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Comments on stimulated scattering of electromagnetic waves by electron Bernstein modes in a
plasma
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Results of a previous work on the nonlinear scattering by electrostatic waves in a laser-produced plasma are
reconsidered and corrected.

The nonlinear scattering of laser radiation by
electron Bernstein modes in a plasma was recently
studied by Sharma, Salimullah, and Tripathi, '
They showed that such processes can be important
in laser target irradiation experiments where
strong magnetic fields are generated. Similar
effects may also be found in incoherent scatter
radar observations of the ionosphere. "Recon-
sidering the theory for the above-mentioned non-
linear effect, we shall, however, in this note find
results which are significantly different from
those of Sharma et al. .'

Let us here study the scattering by low-frequency
electrostatic modes (~, k), supposing that the
frequency &p of the incident electromagnetic wave
(&u„k,) is much higher than the electron plasma
frequency +~„ the electron gyrofrequency &„,
as well as +. By generalizing the theory of Drake
e t al. , one then finds'

where &, = ~ + +p, k, = k + k„ is the velocity of
light, p is the electr'on collision frequency, and

v, is the constant amplitude of the induced electron
velocity in the pump field. The dispersion rela-
tion (1) is similar in form to Eq. (14) of Drake
et al. , and it is valid for scattering by most low-
frequency longitudinal modes, as y, and X, now

represent the electron and ion susceptibilities
of a slightly nonuniform magnetized plasma. The
lengthy expressions for those susceptibilities
have been derived by means of linear theory and
can be found in many textbooks. ' It must, in ad-
dition, be stressed that previous authors' have
studied Eq. (1) for magnetized plasmas. However,
the equation has not, as far as the author knows,
been used for investigations of the parametric
excitation of the electron Bernstein modes'

+ce& where n ~ 2.
Considering the particularly interesting case

of resonant three-wave interaction (which here
requires k =2kpcos8, where L9 is the angle be-
tween k and k, ) and neglecting v (i.e., the pump
wave amplitude is supposed to be well above
threshold) one finds4 from (1) the instability growth
rate

t

lm& = ~
I

' Il+x;I Isin @Icos B,c P(X.+X~)/B~
(2)

where P is the angle between k and v, .
Equations (1) and (2) can be improved by means

of, for example, the "generalized ponderomotive
force" method' in order to obtain expressions
which are valid for arbitrary pump wave frequen-
cies, but as the results' are rather complicated
and as the basic assumptions in the beginning
of this paper will cover our further analysis, we
shall omit any lengthy formulas here, and instead
turn our attention to the growth rate which was
derived in Ref. 1 [Eq. (26)]. When comparing
that expression, evaluated in the limit +p»
with (2), one finds that the results do not agree,
however. This discrepancy can be explained by
the fact that Sharma et al. ,

' when calculating the
nonlinear high-frequency current density [Eq. (14)t,
have neglected the important nonlinear term
E, (Bf /Bv) in the Vlasov equation and instead
retained the term R Bf„,/Bv

Let us now look at the excitation of electron
Bernstein modes, ~ ~ 2, assuming that the mag-
netic field is in the z direction, that a density
gradient (Bg,/Bx = —zn, ) exists in the x direction,
and that the electron velocity distribution function
is Maxwellian with thermal velocity z~. Using
Eq. (11.42) of Miyamoto' (to minimize the length
of the formulas below, we also neglect gravita-
tional fields, fluid velocities, and temperature
gradients), we then write

2 OO .P og

(B)
-y ~ 1 B(d F~ dv~
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where I„ is the modified Bessel function of order
n, 5 =k~vr/a&, ', &o*=-k,gv~r/u&, is the drift fre-
quency, and

F, = (2''r) '/'exp(- v,'/2 v'r).

Following Sharma et al. ' we can then in (2) approx-
imate [s(X +X&)/6&] ~/2 by

[1+(yX )-2]-l/2 (~ n~ )1/2

where A.v = v~/+~, is the Debye length.
Disregarding the angular factor in (2) one thus

finds

Using typical values for plasmas produced by Nd:
glass lasers, e.g. , ~,—-1.8x10"radsec ',
~„=3x10"radsec ', ~~, —-Sx10"radsec ',
vo/c= 10 ', kA, n= .0,5n=5, and xA,nb«1, one
then deduces Im~ —-10" radsec ', which is of

the same order of magnitude as the growth rates
obtained by Sharma et al. .'

Finally, it should be stressed that it is often
very difficult to identify the electrostatic wave
which is responsible for the scattering. Equation
(2), which is valid for scattering by any longitudi-
nal mode, tells us, however, that Im~ is large
when (+8/()&u}(X, +X,} is small. The sign of the
last mentioned term determines the sign of the
wave energy and waves with small energies can
thus be efficient scatterers. The scattering by
electron Bernstein waves, where (a& —n&o„)/co
is small and the energy is large, will, however,
be difficult to observe. In addition, I thus think
that scattering by drift cyclotron modes could be
of interest as the energies of those waves can be
very small (when &*, is of the same order of mag-
nitude as n+„). Expressions (2) and (3) may
then be used to explain the scattering of laser
radiation' as well as other observations, ' where
density gradient effects on cyclotron waves pre-
viously have not been calculated.
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