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Critical dynamic viscosities in xenon and in the binary mixture nitrobenzene-n-hexane
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Ultrasonic shear data along the critical isochore in xenon and in the binary mixture nitrobenzene-n-hexane are
interpreted in terms of modified theoretical expressions derived within the framework of the decoupled-mode
theory. The new expressions mainly arise from separating the real and imaginary parts from the complex dynamic'
shear viscosity near a critical point. Numerical analysis of the data shows rather satisfactory agreement between
theory and experiments for ultrasonic shear data.

I. INTRODUCTION

In a previous paper, ' we reported the experi-
mental results of static and dynamic viscosities
in the binary mixture nitrobenzene-v-hexane
near the critical point. The results were com-
pared with the prediction of a generalized form of
the Deutch and Zwanzig theory' based on the model
of a binary van der %'aals mixture and the theory
gave an excellent qualitative explanation of the
dynamic viscosity data. At the same time, how-
ever, it has been understood that some conclusions
are subject to criticism because of the additional
assumptions introduced to perform the calculation.
In particular, two important improvements have
been required: one is an account of the diverging
behavior of the static and dynamic shear viscosi-
ties as the critical point is approached and the
other is related to an arbitrary parameter intro-
duced to make the data fit to the theory.

The problem of thedynamic shear viscosity near
a critical point has recently been reconsidered by
Bhattacharjee and Ferrell' and independently by
two of the present authors' on the basis of the de-
coupled-mode theory. ' Although the fluctuati. on-
dissipation theorem along the lines indicated by
Deutch and Zwanzig has been applied, the calcula-
tions have been performed in a different way, and
the important improvements previously referred
to are included in present formulations. In par-
ticular, one of the predictions of the Bhattacharjee
and Ferrell theory has been compared success-
fully with the observed deviations from exponential
decay of critical concentration fluctuations in a bi-
nary liquid. ' Furthermore, it has been proposed
to analyze the dynamic viscosity data in terms of
a reduced frequency (d*. In this connection, the
theories predict that the dynamic viscosity data
depend on temperature and frequency through the
single reduced variable ~*, i.e. , the data should
be described by a dynamic scaling function.

In this paper we wish to report the results of a
direct test of the dynamic scaling function based
on the decoupled-mode theory by analysis of some
recent experimental data for ultrasonic shear
viscosity along the critical isochore in xenon' and
in nitrobenzene-rs-hexane. ' In comparing the theo-
ries with the experimental data it is necessary to
take into account the fact that the real and imagin-
ary parts of the complex dynamic viscosity are not
normally measured separately. However, as
shown in the following sections, the direct sepa-
ration is always possible in the viscoelastic method
such as the torsional crystal method, which makes
possible the more rigorous test of the dynamic
scaling function.

II. THEORY

Since the ultrasonic shear wave frequency of
interest co satisfies e/c «g, we have to take into
account only the frequency dependence in the shear
viscosity, where c is the velocity and K is the re-
ciprocal correlation length for density (or concen-
tration) fluctuations. To study the problem in
more detail, let us consider a binary mixture.
The starting point of this calculation is a time cor-
relation function for the complex dynamic shear
vlscosltv 7/+(&0, K),

q*(~, x) =—d'2l e '"' '»'(T„(2)T„,(l)),

where the integration is over the entire range of
the relative space-time coordinate (i„,t„),T„,
is an off-diagonal component of the stress tensor,
and the angular brackets denote the thermal-equi-
librium average. The temperature T is measured
in natural units so that the Boltzmann's constant
is unity.

It is customary to.separate the viscosity into a
so-called "ideal" background component q~ and a
critical component Aq*. The canonical expression
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for the stress tensor T, based on the criti.cal fluc-
tuation has been derived by Perl and Ferrell'. 15m' '

0 (1+v')~[v~(1+ v') + ~+'] '

~xy x xX eg
(2)

G(21) = {s(2)s(l))

=(2«) ' fd qp«(«'(««„-I'*,~t„~)«(«).

The Fourier transform of the equal-time correla-
tion function is assumed to be of the usual Orn-
stein-Zernike form for arbitrary values of wave
number q and w,

»3

where the Landau-Qinzburg expression for the
free-energy density E depends only upon the par-
tial derivatives of the cone entration s„,s, through
the gradient term (Vs)'/2Z and Z is a constant.
In order to study the fluctuations in the stress
tensor, we introduce the time-dependent correla-
tion function for the concentration fluctuation,

respectively, where v=q/z, the reduced frequency
u&*=&u/&uv, the characteristic frequency &uD=Tz'/
8q(g), and the cutoff wave number q, is a free pa-
rameter to be fixed by fitting the shear viscosity
data to the following equation (10). In the. limit of
&u-0, Eq. (8) is

)
8 —

)
qJK (q /Ic)

157p (qg((, + 1)~~ 2 3( 2/fp+ 1)3& 2

+ in
~ (q, /~)+ (q', /~'+1)" '

~,
~l,

(10)

which is reduced to the well known logarithmic
form when qJw» l.

Alternatively, one can choose the following re-
fined expression for I", proposed by Perl and Fer-
rell5'4

a(q = .„..
q +K

The time-dependent correlation function of the
stress tensor can be expressed in terms of G by
the decoupling approximation, '

~+2» 8&2» ~+a» ~&2»

(5)
From these equations [Eqs. (1)-(5)], by straight-
forward calculations, one gets

3

ds 2 a Z(q)6'g (&q I(:) =
(2 )3

a

(6)

where Aq' and -hg" are the real and imaginary
parts of Lhg*, respectively.

%e first choose the following expression for E',,
which gives a good fit to the experimental data,
according to Perl and Ferrell, '

where

Ko(v) = ~[1+v~+ (v'- v)tan 'v],

1 '~' " dvv' q"' K(v) C(v)aq'(~, ~) =-
5v, (1+v')'Ko(v)C'(v) + ~*' '

,/~ dvv'aq" (&u, ~) =-
5m, (1+v')' Ko(v)C'(v) + (u*' '

(8')

(9/)

n n, +,5~-(1, 2/, 2)ii2+

C(q/v) and 7'(q/(() are numerically determined fac-
tors, "and q~ is a Debye cutoff given by

lnqD =lnq, —~~ +ln2.

When Eq. (7') is substituted into Eq. (6), the cor-
responding final equations for bg', Aq", and Ag
are given by,

Tq'(q'+ ~')'i'
16q((q'+ h.")'~'}' (7)

1 '~' " dv v' q"'
5v, (1+v')'K, (v)C (v)

' (10')

where g is an adjustable parameter which is de-
termined by fitting Eq. (7) to the linewidth data.
Because q(q, g) depends on q very weakly, when
Eq. (7) is substituted into Eq. (6), q can be taken
outside the integral and approximated by setting
the argument equal. to x. Final equations for
Aq' and Aq' are given by

8 a//t dv v'
b(7'(~, ~) =— q(~)

15m "' (1+v )' '[v (1+v')+(u*']'

(8)

respectively. It should be noted that the charac-
teristic frequency is given by cuv = Tr&'/3wq"' in
this case.

IIJ. TREATMENT OF DATA

The details of torsional crystal methods have
been described elsewhere. "" The real and ima-
ginary parts of the complex dynamic shear vis-
cosity q* are given by

q'=2XR/cop and -(7" =(X' —R')/vp,
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respectively, where R and X are the real and

imaginary parts of the shear mechanical impe-
dance, respectively (R and X were determined
in the usual manner"), and p is the density of th' e
solution. Furthermore, g' and g" are separated
into a background component and a critical com-
ponent

static

38.7kHz

g' =g'~+ Ag' and q =g'~+ Dg", (12)

respectively, where p~ is usually estimated by
the Arrhenius equation and g~ equals zero, be-
cause simple liquids such as nitrobenzene and n-
hexane and, accordingly their mixtures, are not
expected to behave elastically with respect to
shear until very high frequency is attained, i.e. ,
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FIG. 1. Anomalous dynamic viscosity in Xe along the
critical. isochore above T~ as a function of the reduced
frequency ~ = ~/'~D. Ultrasonic shear data are shown
at 38.7 kHz. The solid lines show Eqs. (8) and (10).

g' = q~+ Ag' and g" = hg" . (12')

In the static limit,

g = lim'g ='g~+ 6'g . (12")

IV. RESULTS AND DISCUSSION

A comparison of the experimental results with
the theory presented in Sec. II is shown in Fig. 1
for xenon and in Fig. 2 for nitrobenzene-n-hexane.
From Fig. 1, it can be easily understood that the
dynamic viscosity in the one-component system

In the present paper, data on xenon' as a one-
component system and nitrobenzene-n- hexane'
as a two-component system have been analyzed,
because the detailed data of the dynamic viscosity
and parameters which are required in a compari-
son of the results with the theory are available.
These parameters are the reciprocal correlation
length x and the decay rate I', obtained by light
scattering and Bayleigh linewidth measurements.
It should be noted, however, that the theory in its
current state cannot discriminate between q and
g." Accordingly, we regard g as g in the present
analysis through Eqs. (8)-(10). This means that
the decay rate in the form of Eq. (7) can be eva-
luated without knowledge of Rayleigh linewidth
measurement. In a more rigorous test of the
theory, however, it is necessary to deduce q from
linewidth data and then the refined decoupled-mode
equations [Eqs. (8')-(10')] should be compared with
the results of viscosity measurements. The re-
ciprocal correlation length y is (10'/2. 0)&t'" cm '
for xenon" and (10'/2. 3)e'" cm ' for nitroben-
zene-n-hexane, 20 where & = (T T,)/T, . By fitting-
the values of the static shear viscosity and Eq.
(10) with the corresponding values of ~, one can
determine the cutoff parameter q, to be 5.38 ' 10'
crn ' for xenon" and 6.89 x 10' cm ' for nitro-
benzene-n-hexane. '

did not show the significant frequency dependence
at ultrasonic frequencies: g' is close to g as seen
in Fig. 1, although a slight deviation is appeared
for the higher values of ~*. Such a deviation is
much more evident in this two-component system
as shown in Fig. 2(a). Accordingly, it cannot be
ascribed to the breakdown for large v* (or small
e) of the approximation of the Ornstein-Zernike
form for the behavior of the fluctuations, "but to
the long characteristic relaxation time for the
concentration fluctuations a.s explained by Eq. (8).
In this connection, it should be noted that the pre-
sent comparison between the theory and the ex-
perimental data does not contain any arbitrary
parameter, while the previous comparison con-
tains an arbitrary parameter; although the pre-
sent agreement is not apparently superior when

comparing with our previous result. ' The most
significant feature is an observation of the imagin-
ary part of the complex viscosity presented in Fig.
2(b). This is quite a new result and may be ex-
plained by Eq. (9). Because, in the limit of
e*-~, Eq. (9) is reduced to a constant, " i.e. ,
4q/45m =0.028', while our experimental value is
0.023 + 0.002. Then one gets q = (0.82 + 0.08) x 10 '
(P), which is in excellent agreement with the
static value determined by Miyake et al. This
coincidence is considered a further verification
of the correctness of the proposed model.

To study the frequency dependence of -the vis-
cosity function, it is convenient to separate out
the frequency dependence by subtracting Eq. (8)
from Eq. (10) for its static limit &@=0. The re-
sulting function is independent of q, /x and permits
us to define a normalized dynamical scaling func-
tion crpF((u*) by

br)(K) —r q'((d& K) rl(K) —YJ'(&& K) 8
( ~) (13)

q(x) q(w) 15m'
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FIG. 2. Real part (a) and imaginary part (b) of the complex viscosity of nitrobenzene-n-hexane as a function Of the
reduced temperature difference z= (T-T~)/T~. (a) The solid lines show Eqs. (8) and (10), (b) the solid line shows Eq.
(9) corresponding to 51 kHz.

In taking the difference within the integral sign,
we obtain an integral which converges at the upper
limit; consequently, the upper limit can be set
equal to infinity, q, /z-~. In other words, the
cutoff parameter disappears at this point and will
no longer occur in the subsequent work. The re-
sulting expression for the dynamical scaling func-
tion is a single integral:

OO 8 ~g2

(1+v')" 'v'[v4(1+ v') + co*'] '~g)— (~4)

The normalized dynamic scaling function o» is
plotted against e* in Fig. 3. The most interesting
result is that the normalized dynamical scaling
function behaves quite similarly in one- and two-
component systems and that the dynamical data
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FIG. 3. Viscosity dynamic scaling function app(cu ) as a function of reduced frequency ~ . Ultrasonic shear data are
shown at 38.7 kHz (Xe, solid angle), 2.87 (solid dot) and 51 kHz (open dot) in nitrobenzene-g-hexane. The solid curve
represents Eq. (1,4).
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generally follow the prediction of the theory over
a wide range of w*. Thus the Peri-Ferrell (PF)
theory may be successfully applied to the'dynamic
viscosity. However, we do not claim that these
tests are conclusive because of the scattering of
our experimental data. It is necessary to improve
the ultrasonic shear measurement and investigate
the viscosity over a wide range of frequency in
various binary systems in order to obtain more

conclusive results. Research is in progress along
these lines.
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