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Fourier-space paths appHed to the calculation of diffusion for the Chirikov-Taylor model
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A compact path-diagram method has been introduced for the calculation of velocity moments of a probability
function. This method is complementary to the approach developed earlier by Rechester and %'hite. It is applied to
the Chirikov-Taylor model. Analytic expressions for velocity-space diffusion have been derived and compared with

numerical computations. A numerical method for path summations has been developed which is more efficient than

directly advancing the model equations, and is applicable for small field-amplitude values, where the direct stepping
method is impractical.

I. A PROBABILITY DESCRIPTION FOR EVOLUTION
IN PHASE SPACE

vt+1 =vt 6 slnxt ' (2)

All variables here are dimensionless, x repre-
sents the coordinate and v the velocity, and time f,

takes on integer values t =0, 1,2, . . . &he para-
meter e is related to the electric-field amplitude.
Without loss of generality, we may assume it to
be a positive number. Ne will also assume peri-
odic boundary conditions in x, 0 & x & 2~. Follow-
ing Ref. 1, we substitute the deterministic de-
scription given by Eqs. (1) and (2) with a probabil-
istic one by introducing an additional random step
5x, in Eq. (1). This variable has a probability
distribution given by

G(5x„v,) =(2wo) '~' g expl — ' '
l

~ (3)
~ (5x, —v, + 2 wn)'I

Equation (3) can be derived by introducing a dif-
fusion term (o/2, the diffusion coefficient) into the
Vlasov equation. ' Let P(x, v;t) be a time-depen-
dent probability function of phase-space points x,
v with the initial condition given by

The purpose of this work is a further develop-
ment of a probabilistic method outlined in Ref. 1.
As before, we will consider the simple case of
charged particles moving in a field of electro-
static plane waves. The equations of motion for
the Chirikov- Taylor model are' '

xg i xg + vg

of P in the interval f —1, t is given by

P(x, v, f) = G(x —x', v) P(x', v + e sinx', t —1)dx' .
(5)

The Fourier transformation of this function in x
and v can be written as

P(x, v, t)= 2, p ' dka'( )ke x[pi( mx+ k)vj.
1

(6)
From (4) it follows that

a'(k) =t&, exp( —ikv, ), (1)

where 6 „ is a Kronecker function. The relation
between the Fourier amplitudes a„'(k) at times f

and t —1 can be easily derived from Eqs. (5) and

(6) by substituting the identity

exp(+iz sinx) = g J; (z) exp(+ilx), z &0

and eliminating the quadratic expression in the
exponent of G(x —x', v) through the use of the fur-
ther identity

(2wo) '~' g exp
—(y + 2 wn)' i

1
exp(--, om +imy) .1 2

2V.---
%e then find

a' (k) = g J;(lk'le) expI-(o/2)m ja„'.'(k') . (10)
$ =«oo

Here J, are Bessel functions and

P(x, v, o) =2 5(v —v, ) .1
(4)

k' =k+m,
m' = 'rfI, —l sgnk' ~

(11)

(12)

Then according to Eqs. (1)-(3) the time evolution and
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+1, A&0
sgnA' =

We introduce now velocity moments

(v"), =
dp

dx
I

dvv"P x, v, t .
W QQ

With the use of (6) they can be expressed as o, — a

(14)

We will consider in this paper the second moment
which is related to the diffusion coefficient D by'

D = lcm (15)

Throughout this paper we assume the final time 7."

to be a large integer T»1.

II. PATHS IN FOURIER SPACE—ANALYTICAL
CALCULATIONS

ar(k) = [Z,(k~)]'a', (0) .
Then from (15) we find

(16)

where we have used the expansion of J, for small
argument

(16)

This simplest path corresponds to a value of dif-
fusion given by quasilinear theory. '

Consider now paths which do leave the origin.
According to Eqs. (10)—(12) an amplitude a' (k)
may be connected by a single-path step to a' P(k')
where (k', m') must lie on the vertical line k' =k
+m. As a result of such a transition, the ampli-
tude accumulates a factor of J, (~ k'~c) exp[-(o/2)
m'j. This simple geometrical rule, illustrated in
Fig. 1, allows construction of all possible transi-
tion paths.

Note further that in leaving or returning to the
origin, we obtain factors Z, (ke). Since we are in-
terested in the limit k-+0, only l=+1 are of 1.ow
enough order in k to contribute to the diffusion.
It is also clear that we do not need to consider

Starting from the initial Fourier amplitude g
we can find the final amplitude ao as a product of
T transitions. Every transition can be considered
as a path in m, Jwt space. In fact, we will go back-
ward in time. Since we are interested in g
(k —+0) [see Eqs. (14}and (15}t, a path must start
at the origin m =0, k =+0. The simplest path is
one which never leaves the origin. It contributes

l I

-4 -3 -2 -
I 0

k

I

t

I

2 3 4

any paths which leave or return to the origin more
than once (too high order in k). As an illustration
of this method, we rederive and extend the main
result of Ref. 1, Eq. (20), valid for large e. As
pointed out, we require $ =+1 for the path steps
leaving and entering the origin. Thus, a path
must leave the origin through the point (k, m)
=+(0,1) and enter the origin through the point
+(1,-1). A step leaving the origin thus contri-
butes a factor J+,(ke) and entering the origin con-
tributes a factor Jy, (kq)e '~'. These two steps
produce a factor of k' in aor(k}, and by Eq. (14) any
additional factors of k will give zero contribution
to the diffusion.

Recall that each step, in the path accumulates an
additional factor of a Bessel function, which is
small for e» 1 with the exception of factors Z, (ke)
obtained by remaining at the origin (k —0) for a
step. Thus, for large e we can construct a series
in ascending powers of Bessel functions by con-
sidering paths with an increasing number of steps
not spent at the origin. The path with the fewest
number of steps spent outside the origin is con-
structed by connecting (0, 1) to +(1,-1) in a single
step, which can be done only as shown in Fig. 2(a):

We refer to this as a first-order path. It can be
traversed in T steps T —2 different ways, by re-
maining at the origin S steps before moving, with
S =0, 1, 2, ..., T —3. The contribution of these
T —2 paths to ao(k) is

FIG. 1. Examples of path steps in Fourier space con-
tributing to the probability amplitude. A single-path step
can connect the point (k, m) to any point (k', m') with
O'=A +m.
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0—

I

0 I

(21)(0, 0) -(0, 1)-(1,0) -(1,—1)-(0,0),

and a contribution to D of (- e'/4) J',(e)e . Again,
there is an equal contribution from the reflected
path. The choice m= —2 gives the path shown in
Fig. 2(c):

(0, 0)-(0, 1)-(l, —2)-(-1,1)-(0,0), (22)

-(km/2), contributes (- e'/4) J',(e)e ' to the dif-
fusion. There is an equal contribution from the
path obtained by reflection through the origin.
Now consider second-order paths, i.e., those
involving two steps connecting (0, 1) to +(I, —1).
From (0, 1) the path can move only to points
(1,m). To complete the path we require from
Eq. (11) that m+'1 =+1. The choice m=0 gives the
path shown in Fig. 2(b):

(c)

which contributes to D the term (e'/4)Z', (e)e-
Again, there is an equal contribution from the
reflected path. Third-order paths are also easily
obtained. The most general path involving three
steps connecting (0, 1) to +(I, —1) is given by

(0, 0)- (0, 1}- (1,m) - (m + 1, n) —+ (1, —1) —(0, 0)

(23)

with rn+n+1 =+1. The plus sign gives a contribu-
tion to D of

2—J', (e)J, ((m+1 )e)e " (24)

FIG. 2. Paths contributing to the diffusion for large e.
The first-order path (a) contributes the J2(e) term, and
second-order paths (b) and (c) contribute the J&(~) and
J3(e) terms, respectively. There is also one third-order
path which contributes the J2(e) term of Zq. (26).

and the minus sign a contribution of
+0 ~2

J1-m ~ Jgmm +1 & ~my+3 & 8

(25)

ar(k) =(T —2)[JO(ke)]' 'J,(k&)J-,(k&)

x e '~'J, [(1+k)e]e '~' (20)

which, from Eqs. (14) and (15), and using J, (ke)

Again, the reflected paths contribute equally.
Note that the rn =-1 term is only second order in
Bessel functions. Similarly, fourth-order paths
contribute some third-order Bessel terms,
which are easily obtained. Finally, we find

9 =1 —2J,(e)e —2J', (e)e '+2J', (e)e "+2J22(e)e 2' —2 g I', (e)J, (++I je)eQI,

+2J, (e)J,'(e)e "+2J (e)J'(e)e '~ . (25)

This result extends Eq. (20) of Ref. 1, which included only the first four terms.
Now consider the case e «1. We utilize the fact that the Bessel functions J, (e) are proportional to e'

when e «1. As we will see later, only paths involving l =0, +1 contribute to lowest order in ~. Consider
a path represented in Fig. 3. It starts at the origin (k, m)=(k, 0), k «1, stays there for s'transitions,
then moves to an ending point (p +k, 0), p integer (the case p = 3 is depicted on Fig. 3), and then remains
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T s -pt-ransitions at this point. The contribution from such a path for the case P &0 is equal to

aor(k) =J~0(ke)J, (ke) Q J',[(i+k)e]exp[-(cr/2)p]J[(p+k)e]J, ' &[(p+k)e]ao(p+k) . (27)

Path points on the k axis can remain stationary an
arbitrary number of transitions, and we indicate
these points with a cross. Factors Jo(ke) give 1 in

the limit k —0, and we will omit them in the fol-
lowing.

The diffusion is readily calculated to lowest or-
der in ~ for two limits, characterizing early and

late times. For the early time limit assume that
pe«1 and 1«T«(2/pe)' so that Jr '('(pe) =1.
Then with the use of the identity J,(e) = -J,(e) and

J,(e)=e/2, c«1 we find

aor(k) = TJ, (ke)J, (e) exp[-(o/2)]JO(e)Z, (e)

xexp(-o/2) J,(ke)a,'.
Summing over all n =0, I,2, . . . , we find

(31}

ditional J, (e) with l &0, and thus, will contribute
to D only in a higher order of e.

Gonsider now the limit T» (2/e}'. Then the
factors Jor ' ('(pe) in Eq. (19) are small. Owing

to this, only paths which come back to the origin,
contribute. The simplest path of this type is
shown in Fig. 4(a). Its contribution is equal to

a,'(k) =-Tk(p+k)e'
exp[-(v/2) p —ipv, ] . .(23) (32)

The factor of E in front of this equation comes
from the summation over s. (Here we use T»p,
the factor is acutally 7'-p-1. }

The case p & 0 can be considered in a similar
way. Using Eq. (15), and summing over all p
=+1,+2, . . . , we can obtain the contribution to D
which we combine with expression (17) to find

[1 —exp(-c)]
4 {1—2 cosa, exp[-(a/2)]+ e '] (29)

The approximate region of applicability of this
formula is

1 «T «(2/e), v» e . (30)

The class of paths represented by Fig. 3 is unique
in that they involve only two factors of Jg and no

higher-order Bessel functions. . It is easy to show
that any modification of the path will produce ad-

In the limit of e «1 its contribution to the diffusion
is equal to -(em/4) exp(-o); The exact same value
arises from a reflected path leaving the origin in
a downward direction.

Let us now turn to a more complicated path, de-
picted on Fig. 4(b). Every crossing of a path
with the abscissa at k, gives a factor similar to
that of Eq. (32):

J', (Ik, Ie)
1 —J,(I k, I ~)

If we designate by k„ the last cross to the right
different from the origin, then the number of pos-
sible crosses between the origin and that cross is
n„=k~ —1 ~ 0. The same applies for the number
of possible crosses between the origin and the
last one to the left, n~ = A~ -1 ~ 0. The total num-
ber of such crosses is

8 Sg +SQ ~ (33)

In the case n & 0, the contribution from any given
path of the type from Fig. 4(b) is equal to

Ae '
a'(I) = (-1)' *&

(
— exp (-v (m + 2) ] . (34)

I I

-4 -5 -2

Here d is the total number of diagonal lines on the
path. It is easy to see that for a given n„and n~
the total number of different paths which have a
positive sign in Eq. (34) is equal to Q", o C',„', while
the number of paths with a negative sign is ~,
C', „' ', where C„' is a binominal. coefficient. Owing
to the identity

FIG. 3. An example of a multistep path in Fourier
space. The crosses indicate points at which the path can
remain for several steps.

Q C,'„(-1)'=(1 —1) "=0,
f-o

(35)

we have exact cancellation of contributions from
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{a) {b)
rn

kL kR
=k

FIG. 4. Paths in Fourier space. They must leave the origin through the point (k, m) =+ (0, 1) and return through
+(& -&).

2—(-1)&e ~', p =1,2, 3, . . . . (s6)

these paths. Thus, only paths with n=0 contri-
bute. They are drawn on Fig. 4(c). It is straight-
forward to show that their contribution to the dif-
fusion is given by -M &e &M,

0&k&K,
(sa)

havior so the value of V, is irrelevant. We then
need keep only k ~ 0. Now truncate in Fourier
space through

Here the integer p corresponds to the number of
half circles around the origin. Also the contri-
butions from paths in clockwise and anticlockwise
directions are equal. Summing over p and com-
bining with Eq. (IV), we can finally obtain, to low-
est order in e for T» (2/e),

D/Do~ ——tank(o/2) . (37)

To conclude this section we recall that D~~ can
be derived by using the random-phase approxima-
tion, ' i.e. , assuming that the phase x becomes
randomly distributed after each step. Thus, the
deviation of D from D@~ represents the effect of
phase memory. Also, the number of steps neces-
sary to evaluate D -D~ corresponds to the char-
acteristic time ~, for the decay of this phase mem-
ory. In the case e»1, (D/Do~ -1(«I, is repre-
sented by the second term in Eq. (20), Ref. 1, and
the phase memory decays in a few steps 7.,-1. On

the other hand, if e«1, 0 «1, D «D~~, and a
large number of steps (~, -1/cr) are necessary to
calculate D -D~~. Thus, the phase memory de-
cays very slowly, as one would expect for nearly
integrable systems.

III. NUMERICAL SUMMATION OF PATHS
IN FOURIER SPACE

The analytical calculation of D/Dz, to higher
order in e involves the summation of a rather large
set of paths in Fourier space, and we have carried
out this summation numerically. From Eq. (10),
we find that symmetry or antisymmetry of a' (k)
under m, A —& -m, -A is propagated from t —1 to
t. Taking a'(k) as given by Eq. (7) with p, =0,
we thus have that a' (k) is symmetric under this
reflection. We are interested in long-time be-

D 1-RA
Dq~

(s9)

where A, = lim, „„a'„since the path must termin-
ate by entering the origin through (k, m) = (0, 1).
From Eq. (10), the vector A satisfies the matrix
equation

g = (I + fI + fl' + )~~ = (I II)-~~j

where

(40)

B„=e px[-(m' /o2)][J „,(k'e)5, ,

—Z,...., (k ~)~. ..], (41)

with

i mod(2M +1), i mod(2M+1) & M
imod(2M+1) —(2M+1), i mod(2M+1) &M

2 2

2M +1

(42)

(43)

and similar equations relating ~', 0' to j. Gaus-
sian elimination is then used to find the diffusion
through Eq. (39). As numerical checks on this
method, we used the trivial caseM =1, K=1, for
which B„.is 4x4, as well as confirming that for
«&1, g «1 the case M =1, K»1 converges for

and replace (k, m) with the single index n=(2M+I)
k+m where 1 ~n ~N, N=(2M+1)K+M. From
the preceding analysis, we can take the path to or-
iginate by leaving the origin through m =-1, A =1,
i.e. , a~ = 6„, exp(-o/2). (We are now following
the path forward in time, i.e. , backwards along
the arrows of Fig. 2. ) The term u,'(0) is excluded
since the paths considered return to the origin only
once, passing through (k, m) = (0, 1). The diffusion
is given by
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large K to the partial result

(7
(44)

2 16m
= tagfg -+
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n

1 1 Equation 44 is no
~~a to order g, papression for D,

t rm. In addi-=y 2 cancel this g erm.sions out to yg =y
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D Dl 40

Dql. Dqr, dam
(45)

for the initial conditions used. Here we have
used 2000 particles initially distributed uniformly
in z for 0 & x & 2z and randomly in p for 0 & p & 2p.
A detailed investigation of the dependence of D on
g and & is not feasible, and g =10 2, g =0.5 is
practically the lower bound. Each point on Fig. 6
required approximately two minutes of cpu time,
and the results, of course, still include statisti-
cai error. Reducing the error to 1% for the point
e =0.7 would by Eq. (45) require one-half hour of
cpu time.

To complement these results, we have used the
numerical path-summation technique discussed
in Sec. III. Figure 7 shows the dependence of the
numerical results on the Fourier-space truncation
parameters M, K, for g below the Chirikov

O

$15J

~C

I

C%

CI

5—
3 6

2

16 ~

M=2

e =0.5

cr= 10

gated the small-g and small-g regime. Results
obtained by advancing Eqs. (1) and (2) to T = 29000
are shown in Fig. 6. %e have used this method
for 0.6&q &1.5. At small & large times are neces-
sary to obtain convergent results due to the very
small rates of diffusion, and for &&0.6, it is
prohibitive to find the correction to Eq. (37) in
this manner. At & =0.7, for example, the diffusion
approaches its asymptotic limit as

threshold. ' For fixed% convergence is seen to
proceed stepwise in 1/K, indicating the existence
of critical scale lengths in phase space for con-
tributions to a particular order in &. The values
K =30, M=10 result in a 640x 640 dimensional
matrix B,, , which is approximately the computa-
tional upper bound. A determination of the diffu-
sion requires approximately two minutes of CRAY
time with M, K this large, and the practical
ranges of &, p are significantly extended over
what is possible by directly using the Chirikov-
Taylor mapping. For e &1, except in the vicinity
of g = 271, much smaller values of K, M suffice to
give convergent results. The large extent in
Fourier space of the contributing paths undoubted-
ly indicates that for «1 the diffusion is spatially
localized, - perhaps into filaments attached to se-
paratrices. In Fig. 6 are shown the results ob-
tained in the small-& regime for different values
of g. The g =0 results are consistent with the
vanishing of the diffusion below the Chirikov limit.
These results are seen to agree quite well with
those obtained by stepping Eqs. (1) and (2). As
shown in Fig. 7, M =5, K =20 are sufficient to
obtain convergent results at & =0.5, g =10 '. This
corresponds to a matrix of dimension 225 x225
and a saving of approximately a factor of 4 in cpu
time over direct use of the mapping. More signi-
ficant is the large extension of the domain of pos-
sible values of &, p provided by the path summation
technique, as shown in Fig. 6. The path-summa-
tion method converges for small e and g =10 '
with sufficient accuracy to determine the correc-
tion to Eq. (37), requiring two minutes of cpu
time. It is clear from the discussion following
Eq. (45) that determination using the direct map-
ping would require hours of cpu time.

Figure 8 shows the correction to the lowest-
order expression for D given by Eq. (37). Deter-
mination of this correction below & =0.5 is not
numerically feasible with the present schemes.
Assuming the corrections to be of the form of
even powers in &, a result expected by the nature
of terms appearing in the path summations, we
find that these results are reasonably well fit by

M =5, 10 D g t= tarn —I+ ao "e'+ f e',
DQL

(45)

0
0

I

0.1

I

0.2
I/K

I

0.3 0.4

FIG. 7. The convergence of the Fourier path-summa-
tion method. Shown are values of (D/D+z ) —tanA 0/2 as
a function of 1/K for various M. Here & =0.5 and o.

=10"2. As e —0 and g —0, t'he M= 1 curve is found to
converge to the value (3~ /1671 ).

with a=-,' and 5=2x10 '. The dependence of P on
g cannot be determined from the data available,
except that it must be quite weak. Of course, 5
must vanish as g-0.

Figure 9 shows D/Dq~ for 0&a &20, and g =10 ~

obtained with the numerical Fourier path-summa-
tion technique. %e find that large M, K is neces-
sary to observe the peak at g = 2g, where D be-
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-2
IO

8—

comes more than three times the quasilinear
value for this value of g. Chirikov' has pointed
out the existence of acceleration g) -~ as g —0. In

regular motion for q = 2', g interger. Particles
within these islands move according to V = Vo+ t.
Owing to this acceleration D- ~ as 0- 0. In
f t 'th' these domains the particles stream

c effi-rather than diffuse, and thus the diffusion coe
cient g) becomes infinite as o - 0. Further analy-
sis of this behavior will be reported in a future
publica j.on.t' ' Also shown is the analytic expression
for large & derived in Ref. 1.

Al

b

C

C)

I

CF
Cl

10
8—

V. CONCLUSION

Determination of the time evolution of the solu-
tion of the Vlasov equation through the method of

aths in Fourier space greatly extends the results
obtainable through direct stepping of the Chirikov-
Taylor mapping. The method provides lowest-
order closed-form analytic expressions for the
diffu ', and the means of calculating to higher
order numerically. We believe that it will prove
useful in the examination of other problems in-
volving chaotic or turbulent dynamics.
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