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High-pass filtering of turbulent velocity signals is known to produce intermittent bursts. This is, as shown, a
general property of dynamical systems governed by nonlinear equations with band-limited random forces or
intrinsic stochasticity. It is shown that singularities for complex times determine the very-high-frequency behavior of
the solution and show up in the high-pass filtered signal as bursts centered at the real part of the singularity and with
overall amplitude'decreasing exponentially with the imaginary part. Near a singularity, nonlinear interactions,
however weak they may be on the real axis, acquire unbounded strength. Investigation's of singularities by
nonperturbative methods is thus essential for quantitative analysis of high-frequency or high-eave-number

properties. In contrast to results based on two-point closures, the high-frequency dissipation-range spectrum is

actually not universal with respect to the low-frequency forcing. Unlimited intermittency is demonstrated, i.e., the
flatness of the high-pass filtered solution grows indefinitely with filter frequency. This gives strong support to a
conjecture of Kraichnan fPhys. Fluids 10, 2080 (1967)] about intermittency in the dissipation range of turbulent
flows. The analysis is carried out in great detail for the nonlinear Langevin equation mv' = —yv —v +f(t).
Lorenz's three mode system and Burgers's model are also discussed. Conjectures are made about Navier-Stokes
turbulence which can be checked experimentally and numerically.

I. INTRODUCTION

A. Small-scale intermittency in turbulent flows

It is known since the work of Batchelor and
Townsend' that the small scales of high-Reynolds
number turbulence are intermittent; in other
words, the high-frequency or high-wave-number
turbulent activity comes in bursts separated by
relatively long quiescent periods. Figure 1 shows
a typical intermittent signal obtained by high-pass
filtering the output of a hot wire measuring velocity
fluctuations in a turbulent flow. '

Univariate distributions of unfiltered turbulent
signals are known to be nearly Gaussian. ' A
quantitative measure of the deviation from Gaus-
sian statistics is given by the flatness I', ratio of
the fourth-order moment to the square of the
second-order moment. For a centered Gaussian
I' = 3; for an intermittent signal I' can be roughly
thought of as the ratio of quiescent to active time.

An overall measure of the intermittency of a
.given flow is provided by the flatness of the longi-
tudinal velocity derivatives s"u/Bt"; this flatness
increases monotonically both with Reynolds num-
ber and order of derivative. The data, which
have a considerable scatter, are consistent with a
power law dependence -on Reynolds number (see
Fig. 13 of Ref. 4). Band-pass filtering rather than
differentiation of the velocity signal, before mea-
suring the flatness, gives information on the scale

dependence of intermittency. We note that (i) the
temporal structure of signals measured at a
given point reflects mostly, the spatial structure of
the velocity field in the frame of the mean velocity
("Taylor hypothesis" ); (ii) spectral analysis of
high-Reynolds number flows reveals that there
is a range of frequencies (scales) over which the
dynamics of the flow are dominated by the inertial
terms in the equation of motion; this "inertial
range" extends up to a frequency ~ consistent
with Kolmogorov's' prediction: or~ -U(e/~3)'~4,
where U is the mean velocity, e the energy dis-
sipation per unit mass, and v the kinematic vis-
cosity. Beyond ~, in the "dissipation range",
viscous dissipation becomes important. The data
of Kuo and Corrsin (Fig. 16 of Ref. 4) show that
intermittency increases with midband frequency
throughout the inertial range and the beginning of
the dissipation range, until signal-to- (nonturbu-
lent) noise ratio deteriorates. This happens at
about twice the Kolmogorov frequency. The di-
rect analysis of the spatial structure made pos-
sible by numerical simulations also reveals in-
termittency of small scales. ' ' Extrapolated to
infinite Reynolds number, experimental and nu-
merical data suggest indefinite growth of the flat-
ness with midband frequency.

Starting .with Landau'so observation pointing out
a possible inconsistency between the Kolmogorov
1941 theory' and dissipation fluctuations (see also
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pIQ. &. Intermittent velocity signal obtained by Gagne. The plot shows high-pass filtered output of a hot-wire probe
measuring the velocity in grid-generated turbulent flow.

Sec. 25.1 of Ref. 10), there has been a considerable
amount of work on intermittency which it is not our
purpose to review here (see, e.g., Refs. 10-1$).
Existing theoretical work deals mostly with iner-
tial-range intermittency and uses generally heu-
ristic, not systematic, methods. Dissipation-
range intermittency and dissipation-range dynam-
ics, one of the main concerns of this paper, have
not received much attention. This may be in part
because of lack of reliable data, since under usual
experimental conditions measurements in the
dissipation range are strongly limited by probe
size and signal-to-noise ratio problems.

The first qualitative analysis of dissipation-
range intermittency was presented in a paper
of Kraichnan'4 which we shall discuss in detail in
Sec. I B. In this discussion we shall assume that
the reader is familiar with some of the usual
ideas and concepts of homogeneous turbulence.
This is not a prerequisite for understanding the
remainder of the, paper. Indeed, we shall show
that, what is known in turbulence as "dissipation-
range intermittency, " is also present in a large
class of nonlinear systems not restricted to
fluid-dynamical situations. Some readers may
therefore wish to go directly to Sec. IC, which
introduces a model much simpler than the Navier-
Stokes equation, and to Sec. ID which contains
the outline of the paper and gives the main theor-
etical ideas.

B. Discussion of Kraichnan's theory of dissipation-range
intermittency

Kraichnan" was led to the following two con-
jectures.

(i) Turbulent flows have "unlimited intermit-
tency" in the dissipation range, i.e., the flatness
of the band-filtered velocity grows indefinitely
with midband wave number.

(ii) Such intermittency is also present at very
low Reynolds numbers.

The turbulent flows considered by Kraichnan
satisfy the Navier-Stokes equation with a random
driving force depending on space and time,

g ~ v= 0.

The force is assumed homogeneous, isotropic,
stationary, and so presumably, is the solution of
the Navier-Stokes equation (after relaxation of
transients). Note that, due to dissipation, a non-
zero stationary state requires some energy in-
put. In actual flows this is achieved by a variety
of mechanisms (boundary conditions, buoyancy
forces, prescribed shears, .. .). The random
force achieves the same goal, while allowing us
to take advantage of the invariance of the Navier-
Stokes equation under space and time translations
and rotations. " A traditional justification of the
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E(k)=AE(k/KD), k»k, . (1.2)

The function E is universal with respect to the

random force model is based on the Universality
assumPtion: The properties of the very small
scales of high-Reynolds number turbulence are
independent of the driving mechanism (except for
scaling factors).

A more cautious attitude is to use random forces
to test universality: How sensitive are the (sta-
tistical} properties of small scales to the (statisti-
cal} properties of the random force'? In order
not to trivially spoil universality there should be
no (or negligible) direct excitation of the small
scales by the random force. The simplest is to
take as Kraichnan'4 a band-Bnzited force, i.e.,
whose spatial Fourier transform is restricted to
wave numbers k ~ ko. Spatial Fourier components
of the stationary (henceforth understood to mean
"statistically stationary"} solution with wave
numbers k &k, are then excited only by nonlinear
interactions, and high wave numbers require re-
peated interactions.

In this setting, we first discuss Kraichnan's
second conjecture, assuming that the flow is
driven at very low Reynolds numbers. Wave
numbers less than k, are then well approximated
by ignoring the nonlinear terms. Beyond k,
perturbation theory to some finite order (increas-
ing with wave number) should be adequate. High
wave numbers are then represented by high-order
functional powers of the force. The effect of
ordinary power raising of a random function is
well understood: It makes the result increasingly
intermittent because it emphasizes the largest
excursions in the function. This is illustrated in
Fig. 2 showing a Gaussian process and its fifth
power. With functional powers the situation is
not so clear because spatial and temporal inte-
grations, mixing distant (and thereby weakly
correlated) regions of the flow, tend to reduce in-
termittency. It is.actually possible to construct
a counterexample using, instead of the Navier-
Stokes equation, the Markovian random coupling
model which has the nonlinear term modified by
random factors coupling N realizations of the
flow. " In the limit N-, it is known that Gaus-
sian statistics are obtained, so there is no in-
termittency. Of course, in this counterexample,
the random coupling provides an extreme form of
mixing.

We now turn to Kraichnan's first conjecture
which is not restricted to low Reynolds numbers.
Our presentation will differ somewhat from his.
We need two assumptions.

(Hl) The energy spectrum E(k) at wave numbers
far beyond ko has a universal shape.

force but may depend on Reynolds number; A and

K~ depend on the large-scale parameters of the
flow (integral scale 1„mean energy input e, .. .).
According, for example, to the Kolmogorov 1941
theory, ' Ko -(c/v') '.

(H2) The function E falls off faster than alge-
braically. This is equivalent to the existence of
all spatial derivatives of the velocity in mean
square.

At high Reynolds numbers, (Hl) and (H2) seem
well supported experimentally (see, for example,
Fig. 75 in Ref. 10); however, existing data do not
completely rule out algebraic fall-off with a
large negative exponent as predicted, e.g., by
Heisenberg' s theory. "

Now, we use a two-step averaging argument
inspired from Landau's' objection against the
universality of the Kolmogorov constant (see also
Ref. 10 Sec. 25.1; Ref. 1, Sec. 5; and Ref. 18,
Sec. 5}. Namely, we divide the flow into big
cubic boxes of size L, »l, and assume that, in
each box, we can calculate the energy spectrum
using the large-scale parameters obtained by
space averaging over the box. Such parameters,
e.g., the box-averaged energy input will still
fluctuate slightly from box to box, and so will K~.
Owing to the faster than algebraic decrease, the
amplitude of Fourier components with very high
wave numbers will have arbitrary large fluctua-
tions. Therefore, band-pass or high-pass"
filtered velocities are expected to be very in-
termittent. Note that the above explanation of
intermittency was briefly considered in Ref. 1
but not retained because algebraic decrease (as-
sumed therein) would lead to an inconsistency
with the data.

An interesting aspect of the above argument,
not discussed by Kraichnan, is that it is self-
destructive. Since the scaling parameters K~
and A vary randomly from box to box, the Grand
averaged (i.e., averaged over all boxes) energy
spectrum is

E(k) = (A(e, . . )8 (k/Ko(.e, . ..))),

averaged over e and other large-scale param-
eter's. Since E decreases faster than algebraical»
ly, the averaging will generally change the functional
form of the spectrum and make it dependent on the
statistic s of the random force and thus nonuniversal.

Finally, let us stress with Kraichnan a para-
doxical aspect of dissipation-range intermittency.
The Reynolds number based on local dissipation-
range quantities is very small. Is this really
compatible with intermittency which suggests
strong nonlinear effects'P
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FIG. 2. (a) Gaussian process and (b) its fifth power.

C. Construction of a model

It is surprising how little use is made of the
Navier-Stokes equation in Kraichnm's heuristic
derivation of dissipation-range intermittency,
discussed in Sec. I B. His argument should
be applicable to any dynamical equation of
motion such that (i) high wave numbers can
'be excited from band-limited input only through
repeated nonlinear interactions, and (ii) there is
-a stationary solution with finite mean-square de-
rivatives of all orders.

Once this is realized, it is natural to try to
construct a model equation, much simpler than the
Navier-Stokes equation, on which Kraichnan's
conjectures can be tested. Spatial dependence is

not needed, since we can apply the argument in
the temporal domain. We are thus led to use a
nonlinear ordinary differential equation (ODE)
with band-limited random input as a model sys-
tem. We choose the following very simple non-
linear Langevin (NLL) equation

mv = -yv —v'+f(I),
m and y are positive parameters; the force f (I)
is a band-limited stationary random force with
zero mean; the statistics of f(t) are kept arbitrary
to enable us to investigate universality questions.

W'e observe that a Riccati equation with quadra-
tic nonlinearity (v' instead of vs) would seem more
in line with the Navier-Stokes equation. In some
respects this is not so. First, if we assume that
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the statistics of f and —f are the same (this is
true for Gaussian f), then in the cubic but not the
quadratic case this property carries over to v,
ensuring that (e) = 0, as in homogeneous isotropic
turbulence. Second, in the cubic equation the
nonlinear term enhances the damping, thereby
ensuring the existence of a solution for all times;
for the Riccati equation this is not so, unless the
force has a sufficiently small bound.

Nonlinear Langevin equations of similar forms
are frequently used in connection with critical
dynamics and various nonequilibrium pheno. -
mena. "" Such studies are often concerned
with the case y &0, leading to self-excitation. In
all cases studied so far f (t) is assumed to be
Gaussian white noise or a related process; the
equation can then be solved by Markov techniques.
In such cases the high-frequency behavior is
directly controlled by the force and intermittency
is ruled out. Kith a band-limited force the high-
frequency dynamics become nontrivial. However,
the problem is no longer amenable to Markov
techniques. Notice that the NLL equation corre-
sponds to the electrical circuit shown in Fig. 3.

D. Outline of the paper

0000000

Band —limited „
Input R=Rp

R cc(Current)

High-
pass
filter

Output

FIG. 3. Electrical analog circuit corresponding to the
NLL equation (1.4).

Section II is devoted to the nonlinear Langevin
(NLL) equation. In Sec. IIA we study the behavior.
for real times and present numerical evidence
that the high-pass filtered solution is intermittent.
In Sec. II B we show that the force, since it is
band limited, can be continued to arbitrary com-
plex times. The solution of the NLL equation is
extended to complex times by a %'eierstrass
analytic continuation which is implemented nu.—

merically. Away from the real axis the solution
has singularities, the nature of which is obtained
analytically and the positions, at this point,
numerically. In Sec. IIC we show that the inter-
mittent bursts in the high-pass filtered solution
are related to singularities for complex times.
This follows from standard results about Fourier
transforms of analytic functions, connecting high-
frequency asymptotics and singularities for com-
plex times. In Sec. IID we calculate the statisti-
cal distribution of the "most relevant" singulari-

ties (close to the real axis). This is done by a
singular perturbation method which takes advan-
tage of the probabilistic nature of the problem.
In Sec. IIE we calculate the high-frequency be-
havior of the spectrum and the flatness; we prove
that the solution has unlimited intermittency (flat-
ness grows indefinitely with frequency) and is non-
universal with respect to the force. The purely
dissipative form of the nonlinearity does not allow
energy-cascade-type arguments'; nevertheless we
show in Sec. II F that at high Reynolds numbers
the NLL model has an inertial range with power-
law spectrum and with intermittency. In Sec. IIG
we make a comparison between our exact treat-
ment of the NLL model and two-point closure,
using the direct interaction approximation. '4

In Sec. III we study intermittency in the Lorenz"
model, an example of intrinsically stochastic sys-
tem with no random force. In Sec. IV we study a
partial differential equation, Burgers's" model,
with spatial intermittency.

In Sec. VA we summarize and discuss the re-
sults obtained with the NLL model, many of which
are not consistent with usual turbulence theories
In Sec. V B we discuss the shortcomings of field-
theoretic methods when applied to the NLL model.
In Sec. VC we show that intermittency is present
in a large class of nonlinear systems and discuss
conditions under which a quantitative analysis is
possible. Section VI, devoted to Navier-Stokes
turbulence, is speculative; we present conjectures
about dissipation-range intermittency and suggest
experimental and numerical tests.

II. THE NONLINEAR LANGEVIN (NLL) EQUATION

A. NLL equation in the real domain

Formulation

We are interested in the NLL equation

en~= —yv —v'+f(f), m&0, y&0. (2.1)

The force f(t) is a real random function which
satisfies the conditions listed below. A shorter
list wouM be needed had we limited the analysis
to Gaussian forces, thereby excluding the study
of universality questions.

(F1) The force f(t) is stationary" in time. In
addition, we assume either (P) f(t) is periodic
of period T, or (NP) f (t) is nonperiodic and mixing
(i.e., correlations tend to zero with increasing
time separation).

(F2) The force is symmetric: f(t) and -f(t)
have identical statistics. Since the NLL equation
is unchanged under simultaneous reversal of v
and f, the stationary solution of (2.1), assuming
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it exists, will also be symmetric. In particular,
the expectation value of v(denoted by angular
brackets} is zero,

(v(t)) = 0. (2.2)

2m.
; m=0, ~1, ~2, . . ., (2.3)

(NP) f (t) = gMe-' 'f ((u) 2
(2.4)

where B, the bandwidth, is a finite positive num-
ber, independent of the realization" chosen.

(F 4} The force and all its derivatives have
finite moments of all order f(t) .and f (t) = df (t)/dt
are assumed, without loss of generality to have
unit variance (by suitable rescaling}.

(F 5} At the points where f (t) = 0, f (t) ean take
arbitrary large values with finite probability.
This assumption will be needed in the singular
perturbation calculation of Sec. IID.

An example of a force satisfying (F1)-(F5) is
a Gaussian with a spectrum restricted to the
interval [-B, +B]. (P) is satisfied with a dis-
crete spectrum concentrated at frequencies „.
Given the Hermitian symmetry of f„, the total
number of independent modes in the band is

(F 3} The force is band limited with the following
spectral representation

{P) f (t}= g exp( iu-&„ t)f„;
l~,l-&

&(&) = J' e'"'(v(t)v(0)) dt, (2.8)

and of the flatness

of the high-pass filtered velocity v„(t), defined by

v„(t) = Jl e ' '8(~) P(0

)~))g 2 8' (2.10)

in terms of the Fourier transform of the velocity

8(~) = Jl
e' 'v(t)dt. (2.11)

In the periodic case, (2.10) and (2.11) become

are, by necessity, restricted to a finite time in-
terval [0, T]. We shall see in See. IIC that the
high-frequency behavior of the solution is governed
by complex-time singularities of v(t} which con-
tribute exponentially decreasing terms to the
Fourier transform 8(~). A mismatch in the values
at t = 0 and t = T of v(t} or any derivative produces
the same effect in 8(&} as a real-time singularity,
namely an algebraically decreasing term which
will then completely dominate the high-frequency
region. Imposing periodicity suppresses algebraic
terms. Windowing might constitute an alternative
technique. "

One of the main goals of this paper is to cal-
culate the high-frequency behavior of the energy
spectrum

N = 1+ [BT/(2m)], (2.5)
(2.12)

where []denotes the integral part. Condition (NP}
is satisfied with a continuous spectrum.

Note that, from our assumptions, all derivatives
of the force exist in mean square. Indeed, let us
denote by 4(&u) the energy spectrum of the force.
Differentiating

"T
8„=— e' 'v(t)dt.

0
(2.13)

Existence, uniqueness, and smoothness in the nonperiodic
case

(2.8)

we obtain

(
d'«t) ' ~" - d~

~~]28 C, (~) ~ B28 (f2) B22
Nfl 2%

(2.7)

We want to solve the NLL equation subject to
the following boundary conditions. In the non-
periodic case the velocity takes a prescribed real
deterministic value at t =t 0. Then t 0- - so that
v(t) converges to the unique stationary solution of
the NLL equation (as will be shown). Similarly,
in the periodic case v(t) is the unique periodic
solution. The periodic case is of interest to us
because numerical solutions of the NLL equations

In the absence of cubic terms the Langevin
equation with v(t,) = v, has an explicit solution.
Letting t0 ——~ for fixed v0 one obtains

v(t) = . exp
i

——(t t,)i f(t,)-I' y ) dt,I j PE

Since the cubic term just provides additional
damping, we can similarly transform the NLL
equation into the integral equation

{2.14)

v(t) = ( 1 ', } dt,
exp

~

—— [y + v'(s) ]d s
~
f (t,)m

(2.15)

This equation can then be solved by iterations,
starting from the linear solution; convergence is
easily proved. To show uniqueness, we assume
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dt (vg -v2) = —(y + vg + vgv2+ v2)(vg -vm} ~ (2.16)

This, together with v, (t,}= v, (to}, implies v, = v,
for all times. Stationary of the solution (in the
limit to- -~}follows from the stationarity of f (t}
and the translational invariance of the equation.
It can also be shown that the solution is mixing;
essentially, this follows from (i} the mixing as-
sumption on f (t} and (ii} the observation that,
due to the exponential damping, the integral (2.15}
has an effective range at most m/y.

We now derive an upper bound for the variance
of v(t). From (2.15), we obtain

the existence of two solutions v, (t) and v, (t). Sub-
tracting, we obtain

where u = v(0) is an initial condition at t = 0 for
the NLL equation and $(N} = v(T). A fixed point
of the map provides a periodic solution. We shall
show that p satisfies

u, — u, ~e & u, -u2. (2.22)

~—[v(t+ T) —v(t)] = —[y + v'(t+ T) + v(t+ T)v(t)
dt

+ v'(t)] [v(t + T) —v(t)].

This immediately implies convergence to a unique
fixed point of the successive iterates of any u,
and, thus, existence and uniqueness of the periodic
solution. To prove (2.22) we notice that, for
periodic f (t), any solution (generally nonperiodic)
satisfies

{v'(t)) ~m '
J d~Co ~ OQ

(2.1 t}

Hence,

lv(2T) -v(»l-8 "'lv(» -v(0}I,
which is equivalent to (2.22).

(2.23)

(2.24)

Similarly, using (F 4), we see that all moments
of v(t) are finite.

Next, we estimate the mean-square derivative.
Differentiating the NLL equation, we obtain, with

g =V~

mq= —(y+ 3v') q+ f.
Hence

(2.18)

(2.20)

Similarly, all higher-order moments of v are
finite. The result is extended to higher-order
derivatives of v(t) by induction, successively
differentiating the NLL equation and using (F4}.
From the finiteness of mean-square derivatives
of all orders we infer that the spectrum E(&o) de-
creases faster than algebraically at high fre-
quencies.

The periodic case

Most of the above results carry over to the
periodic case. In addition, we have to prove
existence and uniqueness of a periodic solution.
Assume that f (t) is periodic of period T. Consi-
der the map

u — &f)(u}, (2.21}

t' 1 ' ~ dt,
q(t) = ' exp

l

—— [y + 3 v'(s)] d s l f (t,)m ., ) ' m

(2.19)

Terminating the estimation as above, we obtain

Numerical evidence for intermittency

The NLL model is designed to test Kraichnan's"
conjectures about dissipation-range intermittency.
Solving it numerically with sufficient accuracy at
very high frequencies requires great care, owing to
the faster than algebraic decrease. Finite dif-
ference, spectral, and other standard numerical
methods are very poorly suited for high-frequency
studies in the presence of intermittency. We are
led to use a Taylor expansion method combined
with a Newton iteration to satisfy periodicity.
The accuracy of the results reported in this paper
is limited by roundoff only, except where Monte
Carlo averaging is involved. All this is discussed
in Appendix A.

Numerical evidence for intermittency is ob-
tained by solving the NLL equation with m = (0.3)'™
and y = 0.1; the force f(t) is taken Gaussian, '

periodic with a flat spectrum (8 = ~3; the number
of independent modes in the force is +„=10. The
period is T= 2w(30}'~'. Figure 4(a} shows one
period of the force used. Figure 4(b) shows the
unfiltered periodic solution and Figs. 4(c} and 4(d}
show the corresponding high-pass filtered periodic
solutions for two values of the filter frequency
g/fr=3, g/fr=10. Note that the unfiltered
solution resembles the force with minima and
maxima at roughly the same positions [Figs. 4(a)
and 4(b)]. The high-pass filtered signal appears
in bursts. At Q/B =3 [Fig. 4(c)], four small
bursts begin to appear (at 0.1 T, 0.3 T, 0.6 T, and
0.9 T). As the filter frequency is increased the
signal becomes increasingly intermittent. At
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The exponential factor e ' is bounded in ro (be-
cause the band is limited) and does not spoil the
convergence of the Fourier integral for complex
times. Equation (2.25) defines an entire random
function, i.e., each realization is holomorphic for
any complex z. It is also useful to think of f (t + iT)
as a complex-valued random function of two real
variables t and &, stationary in t. The correlation
function is

(f (t + i7')f *(t'+ i7'))
+B

e 3~(t t') e+-u(r+r-') @ (&}
-B .2g '

(2.26}

where 4 is the spectrum of the force. In the
Gaussian case, f (z) is completely characterized by

this correlation function; a limited band is not
required to ensure convergence of the integral in
(2.26); it suffices that 4 (~) decrease faster than
exponentially. If C (~) decreases as e "~ ~ (a&0),
the analytic continuation by the Fourier integral
will give a random holomorphic function in the
strip )Im(z))& a/2. The case of non-band-limited
forces will be briefly discussed in Sec. V B.

Analytic continuation of the solution of the NLL
equation

The NLL equation is a nonlinear holomorphic
ordinary differential equation (ODE), i.e., of the
form do/dz =X(z, o) where X is holomorphic in
both z and v. It is actually an entire function of
z, since the explicit z dependence is only through
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the force, and an algebraic (cubic) function of v.
ODE's in the complex domain have been exten-

sively studied during the late nineteenth and early
twentieth centuries. An excellent review may be
found in the recent book by Hille. ' %'e have also
found useful material in Davi. s's book." Vfhat we
need for the present investigation is fairly ele-
mentary and will now be briefly outlined.

Let us assume that the NLL equation has al-
ready been solved in the real-time domain (with
suitable boundary conditions}. Through successive
differentiations we can determine all derivatives
v~"~(t) of the velocity at any real t. By the Cauchy-
Kowalewska theorem, "for times sufficiently
close to t the solution can be represented by its
Taylor series at t. The same series can be ex-
tended to complex times

(2.27)

without any need to integrate numerically very
close to the singularity. Indeed, let v(z} have
a singularity at z with exponent p. Near z we
have

v(z) = a, (z) + (z -z,)'l, (z), (2.28)

where h, and h, are holomorphic in some neigh-
borhood D of z and h, (z~) +0. In the neighborhood
of any zo&D (other than z ) we have a Taylor
series representation

(2.29)

It is then easily checked that for large p,

a, /A. „,= z,[1+ (p+ 1)/p+ O(p-2)]. (2.30)

Note that (2.30) is also valid for a logarithmic
singularity (with p = 0). For examples of numeri-
cal implementation see Appendix B.

Convergence holds for ~z —t~ & r(t}, where x(t), the
radius of convergence, is the distance from t to
-the nearest singularity in the complex plane. "

By the Weierstrass analytic continuation method,
the solution can then be continued, to arbitrary
nonsingular complex times. '4'35 The Weierstrass
continuation requires that the Taylor coefficients
be recalculated at successive points z„z„... such
that

~ +z, -z,
~

is less than the distance from z, to
the nearest singularity. We also recall that analy-
tic continuation from zp to z~ along two different
paths produces the same result if either (i) the
two paths can be continuously deformed into each
other without crossing a singularity, or (ii} the
solution is meromorphic, i.e., has only pole sing-
ularities. If, however, there are branch points
(as is the case of the NLL equation), then different
paths may lead to different results, corresponding
to different sheets of the Riemann surface. '4 As
a consequence of these multiple values the analytic
continuation v(t + i&} of a solution e(t), periodic on
the real axis, will not be periodic in t when ~w~ ex-
ceeds the imaginary part of the singularity closest
to the real axis (see Appendix B). The analytic
continuation along a given path is easily imple-
mented numerically using the Taylor expansion
method described in Appendices A and B. Since
only a finite number of derivatives are used (typi-
cally 10 to 100}it is a great advantage to be able to
calculate the successive derivatives using the
differential equation and not just the preceding
Taylor series (equivalence of the two procedures
follows from one of Painleve's theroems'0) The.
knowledge of high-order derivatives allows us
to locate the nearest singularity very-precisely
by calculating ratios of successive derivatives

Nature of singularities

The singularities of an ODE are called "fixed"
when their position is independent of initial condi-
tions. Otherwise they are "movable. " The solu-
tion of dg(z)/dz = 1/z has a fixed logarithmic sing-
ularity at the origin. The solution of

(2.31)

which is

v(z) =+ (2z+vo') '~', (2.32)

has a movable branch point with exponent ——,
' at

z, = -v, '/2. (2.33)

The position of movable singularities may be very
hard to obtain when the ODE cannot be solved by
quadrature (such as is the case for the NLL equa-
tion with arbitrary force). We can, however,
very easily obtain the nature (for example the
exponent) of the movable singularities, assuming
they exist. Let us explain how this is done for
the case of the NLL equation, written. now in the
complex domain

dv(z)
m = -yU -v'+ f(z).

dg
(2.34)

With our assumptions f(z) is an entire function.
Hence, f(z) and all its derivatives are bounded
for any z. At a singular point z the velocity v(z )
or some derivative dv'"'(z )/dz" must become infin-
ite. Actually, v(z ) itself must be infinite; other-
wise, by successive differentiation we see that
all derivatives at z are finite. As z approaches
z it is clear that the linear-yv term and the force
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term in the NLL equation become "irrelevant. "
To leading order the NLL equation reduces to

~V
m —=-v .v(z )=

dz
(2.35)

Hence,

(2.38)

We, see that the movable singularities are branch
points of exponent —1/2.

Position of singularities

The NLL equation has no fixed singularities at
finite distance. The position of the movable branch
points are, in principle, well determined by the
boundary condition but are difficult to calculate
analytically for arbitrary f. In Sec. IID we shall
show that the probabilistic assumptions about f
allow us to determine the "most relevant" singu-
larities by a singular perturbation expansion.
Here we limit ourselves to deterministic forces.

Let us assume that the force is periodic. In
the spectral representation (2.3) we substitute a
complex time I;+ &T and assume that T is very large
positive. The Fourier sum is then dominated by
the term with the largest frequency (d„,

f(&+ j7) =f e~««~ e «~«««; y oo. (2.37)

Using this in the NLL equation we find that v(z)
has an asymptotic expression with leading term
(~- )

We see that the branch points are determined by
an equation which, for a given realization of the
force, will generally be transcendental. Triple
roots (««

= 3) are possible only if y = 0; they are
then located at the zeros of f. If f is a typical
realization of a zero;mean-value random function
there will be such zeros on the real axis. For
small pg it appears that the NLL equation has
singularities located close to those of the alge-
braic equation, although with a different exponent.
For y = 0 this can be shown by a singular pertur-
bation expansion closely related to what we shall
present in Sec. IID; the displacement of the sing-
ularity is then proportional to ~' '. For.y& 0
the singular perturbation expansion has difficul-
ties which we have not completely resolved. It
seems likely that each singularity of the algebraic
equation splits into a cloud of singularities of size
O(m'~'). This is stated tentatively and will not
be used subsequently.

The easiest method to locate singularities is to
integrate the NLL equation numerically with the
Taylor expansion method of Appendix B and then
to use high derivative ratios as explained above.
This technique is applied to the case studied in
the real domain at the end of Sec. IIA. Figure
5(a) shows the position of the ten singularities
in the upper half-plane closest to the real axis.
For comparison, in Fig. 5(b), we show again a
high-pass filtered velocity as a function of real
time. It is seen that the high-frequency bursts
are centered at the real part of the singularities
closest to the real axis. Why this is so will be
explained in Sec. IIC.

v(f+ jg) =j' e(d««e «'dj«& . (2.38)

4 y' + 2Vf '(z ) = 0, (2.40)

Since the expression is nonsingular (except at
infinity) it seems plausible that v(z) has no singu-
larities for sufficiently large 7..

When the coefficient ~ is small, information
on the position of the singularities may be obtained
by first con'sidering the case ~ = 0, where the
NLL equation degenerates into an algebraic equa-
tion

0 = —yv -v'+ f(z)

For fixed g this cubic equation will generally have
three distinct complex roots (only one real root
for real f). At exceptional points where the equa-
tion has an ««-fold multiple root (««= 2 or 3), the
solution has a branch point of exponent I/««. The
double roots (««= 2) are given by the discriminental
equation

C. Singularities and high-frequency behavior

z(z) =(z -z, )' g z z(z -z, )z ~ «,

where A denotes holomorphic terms. We a],so
assume that v(z) grows at most exponentially at
infinity. Let us evaluate the Fourier transform

(2.42)

We show in this section that the complex-time
singularities of v(z) determine the high-frequency
behavior on the real axis. This is a classical
result about Fourier transforms of analytic func-
tions which is described in many textbooks. An
elementary discussion with illuminating examples
may be found in Ref. 36. Here is a brief outline
of the ideas, mostly following Ref. 35. We assume
that the function v(f), which is real nonsingular
for real f, has an analytic continuation v(z) with
singularities of exponent p at g,. =]&+ )7;. and can
be expressed in the neighborhood of z,. by

ol

f(z, ) =xi(4y'/2&)' ' (2.41)
z(~)= I z"'z(()dZ

~00
(2.43)
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F/G. 5. Connection between bursts and complex-time singularities. '(a) shows the position of the ten singularities in
the upper half-plane closest to the real axis of the solution displayed in Fig. 4. (b) shows again the high-pass filtered
velocity of Fig. 4(d). Note the correspondence between the position of the burst and the real part of the corresponding
singularity. Note also that singularities which are closer to the real-time axis are associated with stronger bursts.

for ~-+~ (Hermitian symmetry gives then the
&g- —~ values). We can shift the contour of inte-
gration away from the real axis so that it becomes
the union of 6„6„6„.. . which wrap the singu-
larities on the upper half-plane Imp & 0 as shown
in Fig. 6. The oscillatory exponentials in the
Fourier integral are now converted into damped
exponentials so that Laplace's method can be
used for the asymptotic expansion. The final re-
sult is"

GO p=o

(2.44)

where the summation over singularities is re-
stricted to the upper half-plane. The q,.'s are
determination factors. For the case of interest
to us
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the expansion, we obtain

v(&o) = „2)'m/2 I'(-')e' (d g e;e' '&. (2.46)

Zi

Zs We see that each singularity at zj in the upper
half-plane produces in the Fourier transform a
complex exponential 8' '~ with a power-law pre-
factor ~ '~'. Notice that the exponential is con-
trolled by the position of the singularity whereas
the prefactor depends only on the exponent.

FIG. 6. Integration contour around singularities in the
complex-time plane. Intermittent bursts and singularities

(2.45)

[cf. E(I. (2.36)]. Keeping only the leading term in

From the asymptotic expansion (2.46) we can
calculate the high-pass filtered veloc ity. Using
(2.10) and (2.46) we obtain

g de)„„(t)e=„2Re( e ' 4m/2 )'(—)e" x ' 'g e;et 't—

Q eg ~gRe
R(-', ) m 't', t, " e, xP(-en(t-tt)- t/e])2

r 2 (2.4V)

g„(f) has an interesting structure. It is a linear
superposition of bursts associated to individual
singularities z,- = t&+ g7-&. Each burst is a modulated
sine wave of frequency Q. The modulation enve-
lope is centered at the real part ]& of the singulari-
ty and decreases inversely proportional to the
separation from center. There is an overall amp-
btude factor Q ' 'e ""s which favors the singularimm

ties close to the real axis. Two sirigularities at
z, = t, + is, and z, = f,+ i7, (r,& 7,) will produce well-
separated bursts only if

(2.48}

Otherwise, only the g, -centered burst will be
visible. We have thus understood the origin of
the correspondence, observed in Figs. 5(a) and

5(b), between intermittent bursts and complex-
time singularities located close to the real axis.

We are now in a position to give a qualitative
picture of how unlimited intermittency arises in
the present context. Let us first see what happens
when we restrict our attention to a finite time
interval. As we increase the filter frequency g,
according to E(I. (2.48}, the number of separated
bursts will decrease until, eventually, a single
burst remains, which corresponds to the singular-
ity with smallest imaginary part 7-. The center
and amplitude of the corresponding burst will
fluctuate randomly from realization to realization.
The amplitude varies (roughly) like e "'. For

any continuous distr, ibution of z, this amplitude
becomes increasingly intermittent as Q ~. With
an infinite time interval, which we can subdivide
into nearly independent finite intervals, (we as-
sume that the solution is mixing), the above re-
sult implies the following: as Q- ~ an ever small-
er fraction of the intervals will remain "active."
Note that our argument does not require that sing-
ularities come arbitrarily close to the real axis.
Quantitative implementation of the above ideas
is however greatly facilitated if this is the case,
as is guaranteed by assumption (F5) on the statis-
tics of the force. This will be discussed in Sec.
II D.

D. The most relevant singularities

In order to apply the ideas of Sec. IIC to the
calculation of high-frequency statistical quantities
we need to know the distribution of singularities.
This distribution depends on the statistics of the
force, the precise relationship being unknown. "
However, for the high-frequency behavior, the
only relevant singularities are those close to the
real axis which, as we shall show in the section,
can be obtained by a singular perturbation expan-
sion. We begin with some heuristic considera-
tions. We assume for simplicity that the para-
meters m and y are 0(l). Typical singularities
will then have imaginary parts also 0(1). For
occasional (real} times there can nevertheless
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be strong excursions in the force (if allowed by
the statistics) which may allow singularities much
closer to the real axis. When the force is large
the NLL equation is satisfied, to leading order
by a balance between the cubic term and the force
term. W'e then obtain

Inner expansion

We rescale the variables as follows,

3/5 -2/5 p

v „(t)= m'~' u '~'x(]).
(2.57)

(2.56)

(2.49).(t) =f"(t),
where f '~'(t) is understood to be the real cubic
root with the same sign as f(t}. From (2.49) we
can estimate v(t)/v(t) and thereby the distance to
the nearest singularity

Substituting into (2.54) we obtain

—= -x'+ ]-y(mw)~" x+O(m'~'w '~'g').dx-
d$

(2.59)

The inner equation (all terms with negative power
of w dropped) is

v(t) 3 f(t)
v(t) j(t) ' (2.5o) GX—= -x'+ $.d( (2.6o)

The smallest values will be achieved when simul-
taneously f(t) is small and f(t) is large. [This is
where we need assumption (F5) of Sec. IIA.] Qf
course the argument is circular since we had to
assume at the start that f(t) is large. This is
an indication that a singular perturbation calcula-
tion with inner and outer expansions is needed.

Let gp be a real time such that

f(s )=0; ~f(s,)[=w»1. (2.51)

zg
' is going to serve as small expansion para-

meter. In the neighborhood of pp we can Taylor
expand the force

f(t) =(t s,)f', +—
2,

' f, +O(t —s,)', (2.52)

where

j.= j(a.), f. = j(s.). (2.53)

Outer expansion

Balancing the cubic term with the lowest-order
term in the force we obtain

v,„„=(f,)' '(t —s,)' '. (2.55)

Checking the other terms in (2.54) we find that
(2.55) is the leading term in the region

m"'w-"«It —s, l «1. (2.56)

In the Gaussian case it is easy to show that f,
conditioned upon (2.51) has mean zero and disper-
sion O(1) and is therefore O(l). In the general
case it seems plausible that f, =O(w) (at most)
can be derived from the assumption of O(1) band-
width. Assuming this to be the case we now sub-
stitute the expansion (2.52) into the NLL equation

mv = -yv -v'+(t —s,)f, +O(w(t —s,)'). (2.54)

This is the starting point for outer and inner ex-
pansions near Qp.

Matching of the inner and outer expansions gives
us the boundary conditions at large ]

x($) = g"~', for g-+ (2.61)

In Appendix C we show that Eq. (2.60) with the
boundary condition (2.61) has a unique real solu-
tion which is analytic on the real axis and exhibits
singularities with exponent ——,

' in the complex
domain. The ones closest to the real axis. are
located at

+iq =1.707907+i 0.778600 (2.62)

and at the complex conjugate location. In addition,
we have found another pair of singularities at

= 2.198 79+ j 1.86963 which, owing to their
2.4 times bigger imaginary part, do not contribute
to the leading order of the high-frequency asymp-
totic expansion. In the original variables the po-
sition of the dominant singularity in the upper
half-plane is given to leading order in MI

' by

8 =s, + m' 'w ' 'g, w = )f,[. (2.63)

For large [fJ this singularity is, as announced,
close to the real axis.

Note that in the above derivation we have not
made use of the boundary or initial conditions
of the original NLL equation. Since we are calcu-
lating the position of a movable singularity, there
must be some dependence on initial or boundary
conditions. However, it may be shown that this
dependence is through exponentially small terms
in M} which would not even affect higher orders
in the expansion (2.63}. Thus we see that a mov-
able singularity has become asymptotically fixed.

Our analysis can be extended to the case of
small ~ and y which will be needed in Sec. IIF.
The singularities are then located in the neighbor-
hood of all the zeros of f(t) and not just those
with large derivative.

(i) If y' « m« 1, all the preceding singular
perturbation analysis remains valid. However,

- we can now use ~ as expansion parameter so
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that the condition w»1 is not needed.
(ii) If m«y' '«1, we see from (2.59) that the

damping term is strongly relevant for 7() = O(1).
We expect (but have not proved rigorously) that
the singularities of the NLL equation. are close
to those of the algebraic e(luation ()72= 0). The
latter are obtained from the discriminental equa-
tion (2.40) by expanding near the zeros of f, yield-
ing to leading order in y,

~, =so+21fol 'y' '(~27}'" (2.64)

E. The spectrum and the flatness

In this section we calculate the high-frequency
behavior of the spectrum and the flatness. 97e
assume throughout that ))2 and y are O(1). The
case of small ~ and y will be examined in Sec.
II F.

In each realization the high-frequency Fourier
components are given in terms of the singularities
by (2.46) and the singularities are given by (2.63).
Before presenting a detailed calculation let us
sketch the main steps in a heuristic way. For
this we restrict ourselves to the Gaussian case
and ignore algebraic prefactors and inessential
numerical constants. The singularities located
near the zeros of f(f) have imaginary parts -M) '/',
where w is the absolute value of the derivative of

f . Each singularity produces an exponential damp-
ing of the form exp(-(0w '/'). The spectrum is
therefore an average of exp(-2(0(() ' ') weighted
with a Gaussian distribution for w. Thus the
spectrum behaves like exp(-c0) 8/8) at large 0) 's.
Similarly, the fourth-order moment (()4o), involv-
ing an average of exp(- 4Q(() '/') behaves like
exp[-c(2g)8/8]. Hence, for the flatness we have
E (Q) - exp [c (2 - 2' 8) g 8 ']; this implies unlimited
intermittency. Let us new turn to the actual cal-
culation.

The spectrum

in the upper half-plane with real part between Q

and L. The location of the singularities are given
by (2.63).

Z, =S,-+m'/'W, 2/'((, +i71,), (2.66)

where the s)'s are the real zeros of f(f) and
2()/

=
~ f(s)) ~. Substitution of (2.67) into (2.66) pro-

duces a double summation, say over indices j and
In this summation the terms with j g ) do not

contribute to the leading order of the average
(for 00- ~) essentially because of additional
phase mixing from averaging over e' ~'& 'r). This
is best checked after the j= ) contributions have
been evajuated. In the latter the phase factors
drop out and we are left with

6(f(t))lf(t)I =g 6(t —s, ). (2.VO)

The average is then expressed in terms of the
joint probability density of f and f. The latter
is expressible in terms of p(0), the probability
density of f= 0, and Q(2((), the conditional probabil-
ity density of the absolute values of f when f= 0.
In the Gaussian case

Q (~) —2 (2+)-1/2 e- ((( /2 (2.Vl)

To investigate also non-Gaussian cases without
aiming for total generality (we wish to be able to
perform the asymptotic expansion of the spectrum
as explicitly as possible) we allow the following
one-parameter form for Q(2()},

= (im ——r'(-, )~ ' 1 ~ exP(-2(am' wq' 'n )).

(2.69)

The summation over the zeros of f(f) can be trans-
formed into an integral using the identity

The velocity spectrum E(0)) is defined in terms
of the Fourier transform of the velocity by

Q(u)) = C„exp(-u ~/2), n».
~e then obtain

(2.72)

(&((u)i ((0')& = »5(0) + (0')E(0)). (2.66)

It is easily shown that
1

Z((0) = 11m —((), (0)) 7),(-0))&, (2.66)

where ()~((0) is the Fourier transform of the re-
striction of 7)(f) to the interval [O, L[ From (2.46.}
we know that for (d-+ ~,

v (0)) =(m/2)' 'I'(1/2) e"'~ ' 'Q c-e' '/

Z((d) =
2

I'(!)P(0)e„(0'

w 2'
dw w exp — —2u) ng w

(2.73)

For large + the integral is evaluated by Laplace's
method. The final result is ((0-+~)

(2.67)

where the summation is over all singularities

) g (7n+ 8)/(10n+ 2) (8-18n)/(10n+ 2)

xexp[-B ((0m'/')~ ""'"], (2.V4)
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where

4 (10-5ot) /(10~+ 2)

5n

5/ + y 4q 5n/(5a+ 1)

cx 2 5

The Gaussian case (o. =1) is

z((u) =A m' '(d ' "exp[ B(-&0m' ')' ']
5/6

p2(1 )(5 )1/2
242m ' 3 5

(2.75)

(2.78}

(2. t7)

the combined effects of the ~ '/' prefactors of
individual singularities (a signature of the nature,
of the singularity) and of the distribution of singu-
larities.

~e particularly emphasize the absence of uni-
versality of the spectrum with respect to changes
in the statistics of the force (materialized by
changing c(). Such changes cannot be absorbed
in scaling factors since they actually modify the
exponents both of the arguments of the exponen-
tials and of the prefactors. Further comments
on this are postponed to Sec. VA.

The flatness

We wish to calculate, for filter frequencies
Q ~oo

Let us now comment on the results. Although
each individual singularity produces an ordinary
exponential damping, the averaging will give a
somewhat slower than exponential damping be-
cause in the statistical ensemble the singularities
with very small imaginary part produce very slow
damping. The power-law prefactors of the expo-
nential ((0 '/" in the Gaussian case) are due to

E(Q) =(vt))/(v'„)'. (2.8Q)

The denominator is expressible in terms of the
spectrum

(2.81)

The numerator is expressible as

4 1
m — (v (0),)v ((0,)v ((0,)v (0) ) (2.82)

where ~4= -(d, -(d2-~, . There are a number
of possibilities which fall into two groups (I)
00„0)2~0, (d„(d, & -Q plus permutations (II)
+» (d» v, - Q, e4 & —3 Q plus per mutations. The
second group does not contribute to the leading
order of (v'„). The evaluation of k(g) proceeds
along exactly the same lines as for the spectrum.
Again the leading order comes from taking the
same singularity several times (four times now).
The f inal result is (g -~)

+(0) (1 3(n+ 2)/(10n+ 2) I})(5n 8)/(10n+ 2)

)& eXp [I (It) m3/5) 5n/(5n+ 1) ] (2.83)

where 8 is a positive pure numerical constant
which we do not need and

5~/(50. + 1)5(y + 1 kg (2 25n/(5n+1)) & Q
2 5

(2.84}

The Gaussian case is

g) =& '/'& '/'exp[(B, (I'm'/')'/']

4 5/6
(s = 3 "* (2 —2'/')1

(2.88)

(2.88)

Clearly, the flatness grows without bound as Q -~.
We have thus demonstrated unlimited intermit-

I

tency without assuming a large Reynolds number
[m and y and the force are 0(l)]. Kraichnan's
conjectures' are thereby confirmed for the NLL
model. Notice that the flatness displays the same
kind of nonuniversality as the spectrum.

F. The high-Reynolds number limit

So far we assumed that m and y were O(1) and
had only the frequency as expansion parameter.
The case of very large m and/or y (very small
Reynolds numbers) is not of central importance
in this paper. Qualitatively the situation is as
follows. Owing to the strong damping, typical
singularities occur very far from the real axis;
occurences very close to the real axis have ex-
tremely small probabilities; as a consequence,
the high-frequency intermittent regime described
by E(ls. (2.74) and (2.83) is still present but re-
jected to extremely high frequencies.

We now discuss in more detail the case when
both ~ and y are small. The nonlinearity is then
strong os the real axis, a situation analogous
to the high-Reynolds number case for the Navier-
Stokes equation. We shall show that the NLL
model has then a universal inertial range with
power-law behavior of both spectrum and flatness.
As in Sec. II I, we begin with a heuristic approach.
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With ~= y = 0, the NLL equation becomes

(2.87)

v(t) = (j,)' '(t s,)'-',
we obtain for ~-~,

v((u) =iA(f )' 'e'"'«u

(2.88)

(2.89)

v'—(t)+f(t) = o

The soiution v(t) = f'~'(t) has high-fre(Iuency com-
ponents even when f(t) does not. Indeed, near a
zero of the force, the velocity has an inflection
point with vertical tangent (like t' '). This real-
time singularity produces an + ' term in the
Fourier transform. Hence ~v((d)~' and its average
are expected to have an (d

' ' dependence at high
The f' '(t) solution is intermittent in the most

immediate sense: all the high-frequency content
comes from isolated points, the zeros of the force.
To estimate the flatness we can identify E '(Q)
with the fraction of "active" time when the velocity
is observed with temporal resolution g '. The
time interval between successive zeros being 0(1)
we find p(Q}-Q.

A more systematic derivation of the above re-
sults is now outlined, still assuming pz=y= 0.
Calculating the Fourier transform of an individual
real-time singularity

(dv - y '~'«) z ( «&v. (2.93)

In this range we cannot use the results of Sec.
IIE. Redoing the calculation with a different type
of singularity, we find that the spectrum behaves
like exp(-C, y~(() ~'~') and the flatness like
exp(C, yQ'~'). C, and C, are positive numerical
constants; we have ignored power-law prefactors.

To summarize, the inertial-range expressions
(2.90) and (2.91) are valid for

be distinguished.
(i) If y« m2t'« 1, the presence of the damping

is irrelevant at high frequencies. The singulari-
ties have exponents p = --,' and are located 0(m' ')
from the real axis and are therefore felt at fre-
quencies greater or equal to the "dissipation fre-
quency"

(2.92}

Above &~ we can use the asymptotic expansions
[(2.V4) and (2.83)] for the spectrum and the flat-
ness. A useful check on the calculation is that
these results and those of the m =y = 0 case are
found to match at ~- ~~.

(ii) If v),'t'«y«1, the square root singularities
of the ~ = 0 e(Iuation, which are located 0(y' ')
from the x eal axis will be strongly felt in the
"intermediate dissipation range"

dxx '~' sin&.
0 1 « ( (g ) « lnf (&g&, (()& ). (2.94)

Summing over all singularities in the interval
[0, I,[ and using the same notation and mostly the
same arguments as in Sec. IIE, we find

1 r
Z(~) =A'((u( ' 'Jim — (f"'(t)&(f(t))(f (t)(&dt

0

=rpp(0) f dauEU'"q(M)(real'' .
0

(2.90)

This power-law spectrum is universal because
the statistics of the force enters only through the
numerical prefactor. The calculation of the flat-
ness proceeds exactly along the same lines and
gives us the expected power law for Q-~,

z(Q)-Q. (2.91)

The flatness result is even more universal than
the spectrum: If the cubic term in the NLL equa-
tion is changed to g', the spectrum changes to
[~ ~

"' but the flatness is unchanged.
We turn now'to the case of small but nonzero

~ and/or y. The presence of either the time de-
rivative or the damping pushes the real-time sing-
ularities into the complex domain while changing
their exponents from —,

' to —,
' or ——,'. The discussion

at the end of Sec. IID shows that two cases must
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FIG. 7. "High-Reynolds number" spectrum. The log-
log plot shows the results of numerical solution of the
NLL with y=10 3 and m=0.00374 and a Gaussian force
with seven modes. Notice the distinct co 3 range. .

"Inertial" is the proper name for such a range
since the dynamics are controlled solely by the
nonlinear term. Indeed, the force is limited to
0(1) fre(luencies and the dissipative terms (-yv
and mv) are negligible.

Finally, the existence of the inertial range is
checked numerically by a Monte Carlo simulation.
We take pg = Q. OQ3 74, y = 0.OQ1, a Gaussian per iod-
ie force with seven modes and flat spectrum.
Averaging is done over 20 realizations (see Ap-
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pendix A). The resulting spectrum, shown in Fig.
7 has a distinct & ' ' range. G(t, t') =—(&v (t)/&f(t')) =1

(2.97)

G. Comparison with t:Iosure

In the context of turbulence "closure" means
generally any heuristic procedure whereby a finite
system of equations is obtained for suitab Jy chosen
mean quantities. Reviews of closure procedures
for homogeneous turbulence may be found in Befs.
38-41. Closures of the so-called Markovian kind
deal only with single time quantities and are not
adequate for our purposes. A potentially more
interesting class of closures are those based on
field-theoretic renormalized perturbation expan-
sions. 4' For Gaussian random forces such clo-
sures may be viewed as partial resummations
of graphs contributing to the g-point cumuJ. ants
and response functions. Perturbation terms of
arbitrary high orders are included making non-
trivial high-frequency behavior possible. In this
section we discuss the case of the direct interac-
tion approximation (DIA), the simplest self-con-
sistent field theoretic procedure. '4

The NLI, equation in integral form with initial
conditions at —~ reads

g(t)= f exp[—y(t —t )/m)(fl( ') U'(( ))d&'.-'
e rewrite this in graphical form as

(2.98)

The unperturbed response function expt-y(t —t')/ ]m
is represented by ~; ~ stands for f/m and

is the cubic vertex. The BIA makes use of
the response function

which satisfies the causali'ty condition

G(t, t')=0, for t&t',
and of the correlation function

V(t, t') = (v(t)v(t')) =

(2.98)

(2.99)

Stationarity allows us to write these as functions
of t-t' only, denoted G(t-t') and U(t-t'). The
DIA equations are obtained by writing the Dyson
equation for the self-energy and then replacing
the four-point vertex function by the bare vertex.
In graphical form they read

+18- (2.100)

(2.100')

where-~ —stands for the correlation of f(t)/m.
The DIA equation may also be obtained as the
R- ~ limit of the random coupling model4'"

mv = -yv~ ——~ vevevn-N Lr @ae)ev()vive+f0)(t) ~

8 Bere5

(2.101)

The 4 e„e's ( oP, y, 5=1, . . . , )Narc a, set of zero
mean-value and unit-variance Gaussian random
variables completely symmetric in m, f,y, 5 but
otherwise independent. The f 's are N indepen-
dent versions of the force. As long as (2.100) and
(2.101) have a unique solution the model ensures
the realizability of the DIA equation, i.e. , the pos-
itivity of the energy spectrum.

In explicit notation the DIA equations read

G(t)=, G(t -t')U'(t —t')G(t')dt' for t - 0. G(0) = 1
dt AE m p

OO p GO

v(t) =—, dt, I dt, G(t, )G(t, )[e(t -t, + t, )+ 8v'(t -t, + t, )],.
"o o

(2.102')

The best way to study the high-frequency be-
havior of the spectrum is to apply to the BIA equa-
tions the same analytic function techniques as to
the "primitive" NLI model. There is a major
simplification that comes from using closure (any
closure): Once the nature and positions of the
complex-time singularities are obtained, the
high-frequency behavior follows without further
averaging. For example, if we know that the sing-
ularity of U(t+ i7) in the upper half-plane, closest
to the real axis is at z ~ with exponent p, then for
~ -+~ the spectrum is

E(~)-cu ' 'exp(i(dz ~) . (2.103)

The positivity constraint implies that the singular-
ity must be on the imaginary-time axis.

There are also new difficulties associated with
the complex time DIA. First, the response func-
tion, which satisfies the causality condition (2.98),
is not analytic on the rea.l-time axis and cannot
be continued to complex times. Equivalently, it
can be checked that its Fourier transform behaves
algebraically, not exponentially, at high frequen-
cies. Note, however, that it suffices to continue
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the correlation functi. on to complex times. 'This
is done via Eq. (2.102 ) which we have written in
such a way that t can become complex while the
arguments of the response functions stay real.
Second, there is a problem of nonuniqueness. As
discussed by Kraichnan in a somewhat similar
context, "the DIA when applied to the NLL model
does not really distinguish between a -v' and a
+ v' cubic term. 'There is a distinction stemming
from the 3U(0)G(t)/m term but this can be ab-
sorbed in a renormalization of the damping y.
With+ v there is a possibility of self-excited so-
lutions with zero force. These spurious solutions
are also present when the force is "small" or,
equivalently, when the force is O(1) but y is large
(very low Reynolds numbers). "

The nature of the singularities of the DIA equa-
tions can be obtained by making an Ansatz U(z)
-(z -z»)» and then looking for the most divergent
terms in (2.102'). As usua, l, the force 4 (z), which
is an entire function, does not contribute. The U'

term integrated over two time arguments gives
(z -z ~)'"'. For this to balance the U term in the
lhs we must have p= -1, i.e. , a leading-order
pole. This implies, provided there are no real-
time singularities, that the spectrum will be a
pure exponential for large ~,

E(&u) e '»'"' (2.104)

At low Reynolds numbers, by perturbation calcu-
lation around the linear solution, one can con-
struct a solution of the DIA equation which is an-
alytic in a finite strip around the real axis. It
seems plausible that this solution will have com-
plex-time singularities. Thus, for high ~ the spec-
trum will be exponential and uriiversal with re-
spect to the force. In contrast, for the exact NLL
model, we know that there is no finite analyticity
strip because singularities can come arbitrarily
close to the real axis: also, the exact spectrum
decreases as the exponential of minus some non-
universal power of the frequency, depending on
the force [Eq. (2.'14)]. DIA and exact solution are
thus always inconsistent at sufficiently high fre-
quencies. " Going to higher orders of renormal-
ized perturbation is unlikely to cure the discrep-
ancy because this will just replace the determin-
istic DIA equations by a larger but finite set of
deterministic equations which will presumably
also have an analyticity strip around the real
axis.

We finally come to the question of closure and
intermittency. 'This requires the knowledge of
four-point functions to evaluate the flatness.
With no vertex corrections the fourth-order cum-
ulant is given by the following graph

which involves one response and three correlation
functions. A simple calculation using (2.104)
shows that, for 4~-~, this cumulant has a neg-
ligible contribution to the flatness, which there-
fore reduces to its Gaussian value I" = 3, implying
no intermittency. A very similar calculation was
done recently for the Navier-Stokes equation by
Kuzmin. " Starting from the DIA solution he cal-
culated the contribution to the flatness of the an-

- alog of the above graph as well as of higher-order
ones; he concluded that intermittency disappears
at high wave numbers. Clearly this is not so for
the exact dynamics (at least for the NLI model).
It can, however, not be ruled out that unlimited
intermittency is obtained if one uses, instead of
the DIA, a field theoretic approximation which
self-consistently calculates moments up to fourth
order, such as the vertex renormalized equa-
tions. "

III. INTERMITTENCY AND INTRINSIC
STOCHASTICITY: THE LORENZ MODEL

Randomlike behavior in a nonlinear dynamical
system can arise in at least two ways. 'The sys-
tem can be driven by a prescribed random force
such as is the case for the NLL model and there-
by achieve extrinsic stochasticity. There are also
systems governed by purely deterministic equa-
tions which display intrinsic stochasticity. Such
behavior was demonstrated convincingly for the
first time by Lorenz. " The Lorenz model is a
system of ordinary differential equations

X= -OX+OF,
Y'= -XZ+rX —P,
Z=XF -bz .

For example, for o = 10, 6 =-,', and g = 28, as
t ~ the point X(t),Y(t),Z(t) is attracted to a set
with a Cantor-type structure, which presumably
is a "strange attractor. "" Randomness in real
turbulent flows may, according to the cases, be
achieved by extrinsic or intrinsic mechanisms or
a mixture. '" It has been pointed out by Buelle"
that random forces are not a prerequisite in
modeling the chaotic aspect of turbulence. Fur-
thermore, we have seen that random forces, even
when restricted to low frequencies, will affect
the high-frequency behavior, leading to nonuni-
versality in the dissipation range (but not in the
inertial range) .

It is now natural to ask if intrinsically stochastic
systems such as the Lorenz model display high-
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2iI'(t)=v —(f -t~) ', (3.2)

However, the solutions are meromorphic only
for exceptional values of the parameters. " In
general, higher-order terms contain logarithmic
corrections; natural boundaries can also not be
ruled out."

To check the existence of singularities we in-
tegrate the Lorenz equations in the stochastic
regime (&r= 10,5=8/3, r = 28), using the complex-
time Taylor expansion method described in Ap-
pendix B. For the real initial conditions X(0)= -5,
Y(0)= -4,Z(0) = 25, Table I gives the singularities
with positive imaginary part less than 0.24 in the
time interval [0,10]. We checked that the com-
plex-time behavior is consistent with Egs. (3.2).
The positions of the singularities are very sensi-
tive to initial conditions and, presumably, as
random as the attractor itself. It would be wf
interest to determine the distribution N(v )dr of

frequency intermittency. To avoid possible con-
fusions we note that a different kind of low-fre-
quency intermittency may be present in dynamical
systems undergoing a bifurcation from nonstoch-
astic to stochastic behavior. "" According to
Ref. 52, the short turbulent bursts sometimes ob-
served just above the threshold reflect the fact
that the subcritical state is still weakly attracting.
Similar intermittency may be observed in systems
undergoing transition from a stochastic state to a
stochastic state with more degrees of freedom ex-
cited, e.g. , the appearance of a magnetic field in
a turbulent conducting fluid. " Although such tur-
bulent bursts are conspicuous without high-pass
filtering, associated phenomena have been ob-
served involving complex-time singularities. "

The solutions of the Lorenz equations can be
analytically continued to complex times by the
method described in Sec. II 8. An important dif-
ference with the NLL model is that the solution of
Eqs. (3.1) is analytic in a finite strip around the
real axis 0

l

Imt
I

r„„Indee.d, it was shown

by Lorenz, "using a simple energy estimate, that
the attractor, whatever its precise nature, is
bounded (in the real domain). This implies a
(uniform in time) lower bound for the radius of
convergence of the Taylor series at any real time.
The nature of the (possible) singularities can be
found by first eliminating the F and Z variables,
then substituting a constant times (f -f „)' for the
X variable and balancing the most singular terms.
'This gives, to leading order, pole singularities

TABLE I. Complex-time singularities of the Lorenx
Model.

Bet

0.409
1.066
1.734
2.419
3.136
3.940
4.685
5.628
6.956
7.664
8.438
9.246
9.979

0.231
0.222
0.213
0.202
0.188
0.168
0.177
0.153
0.204
0.191
0.174
0.167
0.181

singularities, i.e. , the mean number of singular-
ities per unit real time with positive imaginary
part between 7' and v+ dv'. From the existence of
a finite analyticity strip we infer that the support
of N(r) has a positive lower bound r „~r~„
Numerical determination of N(r) by simulation
appears feasible. However, it would be very dif-
ficult to obtain the behavior in the immediate
neighborhood or v „. In the absence of any gen-
uine theory of the Lorenz attractor we do not see
presently how to obtain N(v) by analytic methods.
However, there are results which do not require
the precise knowledge of N(r). First, for high &

we expect that the spectrum of any component of
the solution behaves exponentially with possibly
slower prefactors. This follows from the exis--
tence of a lower bound for the imaginary parts of
singularities. Second, using the argument given
at the end of Sec. IIC, we expect that, unless v

can take its lower bound value v „with a finite
probability (a very unlikely situation), then the
high-pass filtered solution will display unlimited
intermittency.

The Lorenz model, contrary to the NLL model
does not seem to have an interesting high-Reynolds
number limit. Indeed, when the nonlinearity (mea-
sured by the Rayleigh number r) becomes too
large, the solution has a limit cycle and thus loses
stochasticity. " To achieve a modeling of true tur-
bulence more realistic with respect to both intrin-
sic stochasticity and small-scale behavior, it
mould be of interest to find a dynamical system
with a parameter r such that, for r - , intrinsic
stochasticity remains while some singularities
migrate to the real-time axis.

IV. SPATIAL INTERMITTENCY IN BURGERS'S
MODEL

In this section we study the nonlinear partial
differential equation
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Bv(t,x) 1 8 8'v
et 2 ex ex

+-—v'= v, , v(0,x) = v,(x), (4.1)

8
v(t, x) = -»—log8(t, x), (4.2)

introduced by Burgers. " Owing to 'obvious sta-
bility properties Burgers's model, like the NLL
model, displays no intrinsic stochasticity. Ran-
dom behavior can be achieved either via random
driving or via random initial conditions. We
shall concentrate on the latter and assume that
v, (x} satisfies the same conditions (F1)-(F4) in
x space as the random force of the NLL model
(condition (F5) is not required). Without external
driving the solutions of Burgers's equation are de-
caying to the v =—0 steady-state solution. We can,
however, investigate, 3,t a fixed time, the small-
scale spatial behavior which is governed by sing-
ularities at complex space locations.

The analytic structure of individual solutions of
Burgers's equation is well understood. This fo1.-
lows from the explicit representation obtained by
Hopf and Cole."

Insight in the motion of singularities of Bur-
gers's equation is provided by the polar represen-
tation. " Assume that at t=0,

1
v(z) = -2v

z zg
(4.6)

Then this (polar) representation gives the exact
solution of (4.1) at subsequent times if the poles
move according to the equations of motion

(4.7)

Proof follows by substitution and use of the identity

0 (x)4'(y) —0'(x)4(y) = 0 (x+y)[4'(y) - 0 '(x)l,

(4.8)

which is satisfied by the function Q(x) =x ' (Ref.
62).

The equations of motion of the poles have a
structure very similar to the equations for the
motion of vortices of equal strength E,

8(t,x) = (4wvt) 't' Z 1
z P

27t'
(4.9)

((x y )2 .&) ).4vt 2v ~o

(4.3)

Equation (4.3) is the solution of the heat equation

88(t,x) 8 8
et Bx

(4 4)

ii (t, k) = -4irv
Q

'P e' 's . (4.5)

We are thus led to study the properties of the
zeros of the heat equation (4.4). The maximum
principle for holomorphic functions implies that
(i) 8(t,z) has no zeros for real z [use 8,(x)& 0];
(ii} as time elapses new zeros of 8 inside a bound-
ed domain cannot appear without first crossing its
boundary. Hence the zeros must either be gen-
erated at infinity or be present initially or both. "

to which Burgers's equation is reduced by (4.2).
8(t,x) and v(t, x) can be continued analytically
both in the space and time variables (provided
Ret& 0). However, to study the high-wave-number
behavior at a given time there is no need to con-
tinue analytically in t. For fixed t& 0, , 8(t,z) is an
entire function of the complex variable z =x+i $
Its logarithmic derivative v(t, z) is a, meromorphic
function with poles at the zeros z~ of 8 and residue
-2v (we discard multiple zeros which are nongen-
eric). This implies the following asymptotic ex-
pansion for the spatial Fourier transform v(t, k)
for large positive k,

Note, however, that (4.7) is always integrable
whereas {4.9) is probably not when there are
more than three vortices. "Observe also that two
isolated vortices mill rotate around each other
but that two isolated poles will (eventually) move
apart while aligning themselves parallel to the
imaginary axis.

v(x) = =,'hq tanh[(x -x~)h~/4v), (4.10)

where h&= v, -vz is the shock strength. Analytic
continuation of the tanh shows that v(z) has pole
singularities at

The high-Reynolds number limit

It is known that, in the limit v 40, for prescribed
initial conditions the solution of Burgers s equa-
tion develops shocks after a finite time. Evalua-
tion of the integral in (4.3} by I.aplace's method for
v 4 0 gives the position of the shocks. The pres-
ence of a small viscosity smoothes the shocks,
thereby removing singularities from the real
space domain. Indeed, consider a shock located
at x& with right and left limits of the velocity v&

and v&. The shock moves with the velocity uz
=2(v';+v&). The effect of a small viscosity is
most easily obtained in the frame of reference
moving with velocity u& in which the shock is
stationary, so that to leading order in v one can
drop the time derivative in (4.1). Integration of
the resulting differential equation gives a hyper-
bolic tangent structure for the shock"
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Z; „=Xq+i$q „,

4p
(~ „=+——+nm, yg=0, 1,2, . . . (4.12)

k' exp(-8vmk/h)N(t, k) dk
F(t, k)-p ' (4.19)

4 exp( 4txh—/h)N(t, h) dh)
(
( 0

In the original reference frame a viscosity-
smoothed shock may be viewed as a "parade" of
equally spaced poles aligned parallel to the im-
aginary axis, the nearest being located O(v) from
the real axis.

Using (4.5) and (4.12) we obtain the asymptotic
behavior of the spatial Fourier transform of the
velocity (k-+ ~)

4vk
g(t, k) = -4zirv e'h"& exp ————+nm~

k, 2 ')
(4.13)

Two regimes can be distinguished.
(i) An inertial range k, «k«H/v, where k, and

H are the inverse integral scale and the mean
shock strength which are both O(1) for times O(1)
but will eventually decay. In this range we sum
the geometric series in (4.13) and expand the re-
sult for vk/k, .«1; we thus obtain

The inertial-range results are not new (see, for
example, Ref. 64). Let us discuss now the dissi-
pation-range results which require the knowledge
of N(t, k). There is a simple geometric construc-
tion to find the position and strength of all the
shocks. " This has been used by Kida to give an
integral representation of N(t, k) valid for large
times [Eq. (4.27) of Ref. 65]. His method can
probably be extended to finite times and large
shock strengths. We have not attempted to do
this but we can still make some qualitative re-
marks. Since velocity is conserved along the mo-
tion, the shock strength c'an never exceed the
largest velocity excursion [supv, (x) —infv, (x)).
We are thus led to distinguish two cases.

a. Bounded initial velocity distribution.
The shock distribution vanishes for h& h ~

(which may depend on time). Let us assume for
definiteness that, near k ~, N(t, k) behaves like
(k -k)' (o.'& -1); we then obtain

v(t, k)= -ik ' Q k~e""tt. (4.14) E(t, k)-k ' "'exp(-8vmk/h ~), F(f, fC) E'".

(ii) A dissipation range k»H/v „ in which only
the n= 0 singularity contributes to leading order,
yielding

zr(t, k)=—-4iwv Q e'h "& exp(-2v)Tk/k, ) . (4.15)

The speetmm and the flatness

E(f, k)- (k')k-', F(f,Z), ,Z,(k') .

(4.16)

(h")=I hN(t, h)dh.
0

(ii) Dissipation range:

X (t, h)- r' I ( 4rxxphth)N(t, h—)dht,
0

(4.17)

(4.18)

The spatial energy spectrum E(t, k) and the flat-
ness F(t, k) of the spatially high-pass filtered so-
lution of Burgers's equation can be calculated es-
sentially the same way as for the NLL equation
(cf. Sec. IIE) in terms of N(t, k), the distribution
of shockstrengths per unit length interval at
time t. Leaving out purely numerical factors,
the final results for the energy spectrum and the
flataness are given below.

(i) Inertial change:

E(t, k)-k~h' F(t K) E~ (4.22)

We see that all cases discussed above have un-
limited intermittency and nonuniversal energy
spectra (universality is here with respect to
changes in the statistics of initial conditions).
Note that for unbounded shock strengths the spec-
trum decreases more slowly than an exponential
(it can even be algebraic). This is in disagree-
ment with the results of closure calculations. The
latter produce exponential energy spectra and no
intermittency. This statement applies to the two-
point closures known as Direct-Interaction, La-
grangian-History-Direct-Interaction, Test-Field-
Model and Quasi-Normal-Markovian (eddy-

(4.20)

b. Unbounded initial velocity di stri bution.
It seems very plausible that N(t, k) will also be

unbounded. For definiteness again we consider
two examples.

(b1). N(t, k)-exp(-k' ), k-™,o'. &0. We ob-
tain, omitting numerical and power-law prefactors
(C, and C, are positive numerical constants)

E(f,k) - exp[-C, (vk)" '""']
F(t,K)- exp[C, (vK)' "'"']. (4.21)

(b 2) N(t, k) -k, k- ~. To ensure convergence
of the integral in the numerator of the rhs of (4.19)
we assume» 4; we then obtain
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damped or viscosity-damped) discussed in Refs.
39—41 and 66 which become essentially identical
in the dissipation range. Like for the NLL model
(cf. Sec. II G), the exponential spectrum of closure
is a consequence of the existence of a finite analy-
ticity strip in complex position space.

Finally, a few comments on the use of Burgers's
model with a random force f. By the Hopf-Cole
transformation, Burgers's equation is then mapped
into a heat equation with a potential, the solution
of which is entire in the space variable when f is
band limited (in space). Thus the velocity is again
a meromorphic function. Most of the above analy-
sis is unchanged but the determination of the
shock-strength distribution may be more difficult.
At finite Reynolds numbers it is conceivable that
the "most-relevant" spatial singularities are
triggered by occasional large excursions of the
spatial gradient of the force (when allowed by the
statistics) and can be obtained by a singular per-
turbation calculation.

V. SUMMARY AND DISCUSSION

Note that the more speculative questions re-
lating to Navier-Stokes turbulence are discussed
in Sec. VI.

A. NLL model and homogeneous turbulence

In Sec. II we have tested Kraichnan's'4 conjec-
tures about intermittency in the dissipation
range, using the NLL equations

mv = -yv -v'+f(t), (5.1)

with a band-limited random force f(t) (the detailed
specifications on the force (Fl)-(F5) are listed in
Sec. IIA). We proved that for any m, y& 0, the
high-pass filtered solution v„(t) has unlimited in-
termittency: its flatness tends to infinity with Q.
This results from the following mechanism.
High-frequency behavior of the solution is con-
trolled by the singularities of its analytic contin-
uation v(t+i7') to complex times (Sec. IIB). A
singularity at z ~= t „+is~ (v~ &0) produces a burst
in the high-pass filtered solution, centered at t~
and with overall amplitude proportional to e "'+
(Sec. IIC). For large Q the dominant burst are
produced by rare singularities with very small v'~

and are therefore well separated. We have shown
that the singularities are branch points of exponent
=~ (Sec. II B), the most relevant ones being located
near the real zeros of f(t) with a large slope f (t)
(Sec. IID). In Sec. IIE we have calculated the
asymptotic expansion for high frequencies of the
spectrum E(cu) and the flatness F(Q). For a
Gaussian force we have obtained

E(~)=A m' 'e 't "exp[-B (em' ')' '] (5.2)

F(Q)=8,m ' 'Q ' 'exp[+ $,(Qm' ')'t'], (5.3)

where A.
y +y ay and {9,are positive numerical

constants. ~'

We have shown that this high-frequency behavior
is not universe/ with respect to the low-frequency
forcing. A change in the statistics of the force
cannot be absorbed in scaling factors. When the
distribution of so=

~

f
~

(at times when f= 0) is of
the form exp(-gv~/2), the exponent -', in (5.2) and
(5.3) is changed to 5o.'/(5o'. + 1). &onuniversality
comes about as follows. A singularity of expon-
ent p at z ~= t~+i~~ produces a term & ' 'e'~*e
in the Fourier transform of the solution. Before
averaging, the power-law prefactor is universal
because the force does not affect the nature of the
singularity (only the cubic and v terms a.re then
relevant). The position, however, is not univer-
sal. When the amplitude factor e '"'+ is averaged
over the distribution of v ~, slower than exponential
decrease is obtained, which depends on the pre-
cise statistics of the force.

Our result contradicts usual ideas about homo-
geneous turbulence formulated for the first time
by Kolmogorov' and discussed in detail, e.g. , in
Chap. VI of Ref. 3; According to such ideas (here
reformulated in the time domain), the low-frequen-
cy forcing excites the high frequencies of the so-
lution in a stepwise process; as ~ increases, so
does the number of steps, presumably leading to
asymptotic independence and thus to universal
statistical properties of the solution.

Further contact between the NLL model and hom-
ogeneous turbulence comes from the existence of
an inertial range. When m and y are both small
there is a range of frequencies [1«

~

&u~

« inf(m~t', y 't')] in which the force is zero and
dissipative processes are negligible. In this range
the spectrum follows an + ' ' law and the flatness
increases as Q" (Sec. II F). It appears that there
is no energy-cascade argument, like in the Kol-
mogorov theory, from which the ~~ ' spectrum
(or any other power law) can be derived. This is
so because the nonlinear term in the NLL equation
has no associated conservation law. Note however,
that, like in the Kolmogorov theory, the NLL in-
ertial-range spectrum is universal. The reason
is that this range is controlled by the real-time
singularities that occur at infinite Reynolds num-
ber (m=y=0). Such singularities have again a
universal exponent; being located in the real do-
main they produce, in the Fourier transform,
universal power laws without exponential damping
which are therefore unaffected by the averaging
over the distribution of singularities.

Finally, we stress that, contrary to the existing
semi-heuristic theories of homogeneous turbulence
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which are often more conveniently formulated in
Fourier space, it was essential for our systematic
analysis of the NLL model to work in (complex)
physical space.

+4) yy4l 2y4l 3 4i
v(~, )v(&o,)v(~, ) d&u, du&, - uP

~

v(~)
~

' .
I

(5.6)

B. Hlusory asymptotic freedom

Classical nonlinear dynamical systems driven b~

random forces have a formal correspondence
with nonlinear quantum fields which is discussed,
e.g. , in Refs. 10 and 42. It has been suggested
that renormalized perturbation expansions can be
useful for nonlinear classical systems, even
when ordinary perturbation expansions are not ap-
propriate. 'There are indeed cases where the re-
normalized coupling constant (depending on fre-
quency &u or wave number k) tends asymptotically
(i.e. , for v or k tending to zero or infinity) to
zero (asymptotic freedom) or to some manageably
small value. Examples have been found in the
study of large-scale and long-time properties of
cr itical dynamics and randomly stirred
fluids. " ' The low-frequency behavior of the
NLL model can be similarly studied. We shall
show now that this is generally not the case for
its high-frequency behavior.

We begin with the case of a band-limited force,
a condition which we shall later relax to discuss
"illusory asymptotic freedom". We know that the
high-frequency behavior is governed by the com-
plex-time singularities of the analytic continuation
of the velocity. Letting z = t+ i7' approach a sing-
ularity s, we find that the ratio of the nonlinear
term to the damping term

v'(z) m

yv(z) 2y(z -z,)
' (5.4)

tends to infinity. This, of course, is true irres-
pective of the strength of the nonlinear interaction
on the real axis. A similar result holds in fre-
quency space. Using the asymptotic expansion
(2.46) we can evaluate the ratio of Fourier trans-
forms of the cubic and damping terms; this gives
a frequency-dependent coupling constant

g(a)) o-
~

u) ~, (5.5)

which tends to infinity with w. Observe that the
following procedure would yield an incorrect re-
sult. We notice that v'/(yv) = v'/y, and use the
Fourier transform of v'/y to estimate the coupling
constant. This gives lim~„~ „g(v)= 0. The root of
the discrepancy is that the latter procedure im-
plicitly assumes that, in Fourier space, one can
estimate integrals by factor counting procedures,
e.g. ,

4 ((o)-~'e '", s& 0. (5.7)

The force f(t) can then be extended analytically in
the strip

~

Imz
~

&s/2 at the edges of which it be-
comes singular. In the analyticity strip the force
and its derivative, being Gaussian, can take ar-
bitrary large values. Exactly as in the pase of
band-limited forces, singularities can occur ar-
bitrarily close to the real axis. The results of
Sec. IIE are therefore unchanged. Obviously
asymptotic freedom does not hold, however small
the nonlinearity may be on the real axis. Let us
see now what is predicted by perturbation theory
for small nonlinearity. We introduce an expansion
parameter g in front of the cubic term in the NLL

Equation (5.6) holds for (suitable) algebraic de-
crease, but not for exponential decrease. We
stressed this rather obvious point because a sim-
ilar misconception can lead to the conclusion that
in the dissipation range of homogeneous turbulence
the Reynolds number is very small.

The simplest renormalized perturbation approx-
imation based on the field theoretic approach to
classical nonlinear dynamics is the direct inter-
action approximation" (DIA). The investigation
of Sec. IIG shows that the DIA gives an incorrect
description of the high-frequency behavior of the
NLL model: We have obtained a universal expon-
ential spectrum instead of a nonuniversal more
slowly decreasing spectrum. 'This is a direct
consequence of the growth of the coupling constant
with frequency and will presumably not be cured
by going to higher orders of renormalization. "
An interesting observation is that for the case
studied, the DIA is self-destructive because it
has itself complex-time singularities and an in-
definitely growing coupling constant as co

We now wish to discuss a case where the DIA
and other renormalization procedures are wrong
without being self-destructive. For this we take
the NLL model with a Gaussian force but relax
the assumption of band limitedness. With direct
forcing of high frequencies nonlinear interactions
are not needed to obtain a high-frequency re-
sponse. It is then conceivable that ultraviolet
asymptotic freedom will be obtained. This means
that at high frequencies the nonlinear term is
negligible (more precisely that its effect can be
absorbed in a renormalization of the damping).
In order to be able to use analytic-function tech-
niques to investigate this question, we assume that
the spectrum of the force is of the form (+-+~)
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v=g "V m=g'"m y=g"'y. (5.9)

Using this and (2.7"I) we see that the exact spec-
trum contains a factor exp(-B,&u'~'m'~~g '~')
with an essential singularity at zero coupling con-
stant which is not captured by perturbation theory.
This is a common situation in nonlinear field
theory; see, e.g. , Ref. 73.

We conclude that high-frequency intermittency
is a problem of strong interactions dominated by
singularities which, like many structures of non-
linear physics (solitons, shocks, instantons, vor-
tices, dislocations, etc. ) require nonperturbative
techniques. It is only after explicit incorporation
of such structures in the theory that the averaging
by perturbative techniques becomes feasible.

C. Intermittency in nonlinear dynamics

Three examples of dynamical systems with
high-frequency intermittency have been discussed
in this paper; the NLL model (Sec. II), the Lorenz
model (Sec. III) and Burgers's model (Sec. IV).
A large class of dynamical systems should display
such intermittency, in particular when the follow-
ing conditions are fulfilled.

(i) The solutions tend to a statistical steady state
which is truly random (nonvanishing fluctuations).

(ii) The solutions can be extended to complex
times.

equation and assume that m and y are O(1). Ex-
panding the spectrum in powers of g we obtain
after standard manipulations (&o-+ ~}

E(~)= C,&u 'e '"+g'C, uP 'e '"+O(g'), (5.8)

where C, and C, are numerical factors depending
on m and y. When a & 2, the g' term in (5.8) and
also the higher-order terms are negligible com-
pared to the g' contribution as ~-. This sug-
gests asymptotic freedom for «2. The same
conclusion is obtained from the DIA. Since the
latter has a spurious branch of self-excited solu-
tions (see Sec. IIG), we must restrict ourselves
to the branch reducing to the linear solution for
g=0. For this branch, when &&2, the singularity
of the correlation function U(z) closest to the real
axis is the singularity of the correlation function
of the force 4(z) at z ~=is [use Eq. (2.102') and
compare 6U'(z) calculated from the linear solution
with 4 (g) as e -z „]. Thus the DIA gives illusory
asymptotic freedom, a result unlikely to be
changed by higher orders of renormalized pertur-
bations. 'The origin of the discrepancy may be
understood by returning to the exact solution for
the spectrum in the Gaussian case given in Sec.
IIE. The effect of the coupling constant g can be
absorbed in a redefinition of v, m, and y,

(iii) The solutions have singularities at random
complex times.

(iv) The lower bound of the absolute value of the
imaginary part of the singularities is not attained
with a finite probability.

The above conditions are sufficient to apply the
argument at the end of Sec. IIC: The high-fre-
quency filtered solution will consist of bursts
which become increasingly sparse as the filter
frequency 0-~. Condition (i) requires that the
system be either randomly driven (like the NLL
model) or intrinsically stochastic. Condition (ii)
is satisfied by any algebraic equation or ODE (or
system of such equations) with holomorphic depen-
dence on both the independent and dependent var-
iables. This rules out for example the equa-
tion

(5.10)

Condition (iii) can be fulfilled in two different
ways. An extrinsic intermittency is obtained when
the singularities of the solution just reflect the
singularities of the force (e.g. , the trivial case of
a linear Langevin equation driven by an intermit-
tent force}. Intrinsic intermittency requires that
the equation be nonlinear in the unknown. " Con-
dition (iv) can be satisfied with a lower bound v „-
which is zero (NLL model) or nonzero (Lorenz
model).

We also note that intermittency is not restricted
to the temporal domain as we have seen from the
study of Burgers's equation (Sec. IV). In systems
governed by partial differential equations with
more than one space variable it becomes possible
to consider multidimensional intermittency, . 'This
requires considerable mathematical machinery to
extend the asymptotic theorem discussed in Sec.
IIC to functions of several complex variables.

I

Finally we stress that, even when we can dem-
onstrate the existence of intermittency for a non-
linear equation, it may be difficult to calculate
the high-frequency behavior. For this we need to
know the nature of the complex-time singularities
and their distribution (at least near 7 „,„). The
method used to obtain the leading orders of the
singularities of the NLL and Lorenz models can
be applied to any nonlinear ODE with isolated sin-
gularities. One then just keeps the most relevant
terms in the equation, i.e., those with the highest
nonlinearity and the highest derivative. The per-
turbation method used in Sec. IID to locate the
singularities of the NLL equation can be plaus-
ibly extended to other randomly driven systems.
Observe that this expansion did not use an extern-
ally prescribed smal1, parameter but was made
possible by the existence of arbitrary large fluc-
tuations in the derivative of the force. Extending
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such ideas to intrinsically stochastic systems may
require a better analytic understanding of strange
attractors (in the real domain, to begin with).

VI. INTERMITTENCY AND NAVIER-STOKES
TURBULENCE

We have demonstrated in this paper that the
small-scale intermittency observed in turbulent
flows is also present in much simpler models
which can be handled by systematic techniques.
Not enough is known about the properties of three-
dimensional Navier-Stokes equation to allow us
presently to proceed in a systematic way. In this
final section, we shall be concerned with three
questions.

(i) What is known about the analytic structure of

the solutions of the Navier-Stokes equation'? (By
"known" we mean either rigorously proven or
demonstrated by careful experiments or numeri-
cal simulations. )

(ii} Given this partial information and the re-
sults obtained on simpler dynamical systems,
what can be conjectured concerning intermittency
of Navier-Stokes turbulence'P

(iii) What type of experiments and numerical
simulations are relevant to the problem?

A. Analytic structure of the Navier-Stokes solutions

We shall not attempt to review what is known

about existence, uniqueness, and regularity prop-
erties of the gavier-Stokes equation in three di-
mensions (initial-value problem). The reader will
find a suitable presentation of such material in

Chap. 5 of Ref. 4i.. Loosely expressed, such prop-
erties are known to hold (i) for arbitrary t &0
when the Reynolds number is "small"; (ii) for ar-
bitrary viscosity and 0&t & 7 (T of the order of the
initial eddy-turnover time) when the initial data
are sufficiently differentiable; and (iii) for all
times and viscosities in two space dimensions.
Under the same condition it. is possible to prove
analyticity in the real space-time variables. " It
must be stressed that, for v&0, the boundedness
of e is sufficient to ensure this analyticity, '
thereby allowing continuation to complex space
times.

For large Reynolds numbers and large times
there is no proof of the absence of real space-
time singularities in three dimensions; there is,
however, numerical evidence that it is so for
Reynolds numbers up to four hundred (based on

integral scale and rms velocity). 4' Furthermore,
all existing experiments in turbulent flows at
Reynolds numbers up to a million have produced
a dissipation range suggesting that viscous dis-
sipation is indeed capable of preventing real
space-time singularities. Note, however, that
it has been proven that such singularities, if they

exist, are confined to a set of very smail Haus-
dorff measure which may be easily missed both
in simulations and experiments. 4"'

B. Conjectures about Navier-Stokes turbulence

There is no analytic proof of the existence of
real or complex domain singularities for the Na-
vier-Stokes or the Euler equation (v =0). How-

ever, recently numerical evidence has been ob-
tained that the three-dimensional, Euler equation
with a special choice of initial condition (the so-
called Taylor-Green vortex) has a real singularity
appearing at a finite time t; some information on
the nature of this singularity has also been ob-
tained. " Since the smoothing effect of viscosity
is felt only in the real domain, we are led to con-
jecture that the solutions of the Navier-Stokes
equation in three dimensions have singularities
in the complex space-time domain, some of which

become real as v 40 (Ref. 79). We believe that for
v & 0 complex space singularities play a role in the
backscattering of radio or acoustic waves with

wavelength small compared to the dissipation
scale. This may provide a tool for experimental
investigation. There have been speculations that
for v 4 0 the real singularities are confined to a
"fractal" set somewhat more space-filling than
sheetlike structures. '2'3 If this is true, then for
small v the complex-time singularities at a fixed
real point must come in clusters (possibly with a
hierarchical structure); the number of singular
points in the cluster increasing as v decreases so
that, in the limit, some Cantor-type set on the
real-time axis obtains.

Whatever the precise nature of the singularities,
we are led to conjecture that randomly driven flows
at any Reynolds number have unlimited intermit-
tency in the dissipation range and a nonuniversal
energy spectrum depending on the statistics of the
force. Gaining better understanding of the dis-
sipation range could be important for numerical
simulations with subgrid-scale modeling when it is
desired to waste as little resolution as possible
for the dissipation range without affecting larger
scales.

In realistic high-Reynolds number turbulent
flows driven, e.g. , by prescribed shears or buoy-

ancy forces, stochasticity will be at least in part
of intrinsic nature. Like for the Lorenz model
(Sec. III) the nature of the (possibly infinite di-
mensional} attractor that governs stochasticity
determines the distribution of singularities. There
is no need to be able to precisely characterize
this attractor to conjecture that three-dimensional
incompressible viscous flows, at any Reynolds
number where they are turbulent, have also un-
limited dissipation-range intermittency (more
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precisely, an intermittency limited only by the
breakdown of the hydrodynamic description and/or
nonturbulent noise). We also expect that the dis-
sipation range will have nonuniversal properties
with respect to large-scale statistics. Experi-
mentally determined dissipation- range spectra,
when properly rescaled, appear to fall on a uni-
versal curve (see, e.g. , Fig. 75 of Ref. 10); the
measurements, however, are not very reliable.
Indication that there may also be some lack of
universality comes from measurements of (pas-
sive) temperature-derivative skewness. Nonzero
values are obtained, suggesting small-scale aniso-
tropies, possibly induced by large-scale fea-
tures. "

The result of Sec. IIF may suggest a reinter-
pretation of the inertial range of fully developed
turbulence. When a turbulent flow is observed in
the inertial range at a wave number k&ka, the
resolution -k is insufficient to distinguish be-. .

tween complex-space singularities, located within
ka' from real space, and real singularities of the
Euler equation that may occur for v 40. Such
singularities are consistent with a universal pow-
er- law spectrum.

C. Suggestions for experiments and numerical
simulations

Most existing experiments on the small scales
of turbulence have focused on the measurement
of statistical quantities relating either to the in-
ertial range (e.g. , power-law spectra and struc-
ture functions) or to the beginning of the dissipa-
tion range (e.g. , dissipation-dissipation correl-
ation function). '" '0 " For such experiments it
is important to have (at least) (i) very high Rey-
nolds numbers; (ii) good stationarity; and (iii) re-
liable measurements down to scales somewhat
less than the viscous cutoff. To test the conjec-
ture on unlimited dissipation- range intermittency
and also to obtain information on the singularities
of the Navier-Stokes equation we must be able to
probe much deeper into the dissipation range.
This is difficult with the standard experimental
setup because resolution is limited by probe size
and the signal-to-noise ratio deteriorates. It
seems advisable to relax condition (i) above: For
a given geometric configuration a moderate Rey-
nolds number experiment will have a bigger dis-
sipation scale and thereby a bigger accessible dis-
sipation range. Particularly low ratios of turbul-
ent to nonturbulent noise can probably be achieved
in liquid helium experiments (above the lambda
transition).

Some care should be t'aken to keep the "turbul-
ence level" (ratio of rms velocity fluctuations to
mean velocity) as low as possible. Otherwise we

might just observe "modulation intermittency" as
now explained. According to the "Taylor hypoth-
esis" the frequency ~ of the time-recorded signal
corresponds to the spatial wave number k =

~

~ ~V ',
where 6 is the mean flow velocity. A better ap-
proximation is k =

~

&u
~
U ', where U=V+v is the

instantaneous velocity which has approximately
Gaussian fluctuations. Assume for a moment that
the turbulence has no intermittency at all in its
spatial structure (pure "Gedanken experiment").
Assume also that it has a faster than algebraic
spatial spectrum, e.g. , exp(-qk). Then the "in-
stantaneous" temporal spectrum will be
exp[-q

~

tu
~

(V+ v) '1 For

the exponential wil. l tremendously amplify the
fluctuation in v and thus produce high-frequency
intermittency. " A possible way to distinguish,
experimentally, between modulation and intrinsic
spatial intermittency is to look for correlation
between high-frequency bursts and negative peaks
in the fluctuating velocity.

Experiments with a substantially accessible dis-
sipation range can be used to give further support
to the conjecture that there are complex-time
singularities. ' High-pass filtering of the velocity
is the simplest technique for locating complex-
time singularities [cf. Figs. 5(a) and 5(b)]. It
must be pointed out that it is possible, although
unlikely, that some high-frequency intermittent
bursts are generated by mechanisms other than
singularities such as modulation or transition'4
intermittency. More reliable quantitative inform-
ation should be obtained by analytic continuation
techniques. One conceivable method is to Fourier
transform the sampled signal, suppress the very-
high-frequency instrumental noise" and, then,
use the temporal Fourier series continued directly
to complex times. This Fourier series converges
only in the strip ~1m' ~& 7,„, where 7,„ is the
imaginary part of the singularity closest to the
real axis. The series, however, can also be used
to calculate at various real times as many deriv-
atives as reliable. It is then possible to use the
Taylor expansion to locate singularities. Hope-
fully this method will yield information about the
statistical distribution of singularities, their
clustering properties, and their Reynolds number
scaling properties.

It is likely that the singularities, say at a fixed
real point as a function of complex time, have a
universal nature as in the examples studied in this
paper. It is therefore of interest to try to deter-
mine not just their positions but also their expon-
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ent. This is very difficult. First, finding an ex-
-ponent of divergence from a Taylor expansion may
require considerably more accuracy than avail-
able. Second, even if accuracy problems can be
overcome, it must be stressed that the apparent
nature of the singularities may be changed by the
geometry and the nonlinear response of the mea-
suring device. For example, the finite length of a
hot wire results in spatial integration; if we as-
sume that the true velocity is meromorphic in the
space and time variables, the measured signal
will have logarithmic singularities at complex
times which come in closely spaced pairs.

A possibly better way to obtain information on
the nature of individual complex space-time singu-
larities of the Navier-Stokes equation is to use
'numerical techniques. If the calculation is based
on spectral methods the analytic continuation in
space can be done by one of the methods described
above. Since the nature of singularities is easily
blurred by truncation, a very high spatial resolu-
tion is mandatory. For the analytic continuation
in time it seems natural to use the Taylor expan-
sion method. Simple initial conditions in two or
three dimensions with just a few Fourier modes
such as the Taylor-Green vortexv' are advisable.
Hopefully a combination of experimental and nu-
merical techniques will tell us something about
complex singularities which are, as we have seen
in this paper, the atoms of small-scale viscous
turbulent flow.

emote added in proof. Strong intermittency in the

dissipation range (measured by the flatness of
Fourier components) has been observed in direct
numerical simulations of geostrophic turbulence

by J. C. McWilliams and J. H. S. Chow (unpub-

lished).

ACKNOW LEDGMENTS

We have benefited from discussions with
C. Bardos, D. V. Chudnovsky, G. V. Chudnovsky,
P. Coullet, J.-D. Fournier, J. Gollub, H. Green-
side, B. I. Halperin, R. H. Kraichnan, M. . Krook,
C. E. Leith, P. C. Martin, J. Moser, D. R. Nel-
son, S. A. Orszag, J.-P. Poyet, H. A. Rose,
P. Saffman, E. Siggia, J.Weiss, and K. G. Wil-
son. Particular thanks are due to Y. Gagne for
providing us with unpublished data and for discus-
sions. Numerical calculations were done at the
Harvard Aiken Computer Laboratory and at the
National Center for Atmospheric Research which
is sponsored by the National Science Foundation,
and at RCA-Laboratories, Zurich, where we have
benefited from the kind assistance by G. K. Lang.
'The work was supported in part by a Vinton
Hayes Fellowship Grant N6. 1489, the National

Science Foundation Grant No. DMR 77-10210,
the Ponds National Suisse Grant No. 82.528.0.77,
and the Kyburger Opfelwahe Foundation Grant
No. 294649. One of us (UF) would like to thank
the National Center for Atmospheric Research
and the RCA Laboratories of Zurich for their
ho spital ity.

APPENDIX A: NUMERICAL SOLUTION
IN THE REAL DOMAIN

1. Outline of difficulties connected
with the high frequencies

Our goal is the accurate numerical calculation
of the high-frequency behavior of solutions to the
NLL equation (2.1)

mb = -yv —v'+f(t), (Al)

2. Solution of initial-value problem by Taylor expansion

Suppose we know v(t) for some real time t. Then
using Eq. (Al) and its derivatives

with periodic forcing, f(t) =f(t+T). For the cal-
culation of periodic solutions at first sight it
would seem most natural to apply spectral meth-
ods ' and solve the resulting nonlinear integral
equation by iteration. Efficient calculation of the
convolutions, however, involve Fast Fourier
transform methods which require calculating
the cubic term in t space on an equidistant
grid. Since the - high- frequency excitations are
very localized in t space such an evenly spaced
grid is, however, by no means optimal. Instead,
a scheme in which the resolution (grid size) is lo-
cally adapted to the particular shape of the solution
is more efficient but difficult to implement in a
spectral method. These problems are circumvent-
ed if one works in t space with a method which
permits variable step size. Owing to the faster
than-algebraic decrease of the Fourier amplitudes
v(~) the determination of the high-frequency
behavior makes high numerical precision man-
datory.

In view of all these requirements, a method of
integration based on the Taylor expansion of v(t)
is used which both facilitates the use of variable
step size and permits the calculation of solutions
whose accuracy is limited by round-off only. In
Sec. A 2 we describe the solution of the initial-
value problem by means of Taylor expansions.
Section A 3 deals with a Newton method to satisfy
periodic boundary condition. Section A4 is de-
voted to the generation of band-limited Gaussian
forces and Sec. A5 describes the calculation of
spectra.
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V
~ted+1) (t) = —yv (~) (t)

v!B. v(') t v(j) t v(k) tjfif/f
i, , j, k~ 0 ~i+j+k=n

+f(fl) (t) (A2)

we can recursively calculate any desired number
of derivatives v'"'(t). It is then possible to calcu-
late v(t+ n) from the Taylor expansion

Iteration x(0) x(2x)

0.905 380 069 283 83
0.905 379 178 927 00
0.905 379 178 91794

0.905 380 069 283 83
0.905 379 178 927 00
0.905 379 178 91795
0,905 379 178 917 94

TABLE II. Convergence of Newton iteration for the
calculation of periodic solutions to the NLL.

N gn
v(t+ n)=, v'"'(t) +A~.

nl (A3)

The step size h is determined by either (i) the
maximum frequency Q for which we want to
calculate the Fourier amplitudes 8(&o), or (ii) the
radius of convergence of the Taylor series which
is determined by the distance of the nearest singu-
larity (cf. Sec. IIB). The remainder term R„can
then be made smaller than the round-off error by
taking a sufficiently large number M of derivatives.
Making repeated use of (A2) and (A3) we can cal-
culate v(t) for arbitrary real t from the initial
condition v(to) = vo.

1
&"~) =

2N
M

while the condition ( f') =1 requires a period

(A7)

The coefficients a,. are independent Qaussian-dis-
tributed random variables while the phases &j&„are
independent random variables uniformly distribu-
ted in the interval [0, 2m[. Throughout this paper
numerical calculations with Qaussian forces are
done with a flat spectrum, i.e., (a',) —= (a~/, i =I,. . . ,
N~- 1, where N„ is the number of modes. The
condition (f ') = 1 implies a variance

3. Newton's method for periodic solutions

In order to obtain periodic solutions to Eq. (Al)
we use an iterative method. For this purpose we
study the mapping Q: v(0) -v(T) (cf. Sec. IIA).
The desired initial value v*, satisfying the period-
ic boundary condition

/N~(N~ —l)~I'~

3 )

and a bandwidth B =(N„- 1)2v/T,

~(N~- 11I'~

(N~ i

(A8)

(A9)

v*= P(v*) (A4)

4. Generation of band-limited Gaussian forces

The periodic force f{t) is defined by its Fourier
representation Eq. (2.3)

f(t) = Q e ™'g„,
I o)„l » B

27m

T (A5)

Writing the Fourier component f„ in terms of its
modulus a„and phase Q„and utilizing the Hermit-
ian symmetry f „=f„* we rewrite f{t) as

f(t) =ao+2 g a„cos(&u„t—p„).
n=l

(A6)

is the unique fixed point of this map. %'e deter-
mine v* by means of a Newton iteration to cat.cu-
late the zero of the function P(v) —v. Derivatives
dP/dv are approximated by finite difference ex-
pressions. Table II shows the convergence of this
iteration for the solution of Eq. (A1) with m =1,
y=0, and f(t)=cost+2cos2t. For the integration,
a step size 6= ~«w and a maximum of 40 deriva-
tives is used. For the example displayed in Fig.
4 [Gaussian force with 10 modes, y =0.1, and m
= (0.3)"'], two iterations are required to satisfy
the periodic boundary condition with 14 digit ac-
curacy.

For the generation of uniformly distributed
pseudo-random numbers the usual power-residue
method is employed. The generation of Qaussian
distributed pseudo-random numbers with unit
variance is done by the standard procedure of ad-
ding 12 pseudo-random numbers with un'iform dis-
tribution in the interval [-—,', ~ [.

N

E„=
N I@c(+n) I

A =1
(A10)

where N~ is the number of realizations. In ad-
dition, averaging over five adjacent frequencies is
used to obtain a more rapid convergence

{A11)

Al.l these calculations are done using for the inte-
gration a step length 6= T/2048. The Fourier
amplitudes v(&u) are calculated for

I mI
(1024

x 2v/T.

5. Calculation of spectra

The spectra shown in Sec. II F are obtained by
averaging

I
v(&u) I' over 20 realizations of the Gaus-

sian force. Denoting by v,.(e) the Fourier compon-
ents of the solution for the ith realization of the
force, we define
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APPENDIX 8: NUMERICAL INTEGRATION
IN THE COMPLEX DOMAIN

TABLE III. Locating singularities by numerical ana-
lytic continuation using ratios of nth-order derivatives.

1. Analytic continuation by Taylor expansion Rez„*(z) Imz„(z)

While the effective damping y,«(t) =y+v'(t) is
positive on the real t axis and therefore assures
stable numerical integration in the direction of
increasing time, integration in the complex do-
main suffers from the same type of instability
problems as are encountered in integration in the
negative time direction. This difficulty can be
circumvented by a combination of (i) high-precis-
sion arithmetic, and (ii) a stable numerical meth-
od minimizing the effects of round-off errors, by
using as large integration steps as the analytic
structure of the solution v(t) permits. This re-
quires the use of a high-order numerical scheme.

The method of Taylor series expansion of v(t),
outlined in Appendix A, fulfills these require-
ments. In the present work we employ up to 100
derivatives. " It then turns out to be possible to
perform the analytic continuation using single
precision (seven digit) arithmetic and still obtain
accurate information about the analytic structure
of v(t)

v (tl )) (z)-
z„*(z)=z+(n ——,') („)v" (z)

(B1)

converges, as n- ~, to the position z of the
singularity nearest to z [cf. E(I. (2.30)]. Since
the singularities of v(z) occur in complex conjug-
ate pairs, E(l. (B1) can only be used if derivatives
v'"'(z) are calculated on a point not lying on the
real-time axis.

In Table III we list z„*(z) for the four singularit-
ies of v(t) corresponding to the choice

f(t) =cost+2 cos2t, m = 1, y =0, (B2)

and periodic solution.
This is obtained as follows.
(i) We solve E(I. (A1) for the periodic solution on

the real t axis. We obtain v(0) =0.905379 (cf. Ta-
ble II).

(ii) We integrate along the imaginary axis from
0 to Z,. =0.45i. This leads to v(Z,.) =2.965694
+i 1.754915.

(iii) Integrating from Z,. to Z& =Z,.+2m we obtain
information about all four singularities in the up-

2. Locating singularities

As discussed in Sec. IIB the ratios of subsequent
derivatives v(")(t) can be used to calculate the pos-
ition of the nearest singularity. Assuming that the
radius of convergence of the Taylor series at the
point z is determined by a single singularity on
the circle of convergence, the sequence

0.122 718 47

0.220 893 26

1.800 816 10

1.988 039 50

3.411573 90

3.607 923 50

4.491496 10

4.835 108 80

6.258 644 10

0.45 41
46

0.45 17
23

0.45 17
23

0.45 20
25

0.45 26
31

0.45 29
34

0.45 33
38

0.45 43
48.

0.45 15
20

0.45 49
54

-0.018758
-0.018 758
-0.018 758
-0.018 758
-0.018 759
-0.018 758

1.913695
1.913697
1.913699
1.913699
3.515 108
3.515 107
3.515 106
3.515 106
4.504 807
4.504 307
4.504 815
4.504 308
6.264 426
6.264 426

0.487 572
0.487 572
0.487 572
0.487 572
0.487 572
0.487 572
0.611510
0.611510
0.611510
0.611510
0.938 118
0.938 118
0.938 118
0.938 118
0.625 037
0.625 037
0.625 047
0.625 039
0.487 572
0.487 572

As can be seen from Table IV, turning around the
singularity twice reproduces the starting value
with six digit accuracy. Note that turning around
the singularity once leads to complex values of
v(t) on the real t axis. The calculation is done
using seven digit arithmetic. A maximum number
of 50 derivatives is used.

per half of the compl. ex time plane.
Inspection of Table III shows that the sequences

Z„*(t) allow a very accurate determination of Z„.
In particular, as long as Z is the singularity
nearest to Z, varying Z leads to extrapolated
values of Z which are independent of Z.

3. Integration around singularities

The calculation of analytic continuations along
contours surrounding singularities represents a
severe test for the numerical precision. The
method based on the Taylor expansion of v(t)
outlined in Appendix A 1 handles this problem
without difficulty.

In Table IV we present results obtained by in-
tegration around the singularity at Z =6.264426
+0.467 572 i for the example f(t) =cos I+2 cos 2t,
m =1, y=0 (cf. Table III). Integration is done
along the contours

C, : 2n - ~sr+0.6i -2m+. 0.6i- 2m

—~sp-2m+0. 8i -2m,

C~: 2m-, m+O. Vi- s @+0.7s-2m

s ~+ 0.55i ~sg+0 6i 27t
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TABLE IV. Numerical integration around the singu-
larity at Z = 6.264 426 + i0.487 572. Turning around the
singularity once leads to complex values on the real-
time axis. Turning around the singularity twice repro-
duces the starting values with great precision.

Res Imz

x(&,)-y(g, ) x0.
The difference z =x- y satisfies

cfz—=-z(x +xy+y ) =-zp, .
d$

Notice that for $-+~,

u($) =3k"'.

(c4)

(C6)

(C6)

i5~
8

2r

0.6
0.6

27t' 0

is~
8

2m 0.8

Contour 1 27t 0 0.905 379

-0.795 078

-1.571 905

1.182 031

1.557 923

-0.790 033 -1.217 905

-0.661 443 -1.245 363

1.080 353 -0.075 323 ~(h, ) =~(5.) exp(- .&,
"') * (C8)

From (C5) we have

~(5,) =~($.) exp — p(h) d$
~

. (C7
~ ~.

Then, letting $, ——~ and using (C6), we find that

Contour 2

2x 0 0.905 382

0.905 379

0.000 001

iv
8

is~71
8

0.7

27r 0

1.701 895 -0.280 696

-0.660 318 -1.220 406

-0.790 033 -1.217 905
i7
8
is~7r
8

0.55 -0.242 588 -0.094 697

0.6 -0.795 079 1.182 031

27'' 0 0.905 380 0.000 003

APPENDIX C: THE INNER ASYMPTOTIC
EQUATION

We study the differential equation

dg—=-x +f,df
g= $+iq, (Cl)

in the real and complex domains. The boundary
conditions are given at real infinities f, =$„+i@,=l.707907+i 0.778600 (C9)

which is not consistent with the -~ boundary con-
dition.

We have not been able to prove the existence of
a solution but we can demonstrate existence nu-
merically. We use the Taylor expansion method
described in Appendix A. The integration is start-
ed at large negative times using a value of x given
by the first two terms-of the asymptotic expansion
(C3). This way the solution can be calculated in
the range t =-20 to t =+20 with an accuracy of
10 "near to t =0. The resulting graph is plotted
in Fig. 8. Perfect match with the +~ boundary
condition is obtained.

Analytic continuation to complex P is done by
the complex Taylor expansion method of Appendix
B. On the physical sheet (analytic continuation by
the shortest path from the real axis) we have found
two pairs of complex conjugate singularities with
exponent p=- —„located at

x(g)= $"', for &-a~, (C2) and

where the cubic root is understood to have the
same sign as (. For large lg I, Eg. (Cl) has an

asymptotic se'ries solution

x(g) = g'~ 3[] & f ~ ~+ 0(f '«3)]

The determination that satisfies the +~ boundary
condition (C2), if followed along a great half cir-
cle in the upper or lower half-plane, will not sat-
isfy the - boundary condition. Therefore, the
solution of (Cl) with the boundary condition (C2),
if it exists, must have at least a singularity at
finite distance. By a standard argument (Sec.
IIB), singularities have exponent ——,. Singularities
for finite real times are ruled out. Indeed, the
nonlinear term in Eil. (Cl) is dissipative; there-
fore, if x is finite for some $ it will be finite for
all g'&$.

To demonstrate uniqueness of the solution, l.et
us tentatively assume the existence of two solu-
tions x and y such that for some $„

f~~ = $ ~~+ iq~„= 2.198 79+ i 1.869 63 (C10)

CI
CI

Al

X(g)

CL
I

Cl
CI
gV

-'SHOO -B.OO -II.OO -2.00 0.00 2.00 k. 00 O.OO OOOO

FIG. 8. The solution of Eg. (2.60), dx/d$ =-x3+ $,
with x-$t~ for large j$(.

and at the complex conjugate positions. We have
not found further singularities on the physical
sheet.



URIEL FRISCH A5 0 RUDOLF MORF

*Present address.
G. K. Batchelor, Proc. R. Soc. London, Ser. A 190, 238
(1949).

2Y. Gagne, thesis, Institut de Mbcanique de Grenoble,
France, 1980 (unpublished). The experiment of Gagne
uses a grid-generated turbulent flow in a rectangular
channel. The mean velocity p= 10.5 m/s; rms fluctua
tion is 0.07 U. Reynolds number based on Taylor scale
is Bz =230. The longitudinal velocity component is
measured with a hot wire (diameter 1 pm, length 0.3
mm). The frequency corresponding to the Kolmogorov
dissipation scale is f =8.3 kHz. Signal is saxnpled at
38.4 kHz. The intermittent bursts shown in Fig. 1 are
obtained with a digital band-pass convolution filter
centered at fr=14.5 kHz lwidth Df/f=0. 2S). Signal-to-
noise ratio at f& is 3.

3G. K. Batchelor, The Theory of Homogeneous Turbu-
lence (Cambridge University Press, Cambridge, Eng-
land, 1960}.

A. Y. Kuo and S. Corrsin, J. Flui.d Mech. 50, 285
(1971).

A. N. Kolmogorov, C. R. (Dokl. ) Acad. Sci. URSS 30,
301 (1941)~

6E. D. Siggia and G. S. Patterson, J. Fluid Mech. 86,
567 (1978).

YS. A. Orszag and C.-M. Tang, J. Fluid Mech. 90, 129
(1979).

E. D. Siggia (unpublished).
SL. D. Landau and E. M. Lifshitz, F/uid Mechanics

(Pergamon, New York, 1963).
A. S. Monin and A. M. Yaglom, Statistica/ Fluid Mech-
anics: Mechanics of Turbulence, edited by J. L. Lum-.
ley (MIT Press, Cambridge, Mass. , 1975), Vo1.. 2;
updated and augmented edition of Russian original,
Statisicheskaya Gidromekhanika (Nauka, Moscow, 1965).

«R. H. Kraichnan, J. Fluid Mech. 62, 305 (1974).
~2B. B.Mandelbrot, in Turbulence and Navier-Stokes

Equation, edited by R. Temam, Vol. 565 of Lecture
Notes in Mathematics (Springer, Berlin, 1976), p. 121.
U. Frisch, P.-L. Sulem, and M. Nelkin, J. Fluid
Mech. 87, 719 (1978).

~4R. H. Kraichnan, Phys. Fluids 10, 2080 (1967).
The random force overrules the possibility that the
flow can be intrinsically stochastic (see Sec. III).

6U. Frisch, M. Lesieur, and A. Brissaud, J. Fluid
Mech. 65, 145 (1974).
W. Heisenberg, Z. Phys. 124, 628 (1948)~

~~H. L. Grant, R. W. Stewart, and A. Moilliet, J. Flui. d
Mech. 12, 241 (1962).
When the high-frequency excitation decreases suffi-
ciently fast with frequency, as is the case in all the
problems considered in this paper, there is no essen-
tial difference between high-pass and band-pass filter-
ing, provided the bandwidth is large compared to the
inverse correlation time.
U. Deker and F. Haake, Phys. Bev. A 12, 1629 (1975).
H. King, U. Deker, and F. Haake, Z. Phys. B 36, 205
(1979).
C. Bender, F. Cooper, G. Guralnik, H. Hose, and
D. Sharp, J. Stat. Phys. (in press).

3K. Ziegler and H. Horner, Z. Phys. B (in press).
+B.H. Kraichnan, J. Fluid Mech. 5, 497 (1959).

E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
J. M. Burgers, The Nonlinear Diffusion Equation
(D. Reidel, Boston, 1974).

By changes of independent and dependent variables it
is possible to reduce the NLL equation to a form with
zero damping. However, the transformed force will
not be stationary.
We do not explicitly display a realization variable; co

in this paper is always a real frequency.
R. K. Otnes and L. Enochson, Digita/ Time Series
Analysis (Wiley, New York, 1972).
E. Hille, Ordinary Differential Equations in the Com-
plex Domain (Wiley, New York, 1976).
H. T. Davis, Introduction to Non/inear Differential and
Integral Equations (Dover, New York, 1962).
R. Courant and D. Hilbert, Methods of Mathematical
Physics (Interscience, New York, 1962).

33The convergence radius r{t) is a random function
which, as we shall see in Sec. II D, can take arbitrary
small positive values.

4H. Cartan, Theone E/ementaire des Fonctions Analy-
tiques d'Une ou Plusieurs Variables Complexes (Her-
mann Paris 1961)
G. F. Carrier, M. Krook, and C. E. Pearson, Func-
tions of a ComPlex Variable (McGraw-Hill, New York,
1966).

36A. B.Migdal and V. Krainov, APproximation Methods
in Quantum Mechanics (Benjamin, New York, 1969).

YFor the algebraic case (m =0) the distribution of singu-
larities can be calculated using (2.40).

38R. H. Kraichnan, , Proceedings of Symposium in Applied
Mathematics (Amer. Math. Soc., 1962), Vol. 13, p. 199.

39D C Leslie Developments in the Theory of Turbu
lence (Clarendon, Oxford, 1973).
S. A. Orszag, in Fluid Dynamics, Lectures of the Les
Houches Summer School, edited by R. Balian and J. L.
Peube (Gordon and Breach, New York, 1977), p. 235.

4 H. A. Rose and P.-L. Sulem, J. Phys. (Paris) 39, 441
(1978).

4 P. C. Martin, E. D. Siggia, and H. A. Hose, Phys.
Bev. A 8, 423 (1973).

43R. H. Kraichnan, J. Math. Phys. (N.Y.) 2, 124 (1961);
3, 205(E) (1962).
M. Lesieur, U, Frisch, and A.. Brissaud, , Ann. Geo-
phys. (Paris) 27, 151 (1971).

4~8. H. Kraichnan, J. Math. Phys. (N.Y.) 3, 496 (1962).
46A possible way to eliminate this difficulty, communi-

cated by H. Rose, is to change the NLL equation into
.a quadratic system by introducing an additional field,
for example X(t) =v2(t ). A comparison of various
field-theoretic procedures from the viewpoint of reali-
zability has been made by S. Gauthier, M.-E. Brachet,
and J.-D. Fournier {unpublished).
Whey. the Reynolds number is small, DIA and exact
solution agree over a wide frequency range.

486. A. Kuzmin (unpublished).
D. Ruelle and F. Takens, Commun. Math. Phys. 20,
167 (1971); 23, 343 (E) (1971).

OD. Ruelle, Phys. Lett. 72A, 81 (1979).
D. Buelle, in Turbulence and Navier-Stokes Equation,
edited by R. Temam, Vol. 565 of Lecture Notes in
Mathematics (Springer, Berlin, 1976), p. 146.
P. Manneville and Y. Pomeau, Phys. Lett. 75A, 1
(1979).

+C. Tresser, P. Coullet, and A. Arneodo, J. Phys.
. (Paris) Lett. 41, L-243 (1980).

54J. P. Gollub and S. V. Benson, J. Fluid Mech. 100, 449
(1980); J. Maurer and A. Libchaber, J. Phys. (Paris)



INTERMITTENCY IN NONLINEAR DYNAMICS AND. . . 2705

Lett. 40, L-419 {1979).
~5This was conjectured by J.Ldorat, A. Pouquet, and

U. Frisch, J. Fluid Mech. {in press) and has been
observed in direct numerical simulations of the MHD
equations by M. Meneguzzi, A. Pouquet, and U. Frisch
(unpublished). A similar phenomenon has been b-
served in a five mode system by E. Spiegel, Ann.

¹ Y.
Acad. Sci. (in press).

56M. Tabor and J. Weiss (unpublished).
H. Segur, Lecture Notes Enrico Fermi School of
Physics, Varenna, Italy (1980) (unpublished).
K. A. Robbins, SIAM (Soe. Ind. Appl. Math. ) J. Appl.
Math. 36, 457 (1979).
E. Hopf, Commun. Pure Appl. Mech. 3, 201 (1950);-
J. D. Cole, Q. Appl. Math. 9, 225 (1951).
Examples ean be constructed of initial conditions vo(z)
with no singularity (e.g. , e ' 'with large positive &}
such that v(t, z) has pole singularities at subsequent
times. We do not know if this is generic behavior.

6~F. Calogero, Lett. Nuovo Cimento 13, 411 (1975);
D. V. Chudnovsky and G. V. Chudnovsky, Nuovo Cim-
ento 408, 339 (1977).

+The polar representation seems to have been discover-
ed in connection with the Korteweg-de Vries equation:
M. D. Kruskal, in ¹nlinear Wave Motion, edited by
A. Newell {American Mathematical Society, Provi-
dence, 1974), p. 61; J.Moser, Adv. Math. 16, 197
{1975). It is now known to be intimately connected
with the integrability of systems of finitely or infinitely
many particles interacting via the potential G(P {x)
where (P is the Weierstrass elliptic function. This is
discussed in Refs. 61 and also in D. V. Chudnovsky,
Lett. Nuovo Cimento 23, 503 {1978);D. V. Chudnovsky,
J. Math. Phys. 20, 2416 {1979).
H. Aref and N. Pomphrey, Phys. Lett. 78A, 297
{1980).

6 P. G. Saffman, in Topics in Nonlinear Physics, edited
by N. J. Zabusky {Springer, Berlin, 1968), p. 485.

6 S. Kida, J. Fluid Mech. 93, 337 (1979).
T. Tatsumi, S. Kida, and J. Mizushima, J. Fluid Mech.
85, 97 (1978); U. Frisch, M. Lesieur, and D. Schert-
zer, J. Fluid Mech. 97, 181 (1980).

6 In the example considered at the end of Ref. 14, inter-
mittency is produced by a multiplicative process with
no underlying singularities; this explains the much
slower algebraic growth of the flatness.
B.I. Halperin, P. C. Hohenberg, and E. D. Siggia,
Phys. Rev. B 13, 1299 (1976}.

6 D. Forster, D. R. Nelson, and M. J. Stephen, Phys.
Rev. A 16, 732 (1977).

~ J.-D. Fournier and U. Frisch, Phys. Rev. A 17, 747
(1978).

7 C. De Dominieis and P. C. Martin, Phys. Hev. A 19,
419 (1979).

+With Navier-Stokes turbulence, the DIA has an addi-
tional difficulty because it violates Galilean invari. ance;
however, as pointed out in Hef. 48, this is of no con-
cern in the far dissipation range where the viscous de-
cay time is much shorter than CNe advection time by
the energy-carrying eddies.

+C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231
(1969).
Squaring a Gaussian random function as in the experi-

ment of D. A. Kennedy and S. Corrsin, J. Fluid Mech.
10, 366 (1961) is not going to produce complex-time
singularities. This explains why no intermittency was
found. However, applying a (band-limited) voltage
across a nonlinear resistor (e.g. , R=RO+PI ) should
produce an intermittent current I(t).

~C. Bardos and S. Benachour, An. Sc. Norm. Sup. Pisa,
Serie IV, 4, 468 (1977).
S. Kaniel and M. Shinbrot, Arch. Rat. Mech. Analys.
24, 302 (1967), have shown that uniform boundedness
in. space and time of the velocity (and even weaker con-
ditions) implies boundedness of first and second spatial
derivatives. Analyticity follows then, using an argu-
ment of T. Kato and. M. Fujita, Hend. Semin. Mat. Univ.
Padova 32, 243 (1962).

~~V. Scheffer, C. R. Acad. Sci. 282, A 121 (1976); Pac.
J. Math. 66, 535 (1976).

7 H. H. Morf, S. A. Orszag, and U. Frisch, Phys. Rev.
Lett. 44, 572 (1980).
In two dimensions real singularities are possible only
if present initially (e.g. , Helmholtz vortices). This
follows from a regularity theorem for the Euler equa-
tion with smooth initial conditions proved by W. Wolib-
ner, Math. Z. 37, 668 (1933};see also Hef. 41. This
theorem does not rule out complex singularities.
P. G. Mestayer, C. H. Gibson, M. F. Coantic, and
A. S. Patel, Phys. Ft.uids 19, 1279 (1976); H. A. Anton-
ia and C. W. Van Atta, J. Fluid Mech. 84, 561 (1978);
J. Atmos. Sci. 36, 99 (1979); Phys. Fluids 22, 2430
(1979).
C. W. Van A+a and W. Y. Chen, J. Fluid Mech. 44, 145
(1970); F. H. Champagne, J. Fluid Mech. 86, 67 (1978).
This is essentially the same as Kraichnan's (see Hef.
14) argument discussed, in Sec. I B. Observe that there
are no complex-time singularities underlying modula-
tion intermittency.
Singularities of the three-dimensional. Navier-Stokes
equation, if they exist, are located on some manifold
of the complex space time C4 which, probably, does
not intersect the real domain R4. For a given real
point in ~ there will in general be complex-time
singularities and vice versa.

+Y. Pomeau and P. Manneville, in Intrinsic Stochasticity
in I'lasmas edited by G. Laval and D. Gr6sillon (Edi-
tions de Physique, Orsay, France, 1979), p. 329.
The instrumental noise has typically an algebraic
spectrum and thereby prevents analytic continuation to
complex times.
D. Gottlieb and S. A. Orszag, Numerical Analysis of
Spectral Methods: Theory and Applications (Soc. In-
dustr. Appl. Math. , Philadelphia, 1977).

~A very sensitive test of the numerical integration was
carried out using the exactly solvable example with
f(t) = cost+ cos3t —sint, v(0) =p = m =3. , whose solution
is v(t) = cost. Starting at t =0 and integrating along the
imaginary axis the solution obtained using the fourth-
order Runge-Kutta scheme becomes unstable (leading
to overflow) at z =2.6i, 2.9i, and 3.13i for step lengths
&t=0.03, 0.015, and 0.01, respectively. The Taylor
method, on the other hand, remains stable, giving re-
sults accurate to six digits at z =3.25i for a step length
&t=0.02 and a maximum of 80 derivatives. Single pre-
cision (seven digit) arithmetic was used.


