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Variational study of a continuum crossing model
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A model S-wave crossing of a bound state into the continuum is investigated using nonlinear variational
calculations performed with the exact wave function and a trial function which has incorrect asymptotic behavior.
The variational estimates of the energy-branch structure become less accurate near threshold, as expected, but the
calculations indicate a sequence of branches which are followed in order to obtain estimates of the energy and width
of a decaying-state resonance above threshold.

which includes an intermediate-range 5-function
barrier plus a short-range square well,

2X, 0(x(1
v(x) = 0, x&1

(2)x(0,
where the parameter X controls the well depth.

H. EXACT SOLUTION

Elementary procedures give the exact bound-
state wave function

A s in(o.x), 0 & x & 1

exp(-qx), x) 1

withe, n, and g determined from matching and
the cusp condition q+ 2 o. cot(a) = 0 at x =1. From

I. INTRODUCTION

There has been much interest recently in L'
approaches for estimating the energies and widths
of resonances. ' This work is concerned with the
accuracy of an L' approach for a near-threshold.
resonance, and in. particular the crossing of an
ordinary bound state below threshold into the
continuum by means of adjustable parameters con-
tained in the potential energy. ' Variational cal-
culations with a limited basis may fail to repro-
duce the exact crossing behavior, which is sen-
sitive to the long-range part of the wave function.
Moreover, it is expected that limited-basis cal-
culations including nonlinear variations of orbital
exponents, for example, may include spurious
stationary solutions in addition to the one which
best approximates the actual resonance. In order
to gain some additional insight to this problem,
we have carried out the detailed numerical solu-
tion of a relatively simple S-wave crossing of
the ground state of the Schrodinger equation
(H-E)g= 0 for the Hamiltonian

d'
If= —— —+ 6(x —1)+ v(x)

2 dx2

the point of view of variational theory, the energy
eigenvalues correspond to stationary values of

E= (4, &y)/(0, 0) (4)

in which the long-range exponent g is treated as
a single variational parameter, and the matrix
element of an operator I is defined by

E= AZ-'+ S+ CZ,

In general the stationary solutions include com-
plex orbital exponents g= r +im and energies
E= E„+='ir' with m and I' positive or zero. Fol-
lowing standard convention, we shall distinguish
between solutions for bound states (E„&0, I'= 0,
r)0, m= 0), virtual states (E„&0, I'= 0, x&0,
m = 0), and decaying states (E„—~iI', 7l = r -im)
that are associated with resonance behavior on
the real-energy axis. In the variational calcula-
tions, these latter states are found by suitable
analytic continuation of (4) with complex orbitals.

The exact results for the nodeless ground state
are shown in Fig. I. For convenience the ener-
gies are given as E = 2E = E„- iI'. The continuum
threshold lies at zero energy. Branch A is the
bound state and corresponds to a minimum in the
real part of the energy as a function of x. A. is
tangent to the continuum edge at X, = —5.239,
where x= 0. B labels the virtual state, which
has a real energy corresponding to a minimum
with respect to x. A third, unphysical solution
is C, which occurs as a real-energy maximum in
the variational calculations. The confluence of B
and C at X, = —4.975 marks a 2-power branch
point in the energy as a function of X, illustrated
by the width in Fig. 1(b) for the decaying-state
branch D. In contrast, the real-energy part of D
in Fig. 1(a) shows a nearly linear increase with
X. Analysis of the variational energy formula
shows that the leading-order behavior near the
confluence at A.~ is
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FIG. 1. (a)-(d) Branch structure for the exact ground-state solution of the continuum crossing model (1), shown as
a continuous function of the well-depth parameter A..

where', 8, and C are functions of X only, and
Z —= g- g, is a variational parameter. The sta-
tionary condition 6E = 0 gives &'=A/C, and hence

E= 8 a (4AC)'~'

The —,'-power energy branch is due to a simple
zero A ~ X —A, The singularity Z ' in (6) is due
to a zero in the overlap integral (g, P) in (4). Lin-
earity of the real part of the energy and or-
bital exponent when X&X, in Figs. 1(a) and 1(c)
is associated with higher-order terms in the en-
ergy than are included in (6), and is found to be
linked to the leading-order formula X=X~+ aZ2 .

+ p&' with real constants a and p when X&X~.

IH. VARIATIONAL ESTIMATES
O'ITH A NONEXACT f

We have repeated the variational calculations
for the ground-state continuum crossing using an

incomplete basis represented by the trial function

A s in(o.x), 0 & x & 1

x exp(- rex), x&1.
(6)

The purpose of choosing this incorrect asymptotic
form of the wave function is to give a concrete ex-
ample of additional complexity that is consequently
introduced into the branch structure for the con-
tinuum crossing. It is assumed that the cusp con-
dition g+ 1+ a cot(a) = 0 is satisfied at x= 1, so
that the variational energy is a function of only
the asymptotic orbital exponent p.

The results are shown in Figs. 2(a)-2(d), which
may be compared, respectively, with the exact
solutions in Figs. 1(a)-1(d). Here we find a more
complicated structure, although curves A. , B, C,
and D represent approximate versions of the exact
ones. Branches 8 and D are now complex energy
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FIG. 2. (a)-(d) Variational estimates of the ground-state continuum crossing branch structure obtained from the
trial wave function (8).

E = A+ BZ+ CZ3, (9)

where A, B, and C are again functions of only X,
and S = p- g,. The stationary condition gives &'

solutions, however, and two new branches labeled
A and F in Fig. 2(a) represent variational esti-
mates of the continuum edge. Real-energy bran-
ches A and I" occur as minima with respect. to r,
while A' and E' occur as maxima in the varia-
tional calculation. The curve & is the one that is
usually associated with the collapse of variational
calculations in the continuum since it is the low-
est energy solution in this X regime and has a
very diffuse wave function [see Fig. 2(c)].

The points X, and X, mark the confluence of real-
energy minima and maxima branches. The en-

3
ergy has a 2-power branch point at X = X„much
like the singularities found in nonlinear varia-
tional calculations with atoms. ' 'The basic struc-
ture is illustrated with a cubic representation of
the variational energy near a singular point X, :

= -B/3C, and hence

E= A+ (4B'y2VC)'~2 (10)

The confluence of the two branches A and A' at
X, is described by (10) when B has a simple zero,

The resulting ~-power branch singu-
larity in the energy was not part of the exact struc-
ture in Fig. 1(a), and offers an example of the

-type of spurious behavior that can arise. A., and

X, correspond to &-power branch points in Fig.
2(a). The singularity at X, is similar to the one at
A~ in Fig. 1(a), except that now the variational
parameter g is complex.

The interesting point illustrated by these cal-
culations is that the branching route A-B-D
continues to represent the exact continuum cros-
sing route bound state -virtual state -decaying
state. It would be more difficult to identify the
physical decaying-state energy in calculations
performed at only a single value of A.. The larg-
est differences between the estimated and exact
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resonance parameters occurs near threshold, as
expected. The estimated width differs from the
exact one by less than 1% when X &- 2, however,
where threshold effects are smaller. An extended
profile of the width for higher X is given in Fig. 3.

IV. SUMMARY

The present calculations of a simple model prob-
lem have illustrated the necessarily increased
complexity of the energy-branch structure in vari-
ational estimates of a decaying state near thres-
hold. An important result was the identification of
a "road map" for the variational estimates which
gave a.reasonable approximation of the exact
crossing structure. Although increasing the num-
ber of variational parameters in the trial function
generally improves the bound-state energies, the
present results suggest that additional complexity
of the branching structure near threshold might
also develop. Although the problem of multiple
energy branches seems to be avoided in linear
variational approaches with a scaled Hamilton-
ian, ' where spurious eigenvalues move far off the
real axis as the basis size is increased, they can-
not be ignored in nonlinear approaches such as a
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FIG. 3. Variational estimate of the width of the de-
caying state resonance. The smaller rectangular region
is shown separately in Fig. 2(b), including only branches
Jp and D.

multiconfigurational treatment which includes a
variable orbital exponent for the decay channel. '
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