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%e have obtained expressions including corrections to scaling terms for a number of thermodynamic properties of
fluids near the critical point by specializing the appropriate derivatives of the logarithm of the grand partition
function to trajectories of experimental interest. Our justification for applying Wegner s general predictions, for the
functional form of the free energy, to this thermodynamic potential is that it is the potential for a fluid most closely
analogous to the Helmholtz free energy for the Ising model. It is found that the average of the coexisting densities,
the so-called rectilinear diameter, is a nonlinear function of the temperature with a temperature derivative which

diverges like the constant volume specific heat, at the critical point, with a system-dependent coefficient. The
second-temperature derivative of the chemical'potential, along either the coexistence curve or the critical isochore, is
found to be nondivergent at the critical point and its value is the same above and below T, . The corrections due to
the irrelevant scaling fields are found to be as important as those due to higher-order terms in the expansion of the
scaling fields around the critical point. Using the parametric representation of the linear model, we have been able to
obtain expressions for the elements of the matrix relating relevant scaling fields and physical variables in linear form,
in terms of experimentally measurable quantities.

I. INTRODUCTION

Even though it has been generally taken for
granted that Ising-type systems and real simple
fluids have the same critical exponents, it has
been experimentally observed that the temperature
range where this happens is very restricted. In

fact, according to experiments by Hocken and
Moldover' on SF„Xe, and CO„ the intervals are
as small. as 10 ' in reduced temperature. When a
single-term power-law expression is used to de-
termine the exponents from experiments on fluids
in a larger interval it is found that the best values
for the exponents are somewhat higher than those
predicted for Ising systems by high-temperature
series expansions. ' On the other hand, in a recent
study, Valls and Hertz' conclude that fluids and
Ising-like systems do not belong to the same uni-
versality class due to the fact that the odd terms,
which roust be included in the Ising Hamiltonian
when used to characterize a fluid, may produce a
new fixed point. However, ¹icoll' points out
through a global stability analysis, that the sym-
metric fixed point is strongly stable against odd
perturbations, thus supporting the conjecture that
fluids have the same universal critical behavior
as symmetric Ising systems. These results may
be taken to mean that, if indeed fluids and Ising-
like systems belong to the same universality class,
the expressions for the thermodynamic properties
of fluids must contain additional terms if the real,
and not the apparent, value for the exponents is to

be extracted from data analysis.
The purpose of this work is to obtain series of

correction terms to the simple power-law expres-
sions for the properties of fluids along various
trajectories in the thermodynamic phase plane.
We shall do so by explicitly applying to fluids, the
general predictions made by Wegner' on the func-
tional form of the free energy near the critical
point; such predictions are based on general argu-
ments from the renormalization-group (HG) ap-
proach.

In Sec. II, we discuss the features of the proper
fluid's thermodynamic potential to which Wegner's
predictions are to be applied. This section begins
with the remark that the Hamiltonian describing a
fluid, subject to density fluctuations, has a simi-
lar structure to that of an Ising model in the pres-
ence of an external magnetic field. Thus, invoking
the universality principle, we argue that the prop-
er thermodynamic potential, to which BG predic-
tions are to be applied, must be the logarithm of
the grand partition function. Such potential will be
assumed to possess symmetry properties which
are not immediately apparent when it is written as
an explicit function of the physical variables.

The general form for the thermodynamic prop-
erties, such as density, isothermal compressibil-
ity, and constant volume specific heat have been
derived. However, due to the fact that the obtained
expressions are lengthy, we only give, in Sec. III,
a summary of the properties along trajectories of
experimental interest such as the coexistence
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curve, the critical isochore, and the critical iso-
therm. The expressions for such properties are
given as expansions in noninteger powers of the
reduced temperature or density with coefficients
that depend on system-dependent parameters con-
tained in the thermodynamic potential. The explic-
it dependence will be given for some of the coeffi-
cients; for the others, the interested reader may
see Ref. 6.

We are able to relate, in Sec. IV, some of the
mentioned parameters to combinations of experi-
mentally measurable quantities through the use of
the parametric representation. ' Others are per-
force left undetermined, since very little is known
about the parametric representation of Wegner's
correction terms. Finally, in Sec. V, we sum-
marize and conclude on our results.

II. PROPERTIES OF THE THERMODYNAMIC
POTENTIAL

In order to apply the predictions from the BG ap-
proach to fluids, it is necessary to make a deci-
sion about which thermodynamic potential is the
proper analog to that obtained from the canonical
partition function for the Ising model, for which
the method was designed in the first instance. To
make such a decision, we note that the Ising mod-
el in a magnetic field is equivalent to a lattice gas
(or fluid) with a variable number of particles in a
fixed volume. Since the latter system is naturally
described by the grand ensemble, the proper
thermodynamic potential P must be

p =pv/ksT=ln g/N, , (2.1)

with Z the grand partition function, P the pres-
sure, N, Avogadro's number and v = V/N, a fixed
specific volume which turns out to be, in this
case, the critical volume per particle v, .

Thus, according to Wegner, P is a generalized
homogeneous function of the infinite, in principle,
set of scaling fields. However, for practical pur-
poses we shall restrict/ to depend on a set of five
scaling fields. The reason for such restriction is
that for systems undergoing a second-order phase .

transition, such as a simple fluid, there are three
relevant scaling fields, but since our aim is to ob-
tain the form of the correction terms, we shall al-
so consider the two most import irrelevant seal-
ing fields. The relevant scaling fields will be de-
noted by p„g» and g» the corresponding eigen-
values being d, da/(2 —n) with a=p& and d/(2 —n),
respectively; d is the dimensionality of the sys-
tem and P, &, and n are the critical exponents de-
scribing the coexistence curve, the critical iso-
therm, and the constant volume specific heat sin-
gulari'ty, respectively. We denote the irrelevant
fields by g„and gz, the corresponding eigenvalues

by -dL„(2 —n), and -db~(2 —n), respectively.
Theoretical expansions as well as high-tempera-
ture series expansions, for the three-dimensional
Ising model, have an estimated value of 4~ =0.49
+0.01. ln addition to a similar value for 6»
Wegner'@' has found that b, „=0.5+a +O(e') with
e =4-d. (It should be mentioned, however, that
Nieoll and Zia" ' have recently calculated ~„to
order ~', their result indicates a poor conver-
gence for the expansion and a value for b, „that
could be anywhere between 0.5 and 1.5.) The
scaling fields g~ and g„are found to corre-
spond to eigenvectors containing products of an
even number beginning with four, and of an odd
number beginning with five, of Ising variables,
respectively.

Therefore, we assume that a reasonable de-
scription of a fluid may be obtained from a free
energy p given as

p pa+ps(ghtgstgApgS) 0 (2.2)

po( p q t) =poo+pio p, +poit+ 0 (p, ~ t ) ~

g, (P, t) =g',.P +g,t+O(tI', t'),

gs (p, t) =g~oj +godet + O (p', t'),

(P t) gk ~gk P ~gk t+O(P t2)

(2.3a)

(2.3b)

(2.3c)

(2.3d)

where .j, = (p, —p.,)/p, , and t= (T —T,)/T, are the re-
duced chemical potential and temperature differ-
ence, respectively. The coefficients in the pre-
ceding expansions are dimensionless system-de-
pendent quantities some of which, at least, will be
identified with combinations of measurable param-
eters in the course of this work. The relevant
character of the scaling fields g» andg~ has been
already taken into account in setting the constant
term in their expansion equal to zero so that they
vanish at the critical point (P = t = 0). It should be
mentioned that the arguments of the grand parti-
tion function are p/ksT and 1/ksT so that the
above expansions should be in terms of such vari-
ables. However, p/ksT = (p,,/ksT)(j +1)/(t+1)
and (ksT) '= (ksT, ) '/(t+1); since P, and t are
very small in the critical region the scaling fields
may be expanded as indicated.

The homogeneity property of p, together with the

the sum of a regular part p, and a singular part
p, which is a generalized homogeneous function.
The scaling function p, is universal and dimension-
less, as are the sealing fields P, and g. Since in
the calculation of the grand partition function for
a simple fluid with n particles and chemical po-
tention p. , the effective Hamiltonian includes a
factor -pn the intensive variables are p, and T;
then according to general RG predictions, the
scaling fields are of the for m
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form of the eigenvalues corresponding to g~ and g&
imply that the singular part will have different
forms, each being appropriate to describe the
fluid in a given section of the thermodynamic
plane. If, in addition, we assume that p, satisfies
the following symmetry property:

1

P»(g»&gs&gAAs) P»( g»tgsr gArgs) i (2.4)

then the combination of signs of the relevant scal-
ing fields can be used to characterize the phase of
the fluid. Thus,

(2.5a)

(2.5b)

will be the appropriate form of p, to describe the one-phase region (gs &0), if the (+) sign is used, or the
two-phase region (gs &0), if the (-) sign is used, while

s (g g. g gs)= lg I" "'P (+1 g. lg, l

'",g. lg, l'"",gslg. l""),
will be the appropriate form of P, to describe the
high-density phase (g»&0), if the (+) sign is used,
or the low-density phase (g„&0), if the (-) sign is
used. The case of an asymmetric singular part
has been analyzed by ¹coll, Chang, Hankey, and
Stanley. " It can be shown in this case that the
chemical potential along the coexistence curve
will have a second derivative which diverges as
I t

I

' " ', at the critical point, with a coefficient
that is related to the asymmetry. So far, there is
no experimental evidence" supporting such an
anomaly.

Finally, we take into account that the scaling
function may be expanded in integer powers of its
arguments, the reduced scaling fields, about their
zero value. Either of these will be expansions
around the critical point (g» ~gs = 0), since the re
duced irrelevant scaling fields g» I g~ I

» or
g»l gs I

» (k =&,8) vanish in that limit even though

g, may be nonzero. However, the forms of the ex-
pansion of the scaling function will depend strongly
on the way the critical region is approached since
g„ I gs I

will vanish at the critical point if g„-0
first, while gs Ig„l '~ vanishes if gs-0 first.
Thus, the thermodynamic properties along the co-
existence curve are obtained from

p =p.(~, t)+
I g I""~ (g. Ig I

')*(g.
I g I")'

x(g lg I' )'P;„"'(0,-1),
(2.6)

where P»" (0, -1) is the value, at the critical
point, of the ith, jth, and 0th derivatives of

P»(g»lgsl -1 g~lgsl "gs le I ) with respect
tog„lg, l-', g, lg, l'&, andg„lg, l'&, respective-
ly. We have made explicit the fact that in the in-
homogeneous region, the potential p has discon-
tinuous derivatives across the phase boundary so
that E(I. (2.6) represents the expansion of two
smooth functions which are to be used in describ-
ing the approach from the li(luid (gas) phase when

the +(-) sign is used. Of course, the expansion
coefficients are not independent; in fact, the sym-

I

metry property (2.4) implies

P+ (( & (0 1) ( 1)i+»P (( ) (0-1) (2.6)

x (g„lg„I" ')'q* (*1,0),
(2.8)

where Q&»(+1, 0) is the value at the critical point of
ith, jth, and kth derivatives of p, (+1,g~ I g„l '~,
g~lg»l'"", gs Ig»l'~") with respect togslg„l-"',
gslg»l ~' ~~ andg~lg»l»" ~, respectively The.
symmetry property (2.4) implies that

q(„(+1,0) = (-1)»q,,( 1, 0) . (2.8')

III. THERMODYNAMIC PROPERTIES

Using the conditions for coexistence, contained
in (2.4) and (2.5a) together with the fact that P has
a discontinuous first derivative across the phase
boundary so that P»"'(0, -1)& 0, it can be found
that the coexistence curve in the g„-g& coordinate
system is given by

However, thermodynamic properties in the one-
phase region along the critical isochore are de-
rived from

j =p.(~, t)+
I g. I

""~ (g I g I
')'(g.

I g I
")'

j, g, k

x (g„l g, I")"P'. (0, +1),

(2.'I)
where P,', (0, +1) is the value, at the critical point,
of the ith, jth, and kth derivatives of P, (g„l gs I

~,

+1,g„l g, I
'~,g, I g, I

")with respec~ to g„ I g, I-',
gslgsl ~, andg„lgsl &, respectively. It should
be noted that since P has continuous derivatives
everywhere in the homogeneous region, the sym-
metry property (2.4) implies that the coefficients
with i+@ an odd integer are zero.

The thermodynamic properties along trajectories
close to the critical isotherm, either from the
high- (+) or low- (-) density side, are obtained
from

j =P.(~, f)+I g I" "'~ (gslg. l
'")'(g. lg. l"")'
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(3.3)

where the coefficients in this expression depend
on the system-dependent expansion coefficients for
the scaling fields as follows:

h
~Q 8 Qg~ gaQ y (3.2a)

~1 I g20 (801) zllg 10zol +802 Vx )']0/ (r,' )'0, (s.2b)

so that the limiting slope at the critical point of the
chemical potential along the coexistence curve is
given by the ratio of the leading coefficients in the
expansion of the relevant scaling field g„as
should be expected.

The behavior along the coexistence curve of oth-
er thermodynamic quantitites is obtained by insert-
ing the expressions describing g„and the chemical
potential along such a curve into the equation cor-
responding to the property of interest. Thus, for
the vaPor Pressure, we get

g c, „(g, I g, I
")*(g

I g I

' )

(s.1)

with the coefficients |",» universal quantities,
since they are functions of I', ("'(0, 1). This equa-
tion implies that the coexistence curve is described
by g„=0, as in ordinary scaling, when the irrele-
vant field are ignored. Moreover, if the contribu-
tions from such fields are not ignored, g„=0 is
asymptotically tangent to the coexistence curve at
the critical point, since ~+4„&1, as in revised
scaling but the reasons are not the same. In any
case, (3.1) implies that ge= 0 is asymptotically
tangent to the coexistence curve and the departure
from this curve depends on the antisymmetric ir-
relevant field. Substitution of the scaling fields in
terms of the physical variables in the preceding
equation yields an expression in p™, and t, which

may be solved for p. by iteration since ghQ~ 0 to
obtain an equation for the chemical Potential along
the coexistence curve

p, while the other is a function of the internal en-
ergy u and entropy & densities. Therefore, taking
into account that the singular part as well as its
first derivatives vanish at the critical point, we
find

Poo Peve /

Plo p'op v /hBT

p
ue tlcpe l( It 9 Tc0 pc

(3.3c)

(3.3d)

(3.3e)

with the subindex c denoting the critical point value
of the corresponding variables. This means that
the slope of the vapor pressure curve at the criti-
cal point is given by

Iim dP P~(1+uc &epe &cpc &nx

I"cue gQi
~c glQ

(s.4)

g" T . dp-Qj =-~ lim —.
dlo Pc r rc dT

An expression for the density along the tzvo

branches of the coexistence curve is given by

(s.5)

~:I I"":II"
+~i Itl((+(6-11+os+~ Itl8+d&+ ~ ~ ~ ) (3 6)

Thus, the ratio of' the leading coefficients in the
expansion of g~ may be.obtained from an experi-
mentally accessible quantity, the limiting slope of
the vapor pressure curve. However, the value of
this ratio is not uniquely defined since of the three
quantities, the internal energy density, the entropy
density, and the chemical potential, two are unde-
termined up to an arbitrary constant, while the
third is determined by the Gibbs-Duhem relation.
However, if we make the choice &0=0 and p,,=Pe/
p, then u, =0 and the ratio of the leading coeffi-
cients reduces to

p= ' '(p„+I', Itl+I', Itl'-T
vc

I
t

I

2 I2
I
t

I

2-a+as ~, ~ )

with

(~00 +P01)F10 $10g01
gh

glOg01 ~10g01 ZOO (0& 1),
gh

(3.3)

(3.3a)

(s.sb)

where the +(-) sign is to be used for the liquid
(vapor) phase and where the symmetry of P has
been already taken into account through the coeffi-
cients &I and &('. Thus, for the difference of coex
isting derisities we get' pa=(&. +&.Itl" +&2lt

I
"2+&.Itl + ~ ~ ~ )Itl',

Pe
(3.7)

with

It is possible to relate the coefficients pM, p»,
and p» to "measurable quantities" since one of
the first derivatives of P is related to the density

h
B e h +10g 01 810801 )+-(1)(0 1) J

&cvc gXQ

(3.7')
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while for the average of coexisting densities, the
so-called diameter of the coexistence curve, we

obtain

"'"=p.+D.ltl' +D. ltl

with

+&2ltl' ""+&.Itl' "'"'"+ ~ ", (s.s)

™E-h 1-N
B C -& ~10g01 g10g 01

0 p + ~c~10~ +h
C C 10

x (2- ~)P-,&"(o, -1) . (s.8')

Therefore, if b„&4-1 then average of coexisting
densities will have a leading behavior of the form

'7he divergence of the temperature derivative of
the diameter will be stronger than that of the spe-
cific heat. In all cases, we have assumed that
z~&e~ Q.

On the other hand, even though the corrections
from both, antisymmetric and symmetric, irrele-
vant fields are present, their relative importance
is uncertain since the value of 5„ is not known
accurately. In fact, it has been already pointed
out by Sengers"'"' that both contributions would
be of the same order if ~„=1.0 and therefore,
both should be considered in data analysis.

It is worth mentioning that Sengers, "in a gen-
eralization of mean-field theory, has found a diam-
eter behaving as

P"P' = p, +&,ltl' + ~ .~- (3.9)
ps+ps , ~ltlmo

2
(3.9c)

so that the diameter has a nonanalytic behavior
which is a consequence of the mixing of variables
in the scaling field g~, since the coefficient of the
temperature-dependent term depends on g10. This
result is equivalent to that obtained by Behr and
Mermin" in their proposal of revised scaling,
noting that their work is based on Widom's13 orig-
inal scaling proposal where g10 is identically
zero, as is the case for ferromagnets. If, on the
other hand, &~=4-1 then

'=
p +(Do+D.) ltl' + (s.ea}

~1.+PC - +~ )g[1-C-(&-1)+~~ic 3i (3.9b)

The temperature derivative of the diameter will
again be singular at the critical point, even if
there is no mixing of p, and t ing~, since the term
+3 in the amplitude of the diverge nc e turns out to
depend on the constant of the irrelevant field g„.
An equivalent result has been obtained by Green,
Cooper, and Sengers"'" in their attempt to extend
the rarige of validity of ordinary scaling. In either
case, at the critical point, the temperature deriv-
ative of the diameter has the same divergence as
that of the constant volume specific heat. Con-
trary to this result, we find that if 4„&4 —1 then

However, contrary to the preceding results, Hub-

bard and Schofield" in their BG treatment of a flu-
id predict a rectilinear diameter. In such treat-
ment the thermodynamic potential has the Ising
symmetry, Eq. (2.4), but only when written as a
function of the physical variables rather than as a
function of the scaling fields; this means that in
this treatment there is no mixing of the physical
variables so that the real asymmetries in a fluid
are neglected.

The isothermal comPressibility along the coex-
istence curve is

( )2' a pa(r +r ltlaa r ltl~aAT

, r;Itl "~.~ ~ )Itl- . (s.lo)

The (+) and (-) signs are used to describe the
liquid and gas phases, respectively with the first
coefficient given as

-& -h -y
r'=2( ")' &"&":g"g" P e'(0, -1).

(3.10')

Finally, for the constant volume sPecific heat along
the coexistence curve, we get

c„=h,(a, +a, ltl ~a, ltl~~x, lt I'a+".)It I-
(s.11)

g,"„g& g& g,", ' ~ 2(1 —u)(2 —n)P, ,~O'(0, —1)P„„"'(0,-1)—IPPoou~(0, -1)]'
2P "'(0, -1) (3.11')

This means that the constant volume specific heat has a discontinuity of size 2A, It l ~
' across the phase

boundary. However, the trajectory of interest in the two phase as far as C„'is concerned, is the critical
isochore. Along the critical isochore in the two-phase region, t;he constant volume specific heat is found

to be

c„=h,g,'+a, ltl +&,'ltl" + ~ ~ ~ ) ltl

with

(3.12)
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h E -E-h i2a
+10401 g 10g 01-

h
~10

(1-o.)(2 —o.)P00"'(0, -1), (3.12')

where we have taken into account that for most physical systems the critical isochore lies inside the
heterogeneous region.

So far, we have derived expressions for the thermodynamic properties along the trajectory characterized
by g„-g„lg~lo'o with small negative gz, which as it has been seen, is identified with the coexistence
curve. We are now interested in the one-phase region where the path of experimental concern is the criti-
cal isochore. Taking into account that such curve is identified by p= p„ it is possible to find that along
such a path the following equation is satisfied:

I, Z (g.l: I
')"(~.lg I'&)'(g lg I'")"D';„=&(l,&) - l~ I' ~ « lg I

')'*«.l~ I")'« l~ I'")"
j2 j, h

where the coefficients D,.», D',.», and D',.» depend
on the expansion coefficients in Eq. (2.V) and we
have explicitly taken into account that P2&'».,(0, +1)
and P& "212(0, + 1) are equal to zero F(p, ,.t) is a
function which can be expanded in integer powers
of P and t with a vanishing constant term defined as

Q(p f) — Pc c ~0 (3.13')
)2a(t+ 1) 8P,

'

The solution to Eq. (3.13) will give us the function
describing the critical isochore. Owing to the
presence of E(P., t) the solution for@„will not

only be a function of the other scaling fields, as
it is along the coexistence curve, but of p, and t
as well. We note, however, that if this function
were absent, the solution would be of the form

~.=- ~ (J';;. Ig I"'+&';,' Ig. l"'")
j2 joh2 l

I j+j (LL-1)+hb, g+ l 4 ggzi
f

where the coefficients are functions having expan-
sions in integer powers of p, and t, since they
depend on the scaling fields and their derivatives,
in particular,

(2 —cv)P„(0,+1)s lg Il&)1
0000 2P2 (0 + ] )sg /sP

(3.14)

(3.14a)

P„',(0, +1)
2P' (0 +1) (3.14b)

This implies that in the absence of E(ll, t), the
leading term will be Igsl2o ' or lgslo'o&depend-
ing upon whether a„&~-1or ~„&6-1, respec-
tively. Thus, higher-order derivatives along the
coexistence curve will differ from those along
the critical. isochore, even though both curves
may have a common tangent at the critical point.
In fact, if 6„&6-1, the third derivatives will be
different due to the mixing of p and t in g~. In
any case, (3.13) implies that very near the critical
point, gh=0 is asymptotically tangent to the criti-
cal isochore and the departure from this curve

I

depends not only on the irrelevant fields, but also
on the mixing of variables in g~, as well as on
the higher-order terms in p0. Replacing the scal-
ing fields by their expansions in (3.13) yields an
equation whose solution for p by iteration, gives
us the chemical potential along the critical iso-
choxe

p (]) (s +s f+g lf I2(o 1)

+ y
I
f I2(o ll+n+-. . . )f (3.15)

with

0 g 01 ~g 10 (3.15a)

P= ' (P +P'f+P'IfI2 +P f2-O' T

+PI It Il+2(o-1)+. . . )

with

(3.16)

(P~+P-)g ,".—P,.Z.", '

gh

-h E . -E«h 2 o
Pr — 8108 01 810801 Po (0 + 1)1 -h 00

g10

(3.1Va)

(3.1Vb)

We note from the above equations, for the chemi-
cal potential and the pressure along the critical
isochore and the coexistence curve, that according
to the Yang- Yang" relation

PC„sPll ~s ll

The anomalous behavior in the specific heat is
due to an anomaly in the second-temperature de-

sl =-lg20(go))'-gll lotol+g02(ho) ]~(k",0)'. (3 15b)

It is worth pointing out that f0=a and d, =g, so that
the coexistence curve and the critical isochore,
as far as the chemical potential is concerned, have
a common slope, as well as curvature, at the cri-
tical point.

The expression describing the pressure along
the cxiticaI, isochoxe in the one-phase region is
found to be
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rivative of the pressure since the term (8'p/BT')
is well behaved at the critical point.

The isothermal compressibility along the critical
isochore in the one-phase region is given as

fc,=, "(r,+r, ltl" +r, ltl"T

C C

(3.18)

with

~h E ™Sh

r 2(g& )2 ~~Qgol glogD1 P2 (0 + 1) (3 18/)
g10

Finally, the constant volume specific hegt along
the critical isochore in the one-phase region will
be

c„=k (A +AD ltl +A" Itl"+" ) ltl (3.1')
with

-h -8 -E -h 2~
AII — logol glogol (2 o&)(1 ~)PO (() + 1)

10

(3.19')

Since near the critical point gs)0(gs(0) may be
identified with the one- (two-) phase region, the
critical isotherm will be among those paths char-
acterized by small gslg„l "~. For such trajec-
tories the appropriate form for p is given by (2.8)
so that its derivative with respect to p will give
us the density p. Therefore, if we set t =0 into
the expansions for the scaling fields and then sub-
stitute these into E&l. (2.8) and the e&luation for p,
we will obtain expressions parametrized by p for
the thermodynamic potential and the density along
the critical isotherm. Thus, by eliminating p
from the resulting equations, we can obtain the
form of the critical isotherm p(p). That is, for
the pressure along the critical isotherm, we find

p
« Ip p P -P~ +F

~ —P,5 ~ ' 6+1

g„=~'a(e) (4.1)

III. PARAMETRIC REPRESENTATION

The expressions we have derived allow us to re-
late the nonuniversal expansion coefficients for
the scaling fields to experimentally measurable
quantities just as the amplitudes and critical ex-
ponents are. However, in order to obtain these
relations, we need to know the explicit form or the
value of the universal expansion coefficients for
the scaling function, either for a model or for a
system in the same universality class as that for
a fluid. There have been several forms proposed
for the scaling function. Brezin, Wallace, and
Wilson, "using RG techniques and the systematic
z expansion, have derived the equation of state
for Ising-like systems and have established that at
least to order &2 the results are the same as those
predicted by Schofield, Litster, and Ho' (SLH)
using the linear model of the parametric repre-
sentation. Thus, to that order, the correct rela-
tions between the system-dependent parameters
in the expansion of the scaling fields and purely
experimental quantities may be obtained using
the simplicity of the linear model to calculate the
explicit form of the expansion coefficients for the
scaling function.

In order to find the explicit form of the universal
coefficients P,'.„&"(0, +1), in terms of experimentally
measurable quantities, we shall parametrize the
relevant scaling fields rather than the physical
variables with the variables x, 0 and use the linear
model to determine P,(g„,gs, 0, 0). The irrelevant
scaling fields will be ignored in the scaling func-
tion since very little information about their ef-
fect is known. As far as we know, only one at-
tempt'9 to explicitly evaluate P;.~&"(0, +1) with j c0,
k = 0, has been made.

Let r be the distance from the critical point and
8 the distance from some origin along a path of
constant r; then the parametrization will be

&~+~s&ia
C + ~ ~ ~

~C
(3.20)

and

g, =~t(e), (4.2)

with

Pc~c' g,". ~,~. (t+P)g".9.'.(+1 0)
(3.20')

where h and t are analytic functions of 9. This
implies that the singular part p, (g„,gs, 0, 0) is of
the form

~"-"It(e)l'-™p,(h(e)lt(e)l-', +1)
ps g&&&gs~ r' 'Iyg(8)

I

' ' p (+1,t(8) Ih(e)
I

'
)

(4.3a)

(4.3b)

ap.'=r~m(8) .
~gh

(4.4)

where p(8) is an analytic function which is deter-
mined from the solution to the differential equation

h(e) = e(1 —e'), (4.1')

and the function m(8) is analytic.
For the linear model the functions h(8), t(8),

and m(8) are, to lowest order, given as
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t(e}= 1 —b'8'

m(e) =e,
(4.2a)

(4.4')

respectively. The parameter b is a universal
quantity and given by

5 —3
(5- 1)(1—2P) ' (4.2b)

2n(b2- I) (b'- 3) —2a(b2- 2)
2b'(n+ p) 2b'(n. + p - 1)

2h —3
2) (1 b 8 (4.5)

assuming that n t 0. Since the. coefficients
P;2&"(0, +I) .are the derivatives evaluated at the
critical point of the scaling function, we have

for the restricted linear model. Thus, in this
representation, the coexistence curve will be de-
scribed by 8 =+I (+ for the liquid phase and —for
the vapor phase). It should be pointed out that in
the SLH parametric representation there are two
system-dependent parameters, namely, a and k
that appear in the equations for k(8) and m(8), re-
spectively. Such parameters will appear -in P,
making it nonuniversal, which is contrary to what
we have assumed; we have therefore set g =0 =1.

The solution to the differential equation (4.4),
using the given forms for h, t, and m is

These equations together with (3.5) define the
transformation to lowest order from physical
variables to relevant scaling fields.

Finally, we can also identify the system-depen-
dent parameters g, k appearing in the SLH para-
metric representation with combinations of the
expansion coefficients for the scaling fields, by
noting that the relhtions of the former parameters
to measurable quantities are

(4.8)

and

—[I-(1-2V)b']ib'- li"-'= (4.9')

which combined with Eqs. (4.V) will give equations
whose solutions are

-h -E -E h 8~BTc h glpg01 glpg01
p V

g10 +h (4.10)

i

p
i

A-,p, =, p. -(1-2p)b']ib'-Ii"-'iti-", (4.8 }
}}Pcj

so that, the comparison of (4.8) and (4.8') with
(3.6) and (3.10) yields

(4.9)

and

(~- 3~) —b'(n+W(1 —2~)
2b'(n. + p) (n. + p 1)(a+p —2)—

xib2 Ii &&--&,

P,2&»(0, 1) ib2 1
i

e

(4.6}

(4.6a}

Q2
P "'(0 —1) =— — ib' —1~ '~ 2'. (4.6b)4(b'- 1)

1 -h™~
g 10g01- 510g01

-h -h
g10 ~10

(4.10')

Thus, in this approach, the features of a system
are implicitly contained in the scaling fields and
they appear explicitly through the derivatives of
the fields with respect to the physical. variables.

and

p,&/, D~ 2b'o. (1—&2)

k T, p, (n-3P) —b'(n+P)(l —2P)

(I 2p)b2 ( p 2 f32 l-&1-u&/&2-0. &

2(b2 —1) & ksT, I"2
(4.Va)

Ivl. a.' 0,'.g.', I =k'T (-b'- I+.
B c

(1 2p)b2 p &/
'}2/2

2(b2 —1) k T, j I"
(4.'jb)

Inserting the latter expressions into the equations
for 'Bp Dp and I'0 will give us three coupled equa-
tions whose solutions are

V. SUMMARY AND CONCLUSIONS

Four assumptions have allowed us to obtain ex-
pressions containing correction to scaling terms
and describing the thermodynamic behavior of
simple fluids near the critical point. The assump-
tions, on which our derivations are based, are the
following.

(i) The thermodynamic potential appropriate to
describe the critical behavior of a simple fluid is
that associated with the logarithm of the grand
partition function.

(ii) This potential possesses the general proper-
ties given by Wegner using renormalization-
group arguments.

(iii) A reasonable description of the fluid may
be obtained by considering only the two most
important irrelevant scaling fields in addition to
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the three relevant fields. Marginal scaling fields
are absent in these systems.

(iv) The thermodynamic potential possesses Ising
symmetry when written as a function of the scaling
fields.

The derivation of the expressions for the thermo-
dynamic properties has been specialized to tra-
jectories of experimental interest leading to the
critical point. Thus, along the coexistence curve,
we find as follows: the chemical Potentigl

I (&)=(& +&, Itl+4ltl""'"+&.Ifl""'""+")I&l

the pt'essuxe

p=(k, &,/v, )(f..+P.
I.
&I+P, I&I' +P. ltl'+P. I&I' ' +" ),

the difference of densities

(p. —p J/2p. = (B.+B.I& I "+B.I& I"'+B.
I

&
I

+ ")It I'

the avenge of densities

(p.+pc)/2=p. +D. I&l' +D, ltl+D. itl' ""+D.I&I' ""'"+"
the isothermal compressibility

(P')'&. =(k.T./P':, )p:(r,'+I"
I
&I" I; I&I' '+I'It I"'+" )

and the constant volume specific heat

c„=k,(~,+~, If I-+~, ItI +~, IfI"+ ~ ~ ~ )Ifl--.
Along the critical isochore, we find the chemical potential

(f) (s +g f +s f 2 (6-1) +g f 2 ( 6-1 )+n +. . . )f

the pressure

p=(ksT / )(p 0+P~t+P~Itl +P't +P'ltl ' ' ' + ~ ~ ~ )

the isothermal compressibility

&,= (k.T. /P'. .)(I'.+ I', I&I"+ I; I&i
"'+ I'. I&I'""+ ")I&I ",

the constant volume specific heat, in the one-pkgse region (f &0)

g.= k,(A,"+x,
I
f

I
+~,"

I

f
I

' + ) I
f

I

and the constant volume specific heat, in the two-Phase region (f &0)

c.=k.(/I'+A. l&l +A'Itl" + ")ltl

Finally, along the critical isotherm, we find the pressure

P=(» /v)(p +P lp'I'+P lp'I"+P lp'I"""'+ ")
where p'= (p' —p,)/p, is the reduced density and the +(—) sign is used to describe the approach from the
high- (low-) density phase. The expressions for the coefficients in the preceding expansions in terms of
the system-dependent parameters may be found in Ref. 6.

The expressions for the difference and the average of coexisting densities, as well as for the isothermal
compressibility along the coexistence curve, have been used together with the universal (&=k =1) para-
metric representation of the linear model to relate the system-dependent expansion coefficients in the
scaling fields and experimentally measurable quantities. These relations are

P v ] (] 2P)b2 fP v 2B2 w/(2-n)

go& gxo lim-h -h
Pc r~ d~

s P.v, D~ 2b'n(1 —n) 1 —(1 —2P)b' P.v, 'Ba" k,T. p, (~-3P)- b'(~+P)(l —2P) 2(b' —1) k, T, I,'
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Pave q, 2 l )B
—( 2-P )O' Pave

' ~B'
IZ104'ol +log'011 y T & ' 0 2(P l )B c .B c 0'

The four assumptions, as well as the form of the
derived expressions, allow us to conclude the
following.

. (a) RG selects the dependent variable, as well
as the set of independent variables, from the set
of intensive variables associated to a simple fluid.

(b} RG predicts the existence of a curvilinear co-
ordinate system which is unique, except for two
arbitrary constants. This coordinate system is
spanned by the relevant scaling fields and its
origin is located at the critical point. In the curvi-
linear system, the surface described by the sin-
gular part of the potential looks alike for all sys-
tems in the same universality class. The trans-
formation from physical variables to scaling fields
involves system-dependent quantities which can
be measured experimentally.

(c) The diameter of the coexistence curve is
nonrectilinear. The nonlinearity is such that the
temperature derivative of the diameter diverges
at the critical point like the constant volume

I

specific heat. However, this type of behavior is
not expected to be exhibited experimentally in all
fluids since the coefficient of the singular term
is not universal and may be below observability
for some systems.

(d) The second derivative of the chemical poten-
tial with respect to temperature, along either the
coexistence curve or the critical isochore, is
nonsingular at the critical point. This derivative
is the same at the critical point, when the ap-
proach is either from above or from below T,.

(e} The corrections to single power law -expres-
sions, due to the irrelevant scaling fields are as
important as those due to the nonlinear terms in
the expansions of the scaling fields in terms of
the physical intensive variables.
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