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Light scattering from nonequilibrium steady states
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%'e consider light scattering from nonequilibrium steady states (NESS) where both density fluctuations (already
studied by others} and orientational fluctuations are important scattering mechanisms. When orientational
fluctuations are important, the possibilities for new NESS scattering experiments seem to multiply considerably. A
theory is given for two promising new experiments: VH (vertical-horizontal) scattering in the presence of a sound
wave and VH—VV (vertical-horizontal-vertical-vertical) interference, which vanishes identically in equilibrium.

I. INTRODUCTION
1

In a series of papers, ' ' Oppenheim and co-workers have shown how to calculate averages of dynamical
variables in nonequilibrium steady states (NESS). By choosing the product of the density with itself at a
later time as the dynamical variable, they obtained the NESS density-density correlation function, which
determines light scattering by density fluctuations; they predicted most interesting new features, absent
in equilibrium, in light scattering by NESS.

Density fluctuations, however, are only one source of light scattering. For systems composed of non-
spherical. molecules, orientational. fluctuations also constitute an important scattering mechanism. If we
ignore "collision-induced" or "multiple" scattering (such scattering may also show new features in NESS,
but we ignore it in this first paper), then the light scattering spectrum per volume I(k, (c), in arbitrary
units is'

I(k, (()) = —Re e'"'dt d rdr'e' 't' ' ](n; S(r, t) n&ii; ~ S(r', 0) n&)
0 V

where V is the scattering volume, 8; and nz are
unit vectors along the direction of incident and
scattered polarization, respectively, k is the
scattering vector, S(r, t) is the scattering source,
and ( )„denotes an average over the ensemble de-
scribing the system. For quasielastic scattering,

Ikl = —»n(-. ti),

where ~ is the wavelength of the incident radia-
tion and 8 the scattering angle.

The expression which we have found for S is'
2

S(r, t) =
(

- [aP5N(r, t)1+Aa'Q(r, t)], (3)

where e is the optical dielectric constant, e', and
4n' the "effective" trace and anisotropy of the
molecular polarizability, 5N the density fluctua-
tiog, and Q the fluctuating second-rank orienta-
tional order tensor, discussed exhaustively else-
where. '

According to Eqs. (1) and (3), light scattering
is determined by density correlations, orienta-
tional correlations, and density-orientation cross
correlations. In equilibrium, the cross correla-
tions vanish, as do correlations between different
tensorial components of Q. Since the density

I

correlations have already been studied for NESS,
we should now, to complete the scattering calcu-
lation, look for new features in orientational cor-
relation functions, which exist in equilibrium, and

for possible nonzero values of correlation func-
tions, which vanish in equilibrium. In this paper
we examine both possibilities and, in each case,
find new effects which should be observable. The
number of possible scattering experiments, with
different geometry, z, , z&, and k is very large.
We have selected two experiments for study here
which are probably the most promising; other in-
teresting possibilitie s definitely remain.

II. BACKGROUND

A. Review of equilibrium hydrodynamics of fluids
of nonspherical molecules

Due to the translational invariance of the
equilibrium ensemble, the source correlation
functions in Eq. (1) then depend on r —r' only,
and we have

I "(k, &o) = -Re

x dte'"' n& S pt ~ n&n; Si, 0 n&, 4
0

where an equilibrium average is unsubscripted, and
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where a k subscript denotes a Fourier'component.
The S's are not really Fourier transformed vari-
ables, as the J d r which defines them runs over
V only, not all space. In equilibrium, al.l scat-
tering volumes are equivalent and, furthermore,
the correlation functions are usual. ly short ranged
with respect to the dimensions of V; under such
circumstances, S p may be regarded as a Fourier
component. Equation (3) then gives 8 r, in terms
of 5Np and Qp.

In order to calculate the light scattering corre-
lation functions at long times, the orientational
variable Q must be "coupled"" to the hydrody-
namic conserved variables, the number (N„),
energy (E~), and momentum (g~) densities. In
other words, an. extended hydrodynamics is set
up in which the elements of Q are added to the
usual variables. If Ap is a vector whose elements
are the Fourier components of the chosen vari-
ables, then, on the (extended) hydrodynamic time
scale,

The actual expressions for a and b are not needed
here, but we will require

qs =ah/I'.

g~ is the rotational contribution to the kinematic
shear viscosity, arising from the possibility that
stress can be relieved by rotation as well. as
translation, and q is the usual kinematic shear
viscosity. The quantity A',

nz/n, - (10)

where g ' is ' the second-rank version of the
Kirkwoodg factor (a measure of static orieniation-
al order), (Qp» Q p) Ng ', o. Wy, N is the number
of particles in V, M the particle mass, p =1/&s T,
k~ is Boltzmann constant, T the absolute tempera-
ture, and

—(Ar(t)A p) =My (Ar, (&)A p), (5)

where M j", is the hydrodynamic matrix. Spatial
isotropy causes Mp to form blocks; for our
choice of k, QF is uncoupled from other variables,
with"

(6

where 1 is the collective, second-rank reorien-
xg .tation rate. The variable Qr, is coupled to the z

component of the momentum density gp with, '*'
for the order (Q~p, g~p),

r skag-M»=
(

(igb k (q —qs))

is known" for several liquids; typically P = 0.5.
XX

Another block in the M matrix couples (Qs —Qr ),x
Np, Ep, and gp; we will. discuss this block when
we need it.

B. Correlation functions in NESS

Oppenheim et al. have shown' ' how to use the
equilibrium M's, plus certain equilibrium aver-
ages, to calculate I~ in NESS. They have given
various methods for evaluating NESS correlation
functions. We wil. l use one of the most recent
and most simple of these methods.

For NESS linearly displaced from equilibrium,
Oppenheim finds, ' ' for variables 8 and C,

(B(r, t)C(r', 0}) =(B(r, t}C(r', 0))

+ dx B r, tC r', OA x -& dTjg r, t+7C r', 7A x, 0 ~ ~~x,
~ »0

where the angular brackets denote correlation functions, the dot product is to be taken in the space of
hydrodynamic variables as well as in three-dimensional space, the A. "' are the dissipative parts of the
time derivatives of the A' s, and the Q's are the NESS values of the conjugate forces to the (extended) hy-
drodynamic variables,

0 =P(r)[i (r)-u"],
4z = P~ —P(r)

y; = P(r) v( r),
p. is the chemical potential for a system at rest, v is the velocity field, and

(12a)

(12b)

(12c)

P( ) =
~ T (-,),

Qz is not related to well. known thermodynamic quantities.
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In all the NESS calculations performed so far, the A have been the usual hydrodynamic variables, in
which case

A DLfg V IDiss (14)

where the I are the dissipative fiuxes. However, Eq. (14) does not hold for Q, which is a nonconserved
variable. Using Eq. (14) for the usual hydrodynamic variables and performing a partial integration over
x, while leaving Q alone, one finds' ' (we write D instead of Diss from here on)

(B(r, t)C(r', 0), =(B(r, t)C(r', 0))

+ dx B r tC r', OAx ~
~~x

+& dYB r, t+v'C r', TI "' x, 0 ~ V x
w 00

dv'B r, t+vC r', T x, 0 ~ z x
m OQ

(15)

The next step is "localization" of the x integral. If the correlation functions in Eq. (15) are short ranged,
Q(x) can be expanded in a Taylor series about x=r; following Oppenheim et a/. , we evaluate the right-
hand side (rhs) of Eq. (15) to first order in the gradient of Q. The second term in Eq. (15) becomes' '

dx B r, t C r', OA x ~ x = B r, t C r', OA„, ~ r

+ dx B r, tC r', 0Ax ~ r-x ~ V r +OV (16)

where

A„, = dxA x .

The first term on the rhs of Eq. (15) and the first term in Eq. (16) can be combined and the sum identified
as the expansion to first order in Q of the correlation function in an "homogeneous" system where the Q's
have constant values equal to Q(r) in NESS. Such an homogeneous system is just an equilibrium system
which may (if v 4 0) be in uniform motion, so no new tricks are needed to obtain this part of the correlation
function, which we denote as ( )„', (r).

The second term in Eq. (16) is the "nonlocality correction, " denoted ()„'„(r). Evaluation may be compli-
cated in general, but, for autocorrelation functions (B =C), it can be shown' "that

~r ~r ~
I kl I ~I h I

~

~r t
~r N L

~
y ~» ~

2

1 ~
~w I B~ t~BI H

I
~~ ~

y td rdr'e'"'l' ' ~(B(r, t)B(r'0))'„(y) = -&„"~
" " '

~ &Q(y),
BP eq

So, the NL contribution to autocorrelation functions can also be derived from equilibrium properties. We
will see later that Eq. (17) is sufficient to tell us all we need to know about the NL term.

The third term in Eq. (15) is already first order in &Q, so we simply replace VQ(x) by &Q(r), I(x) by
I „„and we remove fdx The la.st term might appear to require more manipulation. However, the only
situations which we shall encounter in which Qo is nonzero will be those where it is "switched on" by ve-
locity gradients, i.e., flow birefringence. So, pc will be O(~v) and we may localize the Q term im-
mediately, obtaining

(B(r, t)C(r', 0)),„=(B(r,t)C(r, f)C(r'))„', (r)+(B(r, t)C(r'))~~„(r)

+ g dT B r t+TC 1 7 Itt v r — B r t+TC 1 T tt ' g r
m OO

(18)

All correlation functions (B(r, t)C(r', 0)),„are multiplied by e' l' ' and integrated over r and r' in
calculating a light scattering spectrum. A major complication arises in light scattering from NESS be-
cause, according to the localization scheme, we should use a different localization for each r. Although
more work may be needed on this problem, we will now assume, as have Oppenheim et at. , that we may
simple localize the correlation functions about the center of V and proceed with the result for V centered
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at y,

(B„"(t)C „-(y)),„=(B-(t)C „")'„, (y) +(B„-(t)C „-)'„(y)

+~ d7' Bpt+zC p 7 I ~ V y — Pj, t+v'C p v'Qtt ~ y (19)

Oppenheim has given a mode coupling method f'or evaluation of the dissipative terms in Eq. (19). The
quantities ID„, and QD, are projected onto bilinear products of the A's using Mori's" projection operator,
and the hydrodynamic timescale behavior of the resulting four-A. correlation functions is evaluated with
the M matrix. Borrowing Oppenehim's result, we finally obtain

(B)7(t)C ) (y)) g
= (Bg (t)C )7)„', ( y) +(BF(t)C )7)N& (y)

+ dg +3 '

gq~ Q pj's /It t V y A. fA. y p t t q
0

uj-, (t+~) -&
j-, ( )

+ 2 d+ es sg &cy [(+n)( A)'-]r ftot &
' V4&(y) —(&ig)( &,-)( QtQ~ ) 4 o(y)] s-t (20)

with a sum over repeated indices. Equation (20)
is our starting point for calculation of correla-
tion functions which appear in NESS light scat-
tering.

As mentioned in the Introduction, we will next
discuss two possible experiments. Gf course, for
each light scattering experiment there are also
different possibl. e steady states. The simplest
states are those with constant temperature
gradients,

VT =const, other V(()) =0,

and those with constant velocity gradients,

(V v) = const, (j)o Qg 0,
other V(j) =0.

The latter case requires more comm. ent. In a
true steady state, diagonal elements of (Vv)
vanish, as these are proportional to &Kjet. How-

ever, the NESS theory is applicable to nonsteady
states which vary slowly on the timescale of the
process being studied. So, a low-frequency sound

wave could provide (Vv);; which could be used,
under appropriate conditions, as a steady-state
quantity. Also, (j) Q)

will be nonzero in this case
due to" the usual shear induced or" accoustical. ly
induced [for (V v);;] molecular orientational or-
dering, which causes birefringence.

In their consideration of density fluctuations,
Oppenheim et al. found new contributions to hy-
drodynamic correlation functions with amplitudes
of order k', k ', and k '. Although k is "small, "
only the k ' terms turned out to be important.
Thus, for a given scattering experiment, we wil. l
choose a steady &tate so as to obtain the largest
possible inverse power of k.

m. VH scattering
e

Let the incident and scattered light l.ie in the
xy plane, with k along the x axis. For il jiz (out
of plane or "vertical" ) and n&& z (in plane or
"horizonlal") we have "VH" scattering, and'

(21)

or

4

(ek, ; ).e= —s(oo')'( '
( 'c-',os( s'(Q) e(Q)}„s+ -.c' osi s-',s(o[Qs( )Q"e;( ))„g+(Q ( ) e(Q))s).,
+»n'(Q ~)(C (f)Q'-&(f)Q'-&(y))., ) . (22)

Equation (22) has been extensively analyzed'» for
equilibrium. There, of course, no y dependence
exists, the cross correlations canish, and the M
n|atrices, Eqs. (6) and (7), give the curly bracket,

(} eegio(e "' —cos*-'S "=ge ""'
l2 1s J

where we have ignored k' terms with respect to
k terms. The hydrodynamic subtraction in Eq.
(23), which comes from the coupling of Q"' to
g', gives rise to a "dip" or minimum in the l.ow-
frequency VH spectrum.

Let us now consider which steady state will
give the most important new hydrodynamic fea-
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k, ] -(r-420&) t -0 its
e~» z=

Z
R g ). (26)

Consequently, (Q,"'(t)Q"', ) has a contribution of
order k' which arises from n =y [in Eq. (20)]
=g'; two ez~'s produce k' times a pure hydro-
dynamic time integral O(k '); no other k' con-
tribution exists. Since the equilibrium hydro-
dynamic part of Iv" has amplitude O(k'), our
new term has the same relative magnitude in k
as do the k ' terms in density fluctuations.

Thus, NESS effects in VH scattering will be
g g Dbest observed if (grg -„I„,) or jand (grg r@t«&

are nonzero. It is immediately obvious" that, to
lowest order in k,

tures in VH scattering. Oppenheim et al. found,
and we shall see shortly, that the dominant con-
tributions come from the dissipative terms in

Eq. (20). The order in k of these terms is de-
termined by any k's which appear as multiplica-
tive constants in the 8"'s and the order of the
time integrals. If the product of e"'s has a contri-
bution of form e, a "pure hydrodynamic" con-
tribution, the time integral gives k, while a time
integral of e ' or e '" ' gives k', k being neg-
ligible with respect to I' at small k. Equations
(6) and (7) easily give

(24)

e =i 1+ — R e ""e'- Re ' "' (25)+

Z ~

(grg-v Qt«& =o

and, it is also true that
Z g

(gag-rA ~«& = o,
so

g Z

(gag-v Qt.t &
=o.

(31)

(32)

Although we have selected the experiment based
on consideration of the largest hydrodynamic
term, we wil. l give all. the contributions to Iv"
which are O(k ') and O(k ') with respect to a term
of the same form which exists in equilibrium. It
is now easy to run quickly through all possible
dissipative contributions:

(a) ye, ye correlation; a =y =Q", possible non-
hydrodynamic part of same O(k) as equilibrium
nonhydrodynamic part —hence can be ignored,

(b) {," „",] correlation; identically zero,
(c) xe, xe; o. =y =Q"', both hydrodynamic and

nonhydrodynamic parts of at most same order as
in Eq. (23); therefore can be ignored:

u =Q"', y =g' and vice versa are identically
zero but

n = y =g ' is the dominant term and should be
retained.

We may therefore use Eqs. (28), (26), (20), (12),
(10), (9), and (8) to write down the only surviving
dissipative part of Iv",

g g
(grg gIe „,&

=0 (tensorial symmetry; the

energy flux is a vector) .

(27)
&& e " "' =, +I

~ Vv(y),k'g j

So the VH experiment must be done with a velocity
gradient; symmetry further requires zz longi-
tudinal stress, &, =fe(e), i.e., a sound wave.
Machta and Oppenheim have shown' that

where n is the number density.
The "Hom" term is just the spectrum in a mov-

ing system. Carrying out' a Gallilean transform„
it is easy to show that

(g~pg pI~ ",,',) =2(keT) mN. (28) I (k t y)=e ' i I "(k t). (35)

A~g ——Ap —M p ~ Ap. (29)

Our hydrodynamics has more variables, the Q's,
than does that of Machta and Oppenheim, so our
I~ 't",t has some extra subtractions, proportional
to Q. However,

Z g
(g'rg-rQtat) =o (30)

.so we can use Eq. (28).
In the presence of a sound wave Qo will be non-

zero, so we also need (gr, g r Q't«&. The in-
dependence of linear and angular momenta gives

Now, the dissipative fluxes are determined by the
relation This is nothing but the Doppler shifted spectrum

which one expects in a moving system. Our the-
ory contains the Hom average to first order in

so for our purposes

I„," (k, t;y)=I~ (k, t)[1 ik. v( )y-t].

However, for a z sound wave in VH scattering,
k v=O, and the Hom term is just the equilibrium
term. For the same reason, Eq. (17) shows that
the NL term vanishes [note that we are now treat-
ing the source as a single entity, not as a sum of
terms to be obtained separately, so Eq. (11), de-
rived for autocorrelation functions, holds] and
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we finally obtain

e -cos';8- -'Rk'g
2

(37)

Now, Q)-, , k
~~ x, does not couple to any hydro-

dynamic variables, nor, as we have seen, does
gg

Qr, . So, on the hydrodynamic timescale, the dis-
sipative part of C, is

1, , ~+2 '
C, (k, t; y) =—u ',4 n '

xcos&8[(Np(t)Q )-, &,„+(Q), (t)N-p&avl ~

IV. VH-VV scattering

We now turn to a phenomenon. which does not
exist at all in equilibrium —correlation between
light scattered at VV and as VH. We envision
the following experiment. The geometry is as in
VH scattering, but the scattered beam is split;
the V component of one beam and the H component
of the other are selected. The beams are then
detected in such a way as to yield (S), (t)S i&. The
best way to carry out the latter step is by no
means obvious to us, but it surely seems possible.
For example, one could simply detect the beams
on the surface of two separate phototubes and find
the correlations of the two photocurrents. One
attractive feature of the experiment is that it is
a null experiment; all the optics must be adjusted
to give zero correlation in equilibrium, and one
only measures the change when VQ is made non-
zero.

Equation (21) gives S~, and, for the chosen
geometry,

vv 6+2 ~ ~ gg
(n;Nr +«' Qr, ),3

(38)

since Np = 5N-„, k 4 0. We shall calculate the sym-
metrized cross correlation, defined as C,

C (k tery) = (Sg (f)S-)-,&
+(S~)" (t)S r)

In this paper, we examine C, on the hydrody-
namic timescale.

(39)

Equation (37) is our principal result for VH

scattering. It clearly shows that a sound wave
propagating along the z axis can make an impor-
tant change in Iv". The value of ~v is comparable
to the sound frequency v„so the importance of
the new term is of order v, /k'q. However, the
condition for validity of NESS theory for the non-
steady state is v, «k'q, so Eq. (37) cannot be used
in the indicated regime of greatest interest,
v, -k'g. We conclude that we have probably found
an important effect in VH scattering, which can-
not be properly evaluated until the existing for-
malism is extended to nonsteady states; we plan
to do this in a future article.

(40)

We follow the same logic as in the last section.
The only possibility of a k ' term comes from
C„so we choose a NESS which best produces
that term. Then. .we evaluate all contributions to
C, which might be important in the chosen NESS.

Evaluation of C, requires e~™„i.e., we need
that block of M which contains N and, as it turns
out, also containsg", E, and (Q""-Q"). Since
we study the hydrodynamic timescale, however,
N need not be coupled to Q, and we can use the
usual, M, as well as the usual e„"„', which have
been given" by Oppenheim et al. All the ele-
ments of eg„' have amplitude O(k').

The hydrodynamic part of e~,~, is O(k'), so
this can at best produce C~ of O(k'). The hydro-
dynamic part of e „', , is O(ik), so an O(k ') term
is possible here if

tot ~ 0

There are two ways to make the average non-
zero. For a temperature gradient along z, we
need (g)A r „Ig „,), which is nonzero for y =N, E
and has been evaluated' by Oppenheim et al. Also,
when y =g", the average will be nonzero for xz
shear flow. MachtaandOppenheim have shown that
NESS shear states are harder to observe than
~T states, so we now focus on a state with a
temperature gradient along 2.

The "Hom" term is zero, since the Hom state
is just an equilibrium state with a different tem-
perature, and C, =0 in equilibrium. The NL term
is also zero. Although C, is not an autocorrela-
tion function, it is a combination of them:

C (k, t)a[(&o.'Q„- (t)+ n'N~(t)(&u'Q „-+cg'N. „-)&,„
—(«')'&QF (f)Q-)-&- —(&'o)'&Nr(f)N-r&-j;

(41)

the total NL term comes from the three separate
NL terms. However, the Hom part of the first
term in Eq. (41) is, due to vanishing of Hom cross
correlations, equal. to the sum of the two sub-
tractions, and so the combination of the three NL
terms obtained from Eq. (17) vanishes.

We therefore obtain
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C, (k, t; y) = —o. ', t) n' cos-,'e

&~(t+'r) g p(y) &p( t+&) N ) (v)d~e „g, e»„+e„, e„gg )
y g Q ] o Q gZ Q g

&)(t ~) -u p(~) Mp(t ~) -& p(~)
+ «dr(e Xg g e»T +»T eo))Z ) (g))A )ky», )ot )

(42)

In the Appendix of Ref. 3 we find

Nt ~ft j t t ghe„"„'=, (e"+ e'-')X„/m+ 2e'r' (43)

. e»g = Xg (e~kk+e]'-k 2e]'r~)
2c' m

(44)

where

P, =~tkc k'[-(c,/c, —1)r,+v ]:+2kc—k 1", ,

gr =-k'rr
8

(45)

(48)

h is the enthalpy density, c is the adiabatic sound velocity, C~ and (.„ the constant pressure and volume
heat capacities, I'~ the thermal diffusivity, v& the longitudinal viscosity,

(4'L)

(48)

P is the pressure, and e is the usual thermodynamic energy density. We also find, in Ref. 3,

&k/n
6)» = (g«fkt «ls",„) Nk»T

]).F

sk/n
6» =—(gpE «I»'„, ) =Nk»T

t) )Vs

(49)

Since we are interested in the hydrodynamic timescale, we substitute the hydrodynamic part of Eq. (26),
and Eqs. (43)-(50), into Eq. (42), the result for the sum in Eq. (42) being

Z
1 tkq -.2, ~ k(n +r) )X.~, X. ~, 1 X ke X. ~=q~ r ' k'(q+r, )]2+k2c2 m "'m» 'k2(q+r, ) nm " m

«2r, 1 X, k X, «2r, , k'(g+ r, ) coskct - kc sinkct X„X,.k'(rL+rr) nm " m [k'(g+rk)]'+k'c' m " m

(51)

Equation (51) may be further simplified with results taken from the Appendix of Ref. 3,

-"sc„8~88) N(k Tc)*, =

x "6 8 NB P
(52)

(53)

We also use Eqs. (8) and (9) and the fact that
kc&&any other hydrodynamic frequency, and Eq.
(42) becomes

C(k, i; y) =8c' 8 c' ( ) ccs [vk (y)]8i (
—'cTR) ( )

1 CpT
(

«2«g «2rrg) sinkct
k2(rL+ rr) mc' '

. kc (54)
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our final. result for VV-VH scattering.
There is no reason why C, should be small com-

pared to correlations ordinarily observed in light
scattering. Beading the right-hand side from left
to right, all. the factors up to cos —,'0 are typical of
any light scattering experiment. For VT = 0.1'/
cm, a fairly conservative gradient, the rest of
the term before ( ) may, typically, be sl. For a
perfect gas, (C~T/mc')g, - 1 and, in a liquid,
might be -10 '. Upon Fourier transformation and

"If2& 0taking the real part, an 8 ' decay gives a con-
tribution +/[&u'+(k'A)J; the amplitude of the re-
sulting spectrum is quite substantial. . We think
that VH-VV scattering would be an interesting
experiment to try.

V. SUMMARY

We have shown that light scattering experiments
on liquids of nonspherical molecules in NESS show

a rich collection of phenomena, much of which is
missed if one simply focuses on density fluctua-
tions. Particularly intriguing is the possibil. ity
of observing phenomena which vanish identically
in equilibrium, a feature which is attractive both
theoretically and experimentally. We have surely
not given al. l the possible new experiments here.
For example, an "HH-HV" experiment also seems
possible. It appears that NESS could open an
entire new area of light scattering experiments.
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