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A method of statistically characterizing an area-preserving, doubly periodic mapping is

presented. This method allows one to calculate the characteristic functions, and the joint proba-

bilities of the mapping.

The standard mapping (Ref. 1, Sec. 5) has been
studied extensively as a model of stochastic behavior.
Early work included calculations of the perturbed in-

variants for small values of the nonlinearity parame-
ter and the study of the transition to stochasticity. '
More recently, there has been considerable interest in

the study of the statistical description of the stochas-
tic regime with the calculation of the diffusion coeffi-
cient. '" Here we present a method for statistically
characterizing the standard mapping

13n+1 Pn + &Sln(xn)li Xn+1 = Xn +Pn+1

and other doubly periodic mappings (Ref. 1, Sec.
5.1). The essence of our method is the calculation of
the characteristic functions of the mapping. These
characteristic functions allow us to determine various

statistical quantities, such as the diffusion coefficient,
the correlation functions, and the joint probability
distributions.

The characteristic functions are defin'ed with in-
teger argument as follows:

Xo(mo) =—(exp(im, x„))

Xl ( Ill o ml ) —= (exp (imox„+im, x„+,) )

X2(mo, ml]l m2) —= (exp(imoxn +im, x„+, +imlx„+2) )

The angular brackets in these definitions are left un-
specified for the moment, except that they are time-
translation invariant. An example of a time-
translation invariant average is the average of the ini-
tial conditions over an invariant region R of phase
space, i.e., a region which is mapped onto itself:

(exP(imoxn+imlxn+1 +im2xn+2) ) —= dPodxo
&

dPodxoexP[imox„(XQ, PQ) +imlx„+1(XQ,PQ)+im2xn+2(xo Po)]

(3)
The crucial point of this analysis is that the mapping equations (1) in the form

xn+k 2xn+k-1 X +k 2n+ e sill(Xn+k —1)

allow one to express X„+~ in terms of X„ for n «1. By using the Bessel-function identity
exp[ie sin(x)] = Jl(e) exp(iix), we find

Xk(moml. . ., , m,k) =—(exp(imox„+im, x„+, +im2x„+2+ +imkx„+k) )
—= (exp[imox„+ +imk 3x„+k 3+i (mk 2

—mk)x„+k 2

+i(m» 1+2mk)x„+k 1+imkosin(x„+k 1)])

I(mka) Xk-1( 0 k-3 mk 2™kmk—-1 +2mk + i)
I

Moreover, Xl itself may be calculated by Eq. (3):
1

Xl(mo, ml) = i~ dPodxo 't dPodxoexP[i{mo+ml)xo —imQPQ]', dR ~R

(4)

(5)

The interpretation of this method is that we must first select a class of orbits and, thereby, an invariant region
R. Performing the integrals in Eq. (6) we obtain the characteristic functions averaged over that class of orbits.
All subsequent quantities derived from the characteristic functions are therefore averages over that class of or-
bits.

Let us take the region R in Eq. (6) to be all of phase space. Equations (5) and (6) immediately
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yield

X1(mp, m1) =g pg, p

X2(mpm , 1m13) =g „J (7b)

Knowledge of the characteristic functions allows us
to calculate the averaged diffusion constant

T T
ii=— iim (p~ —p)')=(iim XXkpkp)) .

To reduce the double sum in the last equation, we

and

X3(mp m(, m3 m3) Jm -3in(2m (pm') J Nip iii -2m —(3m3e)

(7c)

rewrite it in the form

1
'''

D = lim X X (hp;hp, +J)
i lj 1-i

T oo

D = lim X X (hp;hp;+&)
jul Jw-oo

(10)

Then we use the time-translation invariance of the
average to sum over i:

D = — X (d,p;i(tp;+i)

Finally, we use the Fourier expansion,

/i
p&

= csin(x, )= ( —i /2) [exp(i') —exp( —ix~) ]

to obtain the following formula for the diffusion
coefficient

Next we assume that the terms in the sum fall off
rapidly with j, so that as T ~, we can sum over all

.j:

1 oo

D =-k3Re xp(0) —xp(2)+2 X [xj(1,0, . . . , 0. —1)—x (1,0, . . . , 0, 1)]
J~l i

(12)

Inserting the special solution of Eqs. (7), we find

D = —e I —2J3(e) +2J3 (e) —2J1 (e) +2 X J„( e)J„—4(e)J (3„3[3( a—2) e]

—2 X J„'(e)J,(„)+[(n+2)el+2 X [Xi(1,0, 0, . . . , 0, —I) —Xi(1,0, 0, . . . , 0, 1)]
pf ~—oo J~5

1

%e note that the first four terms of this series are
exactly those found by Rechester and White. 3 (We
also note that Karney et at. 6 found those same terms
by computing the force correlation functions. )

A knowledge of the characteristic functions allows
one also to calculate the correlation functions

where fr(x) is the number between zero and 2m
which equals x modulo 2m. The function fr(x) can
be written as a Fourier series

fr(x) = X rke'~,
k

C -=(fr(x„) fr(x„+„)) (14) where r p
= n and rk = i /k for k & 0. By straightfor-

ward algebraic manipulation we find

i X (k) X (k, 0, 0, . . . , 0, —l) X(k, 0, 0, . —. . , O, l)
C =a3+Re 4rr +2

k 1 k k 1( 1 lk
(16)

For the solution of Eq, (7) we obtain

Co -n4 (17a)

" J,„(k.}C2=m2-2 ~
k. l

J( 3k(k p) Jk 21(lp) —( —I)'+"J(+2k(k )Jk+3((l p)
C3=m3-2

k~1 I l lk

(171 )

(17c)

(17d)
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It should be noted that we have made an error in

our application of this method to the calculation of
the diffusion coefficient by neglecting the accelerator
modes (Ref. I, Sec. 5.5; Ref. 6). Accelerator modes
exist throughout a region of finite measure in phase
space. They have the property that p„continuously
increases or decreases roughly as n. Such modes
contribute an infinite diffusion when folded into the
average (8) and will. cause the series (13) not to con-
verge.

To correct for the presence of accelerator modes,
we should choose the region R of Eqs. (3) and (6) to
be the stochastic region of phase space. Our value

for X~(0, 0) remains unchanged by this choice, but
now Xt(m, n) for m or n not equal to zero no longer
vanishes. Instead it is of the order of I/o2 since the
relative measure of the accelerator regions is of that
order (Ref. 1, Sec. 5.5). This will cause corrections
to Eq. (13) of order equal to that of the last sum.

To illustrate the generality of this method, we con-
sider its application to the mapping

Ll~+] MJ + p, —v cos&j, &j+] = &j +p + v s]n Mj+]

which has been discussed by Karney. 7 If we define
the characteristic functions to be

XMn(mo . , mM, np, . . . , nn) =—(exp(impuj+imtuj+, + +imkru~+kf+inpvj+intvj+~+ . +innvj+n))

we immediately find the recursion relations

in~p,
XMkr = x JI(nkrv)e XkrM i(mo. mi 'nkI i, mkr+I nonl. ,. . , , nM 2, llM 1+nM)

I

and

XM I 1$J—((mMv) exp~ I (mMiM —irr/2) ~ XM —t, M —1(mo mM t ™M—no nM —t + I)
I

Finally, we would like to note that this technique allows one to calculate the fractionally reduced joint probabili-
ty distribution P(xp, po, x„,p„) which has been discussed by Grebogi et al. For example,

p(xp, pp, xk, pk) = (5[xp —«(x, ) ] ~f pp
—«(p, ) j &[xk fr(xjpk) j ~[—tpk

—«(p, +k) j &

't 4

exp( —impxp —imkxk —inppo —inkpk) Xkk(mp0, 0, . , ~ ~ Ink ~ np 0 0 ~ nk)
2m m P&lflk f 8Pk Ifk

Obviously this method can be used to find the characteristic functions of any doubly periodic mapping. Furth-
ermore, in the stochastic regime, ~here the higher-order characteristics are small, one can use this method to ob-
tain an approximate expression for the diffusion coefficient, the correlation functions, and the joint probabilities.
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