
zero and thus equals

Ill= span(Ihi 8, Ps, q s, p s,n& u& p&1). (26)

The only pairs of tengent vectors for which the

N(A) = span(Qhh. , Phh. )
Q(n —A) = spanfQpp» Ppp&j.

The isotropy subgroup is given by exponentiation
of the algebra, H„= exp(ihR) = U(n). Moreover, the
dimension of the quasiparticle vacuum orbit is
dim 0„=dim O(2n)-dim U(n)=n(2n-1)-n'
= n(n -1).

Note also that the isotropy subalgebra which
fixes the quasiparticle vacuum density R contains
precisely the operators which fix the correspond-
ing determinantal wave function itself. Hence, the
vacuum quasiparticle densities are in one-to-one
correspondence with the vacuum quasiparticle
wave functions.

The tangent space h~~ at.R is computed to be

symplectic form is nonzero are

R( as & as) niR( ns& 48) n 8&

idR(qaS&Pas)= &RV'aS& qns)= I'a+ I'8 —1 ~

(27)

III. QUASIPARTICI. E DYNAMICS

Due to the symplectic structure on the co-ad-
joint orbits of quasiparticle densities, classical
Hamiltonian dynamics is defined on them. The
crucial approximation is that the time develop-
ment of an initial density R is a curve con-
strained to the orbit O~. But then the tangent
vectors to such curves at any point are elements
of the orthogonal Lie algebra. The set of all tan-
gent vectors to these constrained curves form the
generalized Hartree- Fock-Bogoliubov Hamilton-
laIl.

One would like to inherit the generalized HFB
Hamiltonian from the microscopic interaction, as
is achieved in conventional HFB. First, how-
ever, the usual HFB Hamiltonian is derived for
the orbit of quasiparticle vacua.

Quasiparticle vacua

Let 4 be a Slater determinant and a~, a
be the single-particle fermion operators with
respect to which p=diag(1, 1, . .. , 1, 0, ... , 0) and
R is diagonal, Eqs. (6}, (7), and (14). At the
point g4, the exact Hamiltonian H defines a,

curve y(t) = exp( iHt)g4 of st-ates through the
point gC, which are not in general quasiparticle
vacua. Thus, II is not tangent to the orbit of
quasiparticle vacuum wave functions. On the
other hand, the Hartree-Fock-Bogoliubov Hamil-
tonian +ps(gC) is a vector at gC which is, by de-
finition, tangent to the orbit surface and, there-
fore, an element of the orthogonal Lie algebra.
Equivalently, because of the one-to-one identifi-
cation with the orbit of quasipartible vacuum den-
sities, the HFB Hamiltonian is a vector field
HRFR(gRg ') on the idempotent density surface.

The energy function on O~ is the expectation of
the exact Hamiltonian,

H(gRg )=(gC IHgq) (26)

and its derivative in the direction of Z& o(2n} is

Therefore, for the generic orbits, the form is
nondegener ate.

Once again, the tangent space at gRg ' is
ghhRg '; it is sPanned by (Q 8(g), P 8(g), q sa(g), P sa(g)
n & P). Moreover, the symplectic form takes the
same nondegenerate representation at gRg ' as
at R, c.f. Eqs. (20) and (27).
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dX(Z) = —&exp( i-tZ) gC l Hexp( it-Z)g4) l,—,

= -,-«e l!:K,Zlg4). (29)

The HFB Hamiltonian is the element of o(2n) sat-
isfying

(d,~ t(Hs~-R g '), Z) = dz(Z),
(p t

pt] 1 —Vj

for every tangent vector Z in o(2n), c.f. Ref. 10.
Since the symplectic form is nondegenerate, there
is a unique solution for the HFB Hamiltonian,

%W&g ') =( — ) '&gC I fK, d'(g}d.(g)]g4),
(31)

where r denotes the diagonal entries of 8, Eq.
(14}, or

(37)

where the occupancies v are zero or one for the
quasiparticle vacuum orbit.

% 4gf~g ').s=(.— t) '&~l tg 'Kg d't)d. l4) (32) Generic orbits

Writing H explicitly as

&=~ &ga as+ —, ~ V~ayqa aaaqay
x Y

ng a8y6
2tl

.&gaud gdgk"

2fl

+ -' g V(g)~s~tdt(g)dttt(g)ds(g)d, (g),
a8yh

(33)

where

2(t) ii=2 2 & i Eii
a'8'

=1 —1v(g)„„,= aa'8 6 g'~a'6'y%'+y'y~h'6 ~

at/ Iyet

(34)

P4F
HsFNHg )=g ! 2, Kt ) g,

where

n

(HsF) 8 = T 8++ V „t)„P
Pl/

aa= 2 ~ VaBP„tel
pp

Ifote that the HF Hamiltonian and the pair potential
both depend upon g, since p and t do:

Then, g Hg is given by Eq. (33) upon the substitu-
tions d (g)- d„and d„(g)- d . After evaluating
the commutator and expectation in Eq. (32), the
standard HFB Hamiltonian is obtained,

sc( t()(t-=f i(w((i)(tiit(irgit)
H~

The invariant measure on Kn= U(1)x. xU(1) is

(38)

( )
1 d 2 d 5'" "-2i 2g 2w.

Following the construction in Eqs. (29)-(32), the
generic HFB Hamiltonian is given by

Hs„))(gRg ')„()=(r —rs} '

dp h k4' g Hg, cfa hC . 40
H~

In order to derive the HFB Hamiltonian on the
generic orbits, the same construction is applied
that proved successful for the orbit of quasiparti-
cle vacua. All that is required is the specification
of the energy function on the generic orbit 0„;
the HFB Hamiltonian then follows immediately by
reasoning similar to that in Eqs. (29)-(35).

However, the energy function cannot be just the
expectation of the exact Hamiltonian, c.f. Eq. (28).
The difficulty is that, in contrast to the quasipar-
ticle vacuum orbit, the correspondence between
the orbit of states and the generic orbit of densi-
ties, g4- gag ', is not one to one. Indeed, every
state of the form gAC as h ranges overH~ is map-
ped onto the same density gAg '. But, the energy
expectation (gM lHgM)} varies, in general, with
h(= H~. Thus, the exact Hamiltonian cannot be
immediately transferred from the orbit of states
to the generic density orbits.

The simplest resolution of this ambiguity. is to
average the energy over the states. Therefore,
the energy function on the generic orbit 0„ is de-
fined by
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For the one-body part of II, the integrand is in-
dependent of he H~ and averaging produces no ef-
fect. There is no ambiguity in transferring an op-
erator in the o(2n) algebra from the orbit of states
to the orbit of densities. On the other hand, the
two-body part requires averaging. Here one needs
to use repeatedly the equation

dp h h4 a~~a~~a&a~h4
H~

= (6,6„—6„,6„)&C (
at a„a',asC). (41)

The final result for the HFB Hamiltonian on the
generic orbits is

%FdZRZ ') =Z I
"'

Ig+i, (42), a„, ~) X I

H„'„j -~-F* -x')

Xo(,g= V cfgsa —V g f)~~~
- V g q~g~+ V

+I'(g)o o+~(&) s.s](R 8- s) (43a)

(46s.)

+ &(g)a, ~+ &(ghee. ,](G.'8- vs), (43b)

R s = (v„- vs) '(C
( (a„a„-atlas)a|a q4), (44a)|„s=(v„+v8 —1) '(4

~ ( aa~„a+twas —1)atqaq4), (44b)

and a=a+n, 5=P+n, and d= 6+n.

HFB solutions

An HFB solution is a critical point of the energy
function on the orbit 0„[9]. Hence, at a solution,
dR(Z) = 0 for every direction Z in o(2n), Eq. (29).
But, from the nondegeneracy of co, this requires
the HFB Hamiltonian to have zero matrix ele-
ments corresponding to every tangent direction,
Eqs. (24) and (26). In particular, for the generic
orbits, the HFB matr'ix must be diagonal at a
stationary state. Even for the quasiparticle
vacuum orbit, although not required by the theory,
it is customary to completely diagonalize the HFB
matrix for the sake of convenience.

When constraints are imposed, then the La-
grange multiplier method is used to locate the
critical points. For example, consider the con-
straint on particle number A. A constrained HFB
solution is a critical point of the energy function
restricted to the submanifold of Q given by

QRg 'eO [5I(gRg ')=A], (45)

where

defines the expectation of the number operator in
O(2n),

n

z(gag ')= (ge P a~a„ge) .
a=1

(46b)

There exists a real number A., the Lagrange mul-
tiplier, such that this constrained solution is a
critical point in On to X- XK Hence, dR(Z)
—XdP(Z) = 0 for every tangent vector Z in o(2n).
But, from the nondegeneracy of ~, this means
that the matrix

HsFs(@RE ') ~r—&g '

is diagonal at the critical point.

(41)

IV. DISCUSSION

A generalization of HFB has been achieved which
is not restricted to quasiparticle vacua. The gen-
eralization begins with an arbitrary many-body
state 4 and chooses a single-particle basis so that
the HFB density matrix R is diagonal. Then, the
coefficients R„s and &„q are calculated, Eq. (44).
The generalized HFB Hamiltonian, a vector field
tangent to the orbit 0„, is given by Eq. (42). A
generalized HFB solution with the usual constraint
on particle number is defined by a quasiparticle
transformation g in O(2n) and a I agrange multi-
plier X satisfying Eq. (45) for which the HFB
matrix is diagonal, Eq. (47).

In the case of the quasiparticle vacuum orbit
generated by a Slater determinant 4, this con-
struction reduces to the usual HFB theory. How-
ever, when 8'+R, a new class of theories are ob-
tained by this construction. The numerical solu-
tion for the HFB stationary states is achieved
most easily with the Newton method. "

The average energy on the orbit surface is only
one of the possible energy functions which deter-
mine a generalized HPB Hamiltonian, Eq. (38).
For example, another sensible choice for the
energy on 0„ is given by

X(gRg ') = im(gnhC
~
Hgh4) . (48)

hEHg

I

Which energy function is best is determined by
the functional dependence of the energy expecta-
tion on h in HR. If that expectation is only mildly
dependent On h, then both energy functions are
similar. The average energy is preferred then
since it is easier to compute. However, if the
energy expectation is a strongly dependent func-
tion of h in IIR with a sharp, deep minimum, then
Eq. (48) is more suitable for zero temperature
nuclei. At nonzero temperatures, yet a third
energy function is presented by weighting the in-
tegrand of Eq. (38) with the Boltzmann factor.

It would be interesting to investigate the BCS



2800 G. ROSEN STEEL

limit of this generalization. Note that the ideas
used here also permit a generalization of the
SO(2n+ 1) model. "
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APPENDIX

Several results of a mathematical nature are
collected into this Appendix. The isomorphism
between the orthogonal Lie algebra o(2n) and the
algebra of bilinear products of fermion operators
is demonstrated by explicit construction of the
invariant inner product. See Befs. 6 and 7 for an
alternate basis dependent proof. The o(2n) alge-
bra is then embedded in u(2n) and expressed in
terms of the conventional HFB formalism.

Isomorphism

Consider the real Lie algebra of skew-adjoint bilinear products of fermion operators,

bl(n) = span„((C s —Cs„),i (&„s+&s ), (&„s—Zs„),& (&„s+Zg )},

where
j.

C~, = a~a8 ——,a~a

+n8 ana8 y

B„6——a~ag,

(A.2)

and a~, a are the fermion creation and annihila-
tion operators for the single-particle state a. It
shall be proven that bl(n) is isomorphic to o(2n),
the real Lie algebra of the group of orthogonal
transformations on a 2n-dimensional real vector
space V,„.

Let V,„denote the real span of the self-adjoint
fermion operators,

e„=2 '~'(a„+a ),

&a&a+&a+. &a+n ~ t,«
ot =l

Choose any normalized wave function 4 and define
an inner product on V,„by

«, ~&= (~I{~,~-}~&,~, ~'~ V,. (A4)

Since the anticommutator is a multiple of the iden-

tity, the inner product is independent of the choice
of 4. With respect to the basis, e„e„.. . , e,„, the
inner product defines the identity matrix and,
hence, is nondegenerate.

The group given by exponentiation of the bl(n)
algebra acts on V,„by

rh

C 8-

B g

((E~s —Es~) z(z~s+ EQ)-
!

~f(z E ) (E Eg )
, ((E.s-zsg f(z„s-Es„))
2

(i(z„s-Eg -(E„s-Esgj

( (E s-Esd ~(z.s Esd~-
(A10}

(A11)

I

But, this transformation leaves invariant the inner

product since

(exp(Z) g exp(- 2), exp(Z) g' exp(-Z)}

= exp(Z)(a, &'}exp (-Z)

=&~, ~'}. (AV)

Therefore, it has been proven that the transforma-
tion (A5) is an orthogonal transformation of V,„.

At the Lie algebra level, bl(n) infinitesimally
preserves the inner product,

([Z, g], g') + (g, [Z, g']) = 0, (As)

and bl(n) is isomorphic to the Lie algebra of the

orthogonal group.
It is interesting to note that a similar argument

shows that the bilinear products of boson opera-
tors is isomorphic to the symplectic Lie algebra
sP(n, R) (Ref. 13).

The isomorphism of bl(n) with o (2n} immed-

iately determines a representation of bl(n) by

2n & 2n skew-symmetric matrices,

Va.- Va.

g- exp(Z)i;exp(-Z), Z& bl(n). (As)
where E z denotes the nxn matrix whose sole
nonzero entry is one at the intersection of row a
with column P.

This transform of & is an element of V,„because
[f, Z]c V,„and

exp(Z)gexp(-Z) = g+[Z, g]+, [Z, [Z, K]]+ ~ ~ ~ .
(A6)

Embedding of O(2n) in u(2n)

Conventional HFB is formulated with respect to
the basis (at, a„}of V,„, instead of (e, e„,„]. In
order to express the o(2n) algebra in the conven-
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(A12)

tional basis, it is necessary to make the unitary
basis transformation given by the matrix

(1 -f)

This transformation embeds o(2n) as a subalge-
bra of u(2n), the algebra of skew-adjoint 2n&&2n

matrices:

where

(0 I)
II 0)

Orthogonal group O(2n) C U(2n)

A quasiparticie transformation g& O(2n)c U(2n)
must make A~gA a real orthogonal matrix. Hence,
we may write

o(2n)- u(2n),

((E s-Esd
a8

(i(E s+Eg

and, similarly,

i,(E„-s+Esp) t (E~s 0

(E~s-Es)oj ( 0 -E~)
(A18)

(A19)
Q V

with gag= go=I. Note also, since exp(iZ) is a
group element, that AgA '= Q.

In conventional HFB, the transformation to
quasiparticles is completed by the transform

Ws-
!

(0 0

0 0)

Z -E 0

(A14)

(A16)
(A20)

Then, the generalized density is given by

J= p = diag(1, 1, . . . , 1,0, . . . , 0) .
Il-p p j

Hence, a Hermitian operator Z in the complexi-
fied bl(n) algebra,

~(p 0 ) ~ (0 0)

(0 1-pf (0 1f
(A21)

(Xns&ns+ ~2 Yns&as+ 2 Yes&as) i
a

(A16)

(A17)

Z-A. ZA. '=-Z~, (A18)

with X Hermitian and W antisymmetric, is repre-
sented by the 2nx 2n Hermitian matrix

(x
(Yt -X')

An important inner automorphism of o(2n) is
given by

A group transformation in this formalism is re-
written as,"

(A22)

This transform by J only simplifies notation for
the quasiparticle vacuum orbit and offers no ad-
vantages for the general orbits. It has not been
employed in this paper.
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