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Observability of hysteresis in first-order equilibrium and nonequilibrium phase transitions
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The general conditions under which a system undergoing a first-order phase transition will exhibit hysteresis
behavior, rather than simple jump behavior, are obtained. These are expressed in terms of the intrinsic time scales of
the system and the time scale of variation of the control parameter. The size of the critical region is estimated.
Estimates of the characteristic times are made for some equilibrium and nonequilibrium systems to show hysteresis

behavior.

In the theory of systems exhibiting first-order
phase transitions, a question which often arises
is—Does the system show a simple jump behavior
at the transition point or does the system exhibit
hysteresis behavior? The latter behavior occurs
in a wide class of equilibrium and nonequilibrium
phase transitions! such as ferroelectric transi-
tions,? optical bistability,® bistability in Josephson
junctions,* bistability in light-induced chemical
reactions,® and other systems.® The liquid-gas
transition also exhibits supercooling and super-
heating,” however, a simple jump behavior is or-
dinarily seen. It appears that for nonequilibrium
phase transitions of first order, the hysteresis-
type of behavior predominates.

It has been pointed out® that the simple jump
phenomena corresponds to “Maxwell construction,”
familiar from van der Waal’s theory of liquid-gas
phase transitions,® whereas the hysteresis pheno-
mena corresponds to what is known as the “delay
convention.” The question of whether the Maxwell
construction prevails over the delay convention or
vice versa, depends on the dynamical behavior of
the system, i.e., on certain-characteristic time
scales associated with the system'°™? as well as
the time scale over which the control parameters
of the system are changed. Recently Gilmore® has
also examined some of these questions and has
pointed out that the time rate of change of the con-
trol parameter is an important time scale which
has to be compared with the other time scales in
the problem. In this paper we report some of our
results on the existence of the hysteresis behavior
of the system which differ in several respects
from Gilmore’s treatment.

In what follows we assume that the dynamics of
the system is such that the phase transition he-
havior of the system could be characterized by a
single order parameter ¥, which is assumed to
obey the Fokker-Planck equation
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The macroscopic equation for the order parameter
is

p==A@). 2)

For most systems D(¥) is independent of ¥ and we
will assume this, later showing for a specific ex-
ample that the analysis carries through even if D
depends on ¥. The most probable values of the or-
der parameter in the steady state are given by

A@)=0. (3)

It is easily shown that the stationary solution of
(1) is

Puw=-New(~3 [ Awa)=New(-2),

(4)

where N is a normalization constant. The maxima
and minima of the probability distribution are
given by (3). Generally if the fluctuation term D is
very small, then the mean-field description (3)
will be good. Note the similarity of (4) to the
Einstein fluctuation formula for the description of
fluctuations in thermal equilibrium systems. Note
also that the relaxation of the system around the
steady state is described by
. 1 1 ,

52#——'7':1'51#, E—A @, (5)
where ¢ is a solution of (3). Equation (3) may ad-
mit many solutions, the stable solutions corres-
pond to the ones for which A’ is positive. In order
to be more specific in discussing existence of
hysteresis vs jump phenomena, we will assume
that (3) admits two stable solutions ¢, and ¥, and
one unstable solution ¥, as shown in Fig. 1. We
will denote the external control or drive parameter
by 1. We have denoted in Fig. 2 the hysteresis be-
havior by the dots with arrows and the simple
jump behavior by the dashed line. The value of
u= u, at which the jump phenomena occurs (with-
out hysteresis) corresponds to the situation:
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FIG. 1. A schematic plot of the potential & (Eq. 4) as
a function of ¥ for a fixed control parameter p with two
minima (¥4, ¥;) and one maxima (¥3).

(%)= 2(%,) . (6)

Note that T, is infinite at the points u, and u,.
This is an example of critical slowing down at the
spinodal curve where one of the  minima dis-
appears.!®

The observation of hysteresis rather than jump
behavior depends on how big the rate of change of
the drive parameter is relative to the relaxation
1/T, and decay 1/T, rates. This implies that the
time scale 7, of the change of u should be much
larger than the relaxation rate to a given mini-
mum, i.e., roughly 7, >7,. Moreover, the sys-
tem must not have time to jump over to the com-
peting minimum, i.e., T,> 7, as we will see
more precisely later. Stating the first condition
more precisely, if u- u+du then the order para-
meter changes ¥ - ¥+ 6y gradually, i.e., adiabat-
ically following the changing u such that the same
equation is obeyed:

5 (%1IFC1)

FIG. 2. The extrema of & (Fig. 1) as a function of p.
The solid lines represent stable branches (¢, ¥,) and
dashed line (¥3 branch) represents unstable solutions.

A@R,p)=0, A@R+0y),u+0u)=0. (1)

‘Thus, on carrying out Taylor series expansions

the condition |8%/%|< 1 becomes
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where At is a typical rise time for the control pa-
rameter pulse. It should be noted that (8) is viola-
ted near the critical points u,, and p ., since T,
— 00

The time T, can be calculated from the consid-
erations of the mean first passage time for a
Markov process. For this purpose ¢, can be taken
as essentially the absorbing boundary of the pro-
cess, since once ¥ takes the value ¥,, the transi-
tion from the minimum ¢, to ¥, occurs. The mean
first passage time is given by**

o= [ atpy,0), )

where P, (¥,?) is the probability that the system is
to be found in the region to the left of the maxi-
mum J,, given that it was initially in that region,
which we will denote by D. The mean first passage
time can be expressed in terms of the eigenfunc-
tions of the operator
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tw)= [ Talt el a

Of course if initially ¥ is characterized by a dis-
tribution P (), then the mean first passage time
is obtained by averaging (9) with respect to P ().
The mean first passage as defined by (9) is known
to satisfy*
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—A<¢>§$<t>+n<¢)-a—¢—2-<t>= -1. (12)

On solving (12) we obtain
] d(p” Uk
t@)== | s dy'P 4 (') , 13
) LSDP“(ZIJ”) [ aypawn, a9

in agreement with recent results.®!®
We will now define T', by

T,=¢®,)). (14)
The integrals appearing in (13) can be asymptoti-

cally evaluated by expanding the potential function
in the neighborhood of the maxima and minima
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2(Y)=2(@)+ 52" (%))

+(—‘/’-'?"’1—)3—d>w(zpl)+... , (15)
2(4)=2(v) - LB aryy))
kYl zpa) @ () #ee e (16)
Simple algebra shows that
T,=7[®"($,)| 2" (¥,)|] /2 exp(K), (172)
K=5[8() - 2(,)]. (17b)

Note that the first passage time (17a) is equal to
one half of the reaction time obtained by Kra-
mers.!! It is evident from (15) that (17) is invalid
near the critical points u,, and u,, where the sec-
ond derivatives of ¢ are zero. Hence in the neigh-
borhood of such critical points, we should retain
the next-order term in (15). It is also evident
from (13) that as ¥, and ¥, approach each other,

as happens near the critical points u,, or u.,, then
)~ 0. Hence in the neighborhood of u,,

O 0, =) 5

(zpﬂ zpl) f iy ex p( B() - 4>(¢01))

~ (¢c; - ¢'1) f”cl dlp' exp{ -
D -0
which on evaluation leads to

a = 6D 1/3
T2= (‘p lD d) ) (0,83)<[ q,,,,(lp‘n)‘)

) ﬁ /e 6D 1/3 -22_“.. =1/ 2
= |[Ha=k] (0-83)(7 w(zpﬂ)x) <3¢§1 ) .
(19

- z/)cl)f‘d)”'(d)m)/SD} ’

(18)

T, is now directly expressed in terms of the con-
trol parameter u. Note that near the critical
point 1/T1 can also be expressed in a similar
form

-1/2
———‘/__Ip'(-‘l—“]l/zld)”’ d)ﬂ)l(sz > . (20)

Equation (19) for T, is valid only when the maxima and
minima are close enough, i.e., within a critical
region defined by K<< 1, across the spinodal
curve, where K is defined in Eq. (17). Thus

L)l gy, (21)

which, from the order-parameter equation, can
be reexpressed as a condition on (y — p,,):

2/3 g2
D ) 02 (22)

3
- <=
lli - lJ‘c1| _<8\/7 17 (o)1 892,

The critical region within which mean-field theory
breaks down is likely to be of this order or smal-
ler.

T, is the time in which the intrinsic random
fluctuations kick the system from a given mini-
mum, over the intervening barrier, into the other
minimum. It is therefore a “smearing time” for
the hysteresis curve. The control parameter
must vary fast enough so that the minimum, in
which the system sits, moves along at a faster
rate than the decay rate 1/T, of the state. Since
the rate of change of P, due to the changing u is
(6P, /d1)ia, we have

L1]aPg .| 1 >(l
B.len M, = PG

13
ou

vT2>_l . (23)

The condition for jump behavior to occur is
clearly (23) with the direction of the inequality re-
versed; the system in a given & minimum [&(¥,)]
then hops over to the competing minimum [4)(1/)2)]
as soon as ®(y,) falls below it. If the time T,
above is taken to be the intrinsic decay rate in the
absence of a time variation in u, as would be done
in practice when making estimates, then we must
have

TG puleey —ewlou|<1, (24)

e., the changes in T, due to the u(¢) variation
must be relatively small.

For most systems for which hysteresis is ob-
served it turns out that T, is extremely large,
whereas T, is quite small and hence the inequali-
ties'® like (18), (23), and (24) lead to a large
range for the time scale 7, of the control para-
meter. In fact in most cases the range appears so
large that the Maxwell construction would never
prevail. However, the presence of impurities and
surfaces could affect the diffusion constant and the
form of the potential, leading to a significant
change in T, due to the e¥ factor. Thus in these
inhomogeneous nucleation?:12 situations simple
reproducible behavior could take over. The con-
ditions (18), (23), and (24) can be combined to
lead to the hysteresis window defined by
oA [ Yl D

> >> e—
sul 1, M7,

28 |-
Ou

which should be compared with the hysteresis
window given by Gilmore

1
IAt s (25a)

T—l > ;l>>?1- . (25b)

1 T2

The prefactors in (25a) multiplying the character-
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istic times come from the detailed physical argu-
ments involving the change of ¢ produced by
changes in the drive parameter u. The condition
(25b) stated by Gilmore does not include these
prefactors. In general, the condition (25b) is more
stringent than our conditions (25a) as we will see,
for example, in the case of a laser with a satura-
ble absorber.!"-2°

The analysis presented above holds for both
equilibrium and nonequilibrium phase transitions
provided the order parameter for such systems
would be characterized by the Fokker-Planck
equation (1). For equilibrium phase transitions
we may identify

exp(~®/D)~ exp(~F /ksT),

where F is the free energy of the system.

We will now study some examples of first-order
phase transitions—one of which corresponds to
equilibrium and the others to the nonequilibrium
case. Consider now a first-order phase transi-
tion characterized by the @ function®®
2P)_

Av

A(T =T P2 -BP*+CP*~EP (A,B,C>0).

(26)

This expression for example may represent the
excess free energy per unit volume of a ferroelec~
tric with P representing the electric polarization
and E the electric field. In such a case both
temperé.ture and field hysteresis have been re-
ported.? On introducing the scaled variables

- (5)r. (). S,
(27)
expression (26) becomes
) Bt —prspo—pe), (28)
and the scaled order-parameter equation is
2pt+2p5 —4p® —e=0. (29)

For temperature hysteresis e=0, the minima and
maxima of the free energy @ are given by (¢> 0)

1-(1=¢)2,
(30)

£,=0, pi=1+(1—t)/2, p2=

In such a case the factor K [Eq. (17b)] becomes

4B° )32 Av .

K=grga(1-t kaT

(31)
Using the experimentally® reported parameters B,
C, we find that B3/9C2~10° and that K ~1018-102°,
T, is determined by e* times a typical relaxation
time scale. This time scale is not determined by

thermodynamic arguments, but rather by micro-
scopic theory, and is expected to be of the order
107 sec-107° sec. T, is therefore very large,
essentially due to the largeness of K. Even for
field hysteresis, T, will be astronomical since
the factor in the exponent continues to be large.
The hysteresis window in the present case® is
very wide. The critical region, estimated from
(21) is (e —e,)/e,~ 10710,

We next consider an example of a nonequilibri-
um first-order phase transition, where hysteresis
behavior has been reported.!” The dynamics of a
laser with saturable absorber is described by the
following Fokker-Planck equation for the intensi-
ty,'8"2° with the order parameter being the intensi-
ty ¥=I, the control parameter being the net gain
term |7, and the diffusion constant being ¢ de-
pendent (for details see Ref. 18).

a"(%t') azp[(‘Pf )]+n1§55<¢p), (32)

where
F=3z8,892 = B,(6+ | ny+ |n|]. (33)

The parameters B,,B, are the saturation para-
meters in the laser active medium and the satura-
ble absorber. The hysteresis region corresponds
to 0<9<1 and 0< |n|<B,62/4B,. It is clear that
the macroscopic (mean field) behavior is given by
p=0, or f=0. It can be shown that the mean first
passage time now satisfies the equation:

2y -2) 2 b 0=~ (34)
‘/)f_ ¢ >+ R 81/)2 - 2w’
which can be integrated to yield

=g 5 2 [[wraw), 69

where

P, (¥)=Nexp (—% fwfdzp>. (36)

¥, is the root of ()= 0 for which [fdy is maxi-
mum. The time T, can now be shown to be given

by
~0o0=g (gt )em(a [ ras)

xerf[(lf’ ) <p3] . (37)

which can be evaluated from the knowledge of the
system parameters. For typical values of the
parameters v ~10° Hz, 8,=38,=10", |n|=5x 107,
and 6=0.28 we find that the time T, is not astro-
nomical for the present problem. It is of the order
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of a few tens of seconds, so that with |7| At

~| 107T,|7|, the hysteresis conditions for transition
from $=0 to # 0 are now given by 10
and the critical region corresponds to |An/ n
~1072, On the other hand Gilmore’s condition
(25b) yields, 107« ]i;]« 10%°,

Finally we also mention that in a recent paper
we have examined nonequilibrium first-order
phase transitions in irradiated Josephson junc-
tions.* In particular the existence of bistable be-
havior has been shown. Using our equations we
have estimated® the times T, and T, which turn

out to be of the order of 10 sec and 10° sec — and
hence our equations allow a very wide range®
over which the control parameter (the intensity of
the irradiated microwave power in this case)
could be varied to see hysteresis.

In summary the observability of hysteresis de-
pends on the rate of variation of the control para-
meter within a window determined by the intrinsic
time constants of the system. It would be inter-
esting to study systems in which one could obtain
both hysteresis and jump behavior by the variation
of an external parameter.
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