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Laser line-shape effects in resonance fluorescence
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The effects of different laser line shapes on the intensity and spectrum of resonance fluorescence from a two-level
atom are investigated. The laser model considered is that of an ideal single-mode laser operating high above
threshold, with constant amplitude and undergoing phase-frequency fluctuations analogous to Brownian motion. As
the correlation time of the frequency fluctuations increases from zero to infinity, the laser line shape changes from
Lorentzian to Gaussian in a continuous way. It is shown that for intermediate and strong fields, the average
intensity of fluorescence in the case of a resonant broadband Lorentzian line shape is higher than that in the case of a
Gaussian line shape with the same bandwidth and total power. This is in contrast to the weak-field case where the
higher peak power of the Gaussian line shape makes it more effective than the Lorentzian line shape. It is also
shown that in the case of a nouzero frequency correlation time (uou-Loreutziau line shape} the intensity of
fluorescence undergoes non-Markovian fluctuations. In relation to the spectrum of resonance fluorescence, it is
shown that as the line shape is varied from Lorentzian to Gaussian the following changes take place: In the case of
off-resonance excitation, the asymmetry of the spectrum decreases. In the case of resonant excitation, the center-
peak to side-peak height ratio for the triplet structure increases. Moreover, the recently predicted center-line dip,
which develops in the spectrum in the case of broadband excitation when the Rabi frequency and the bandwidth are
nearly equal, becomes increasingly deeper.

I. INTRODUCTION

During the last four years, a large number of
papers have been written dealing with the effects
of laser-field fluctuations on the resonance fluor-
escence from a two-level atom. ' " The earlier
of these papers dealt only with phase fluctua-
tions, ' ' mhile the later ones treated amplitude
fluctuations as mell. ' ' Three different Marko-
vian models have been used for the field: (i) a
phase-diffusion field, ' ' (ii) a chaotic field, ' "
and (iii) a Gaussian-amplitude field. "c Many in-
teresting new results have come out of these in-
vestigations. It has been shown, for example,
that the intensity of resonance fluorescence in
the presence of a field with amplitude fluctuations
is less than that in the presence of a field with
only phase fluctuations, having the same average
pomer and bandwidth. It has also been shown that
field fluctuations have a strong influence on the
spectrum of resonance fluorescence. In the case
of a phase-diffusion field, the finite bandwidth
broadens the three-peak strong-field spectrum,
and when the bandwidth is nearly equal to the
Babi frequency the spectrum exhibits a symmetric
doublet structure. In the case of amplitude fluc-
tuations, on the other hand, the side bands of the
strong-field spectrum are suppressed and tend to
reproduce the probability distribution for the
amplitude of the field. ' '

The three model fields mentioned above all have
Lorentzian line shapes, owing to the Markovian

character of their phase and amplitude fluctua-
tions. Bealistic laser line shapes, however, fall
off much faster than Lorentzian line shapes. Al-
though the effects found in the case of fl.uctuating
fields mith I.orentzian line shapes' ' should occur
also in the case of fields with non-Lorentzian
line shapes, one would expect some quantitative
differences. For example, in the case of off-
resonance excitation a Gaussian line shape, which
falls off much faster than a Lorentzian, mould ex-
cite fewer atoms than a Lorentzian line shape
with the same total power and bandwidth. In this
paper, we present for the first time a rigorous
treatment of resonance fluorescence in the pre-
sence of a fluctuating laser field with a non-Loren-
tzian line shape. The laser model considered
here was employed recently in the investigation
of laser line-shape effects in optical double re-
sonance. "a" It corresponds to an ideal single-
mode laser operating high above threshold, having
a constant amplitude and undergoing phase-fre-
quency fluctuations analogous to Bromnian mo-
tion."' As the correlation time of the Gaussian-
Markovian frequency fluctuations increases from
zero to infinity, the laser line shape changes from
Lorentzian to Gaussian in a continuous way. We
should point out that the special. case of zero cor-
relation time for the frequency fluctuations cor-
responds to the phase-diffusion model mentioned
above. The non-Lorentzian laser line shape, in
the general case of a non-zero-frequency correla-
tion time is associated with the non-Markovian

2580 1981 The American Physical Society



LASER LINK-SHAPE EFFECTS IN RESONANCE FLUORESCENCE 2581

character of the phase fluctuations.
The interaction of a two-level atom with this

stochastic laser field is described in the context
of the density-matrix formalism. To solve the
stochastic equations of motion for the atomic
density-matrix operator and its quantum correla-
tion functions, we use a recently developed method
for treating Markovian-field fluctuations. ' ' " In
this method, the Markovian-frequency fluctuations
are described statistically in terms of the margin-
al and conditional probability densities. The sto-
chastic density-matrix operator and its correla-
tion functions are then expanded in terms of the
eigenfunctions of the conditional averaging inte-
gral. This series expansion in terms of stochastic
eigenfunctions reduces the stochastic equations
of. motion into a set of deterministic equations for
the expansion coefficients. The interesting point
about this method, which takes into account the
statistics of the field to all orders, is that it gives
not only the average solution but the complete
stochastic solution as well. In Sec. II we describe
the statistics of the laser field, and in Secs. III and
IV we investigate their effects on the intensity
and the spectrum of resonance fluorescence.

II. STATISTICS OF THE LASER FIELD

The laser field considered in this paper is that
of an ideal single-mode laser operating high above
threshold. " Negl. ecting very small amplitude
fluctuations, the electric fiel.d can be written as

@(t ) g
- i [aop 3+ 4&t '/ J + c

whqre $0 is a constant amplitude, e0 the center
frequency of the spectrum, and Q(t) the phase
which undergoes Brownian- motion-type fluctua-

tions. The frequency fluctuations v(t) = dQ(t)/dt
are analogous to the fluctuations in the velocity
of a free particle in Brownian motion and obey
Qaussian-Markovian statistics. "" The mean
value of v(t) is zero and its autocorrelation is
given by

(v(t, )v(t, )) =-,'Py e @'i '~i (2)

(4)

where y=(v(t, )v(t, )&/(v (t)) =e P "& '~' is the correla-
tion coefficient for the frequency fluctuations.
Since v(t) is a Markovian process, Eqs. (2)-(4)
completely determine its statistics.

The phase g(t), being the integral of a Gaussian-
Markovian process, is also a Gaussian process
whose future is independent of the past and depends
only on the present values of v(t) and itself. We
should point out that Q(t) alone is not a Markovian
process, but together with v(t) they form a two-
dimensional Qaussian-Markovian process. '4 The
autocorrelation of Q(t) is given by

where 1/P is the correlation time and (PyD/2)'/'
the standard deviation of the frequency fluctua-
tions. In terms of basic laser parameters, 2ti is
equal to the sum of the decay rates of the cavity
and the lasing transition, while y~ depends on the
laser medium and is inversely proportional to the
output power of the laser. " The marginal proba-
bility density for v(t) is given by""

e-V I (Bt&)

f( )
( p )1/2 l (3)

and the conditional probability density by

((p(t, )Q(t, )» =( yD/2p)( 2pt —I+e p'~+e 8'2 —e p"~ '2')

where t, )t, and the double angular brackets denote stochastic average over both Q and v. Using the equa-
tion above we can show that

(([@(t,)- 4(t.)][4(t.)- 4(t.)]»=(y~/2P)(I e'"' "-'+e '"' "' e"""-')

where t, &t, &t, . Therefore, the phase increments
Q(t, ) —@(t,) and Q(t, ) —Q(t, ) are correlated and it
is only in the limit P- ~ that they become statis-
tically uncorrelated and independent. In this limit
Brownian motion reduces to a %iener-I. evy pro-
cess and the phase Q(t) becomes a Markovian pro-
cess, with the conditional probability density
f(/t„ t,

~ Q„ t, ) satisfying the diffusion equation
sf/st, = (y~/2) f/ s@',.sThis special case is known
as the phase-diffusion model (PDM)." The nor-
malized laser spectrum is the Fourier transform
of the field correlation function

ft(~)

=((exp[ted(t+

~) —ty(t)]&&

(
exp v t' dt'

~ 0

y e ~~'~ —1=exp — n (7 f+2 P

and is given by

L(v —u& ) =—Re x ""'""p"By x —i ' x
~ (8)

e . (d- (d
0 +p )

where x =yD/(2P) and y(a, x) is the incomplete
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gamma function. " The expression for the spec-
trum L(~ —&d,) is a complicated function of P, yD,
and e. A qualitative picture of the spectrum can,
however, be obtained from the time dependence
of the correlation R(r), which has a simpler form.
Since for very short times (7 « I/P; y~ arbitrary)

-Br 7 /4R(r) =e 2"D' /2, for frequencies
~

e —w2
~

» p the
spectrum is given by L((d- &u, ) =f(+ —&u,); that is,
for those frequencies in the Gaussian distribution
[Eq. (3)] for which one observes many cycles over
a frequency correlation time (~ &u —~, ~/P» 1), the
spectral weight is the same as the statistical
weight. For all the other frequencies, which are
not resolved within a correlation time, the spec-
tral weight is determined by the overall phase
drift which they produce. In the case of P» yD,
the central part of the spectrum for

~

~ —&u,
~

«P
is given by the Fourier transform of R(2)
= exp[y~/(2P)] exp(-yn

~

v
~
/2), which is I.orentzian

with full width at half-maximum (FWHM) y=yD.

Therefore, for P» yD the spectrum L(&u- &u, ) con-
sists of a I,orentzian peak with Gaussian wings for

~

~ —e,
~

» P. As P decreases (yD assumed fixed)
the Gaussian portion of the spectrum increases
and for P«yD the entire spectrum essentially
becomes Gaussian with FWHM y =2(ln2»D))/2.
Note that although according to ideal laser theory
p)yD, in this paper we will also consider the case
of P&yD as a mathematical model for Gaussian
line shapes.

The Nth-order field correlation function is given
15

(( ie(2t))e-i(t &t2). . . C &2 &t2/t t) &-(2 (2))/)))

2$ gg

=exp ——,
'- -1™t„ t . 9

n=1 m=1

Evaluating the equation above in the case of X= 2
we obtain

((g (2 (t )g)(2 (t2)e (8 (t3)p tC (t4))) —((p (2 (tl)g (2 ((2)))((g (2 (t3)g-H' (t4)))

X ezp — &)(e 2") '4' —e 2")-'2' —e 2 "2 t4'+e 2 "2 '2') ~,
2p )' (10)

where tl ~f2 ~13~14 As we can see, the second-order field correlation does not factorize exactly into
time-ordered first-order field correlations. This is true for all higher-order correlations and is con-
nected to the fact that the phase increments are not statistically independent. It is only in the limit of
P- ~ (PDM) that the factorization into first-order correlations becomes exact. As shown in Ref. 17, be-
cause of this nonfactorization, the decorrelation of atomic and field variabl. es in an atom-field interaction
is not valid for.the laser field considered here, except in the case of P-~.

Having described the statistical and spectral properties of the laser field, we now outline the method
used in averaging the equations of motion for the density-matrix operator and its quantum correlation
functions. The equations are written in terms of the instantaneous frequency of the field &(), +)/(t), and

averaged over t/(t) using the method developed in Ref. 9 for fields with Markovian variables (amplitude,
phase, and frequency). The average is carried out by expanding the atomic variables in terms of the
orthonormal eigenfunctions of the conditional averaging integral. The conditional probability density

f(t/„t,
~
t/„t2) is a generating function for Hermite polynomials and it can be shown that

where H~(x) is a Hermite polynomial. " Therefore,
Hg)/, /(Py~)t/2) is an eigenfunction of the condi-
tional averaging integral with eigenval. ue e ~~ "1 '~'.
The marginal average of the eigenfunctions is
(Hgv(»n)'/2}) =d„, and their correlation function,
(Hg)/(f )/(» )1/ 2)H (t/(f )/(» )I/ 2)) —e NBI ti

is the same as their eigenvalue. " Note that the
correlation time (1/f&/P) of the stochastic eigen-
functions decreases with increasing N, indicating
more rapid fluctuations. This is expected since
the higher-order polynomials involve higher
powers of v(t). In a series expansion of a stochas-

tic function of t/(t) in terms of H„(v(t)/(»D)t/2},
the stochastic Hermite polynomials play the same
role as the sinusoids in a Fourier-series expan-
sion, with the correlation time (1/NP) being ana-
logous to the period of the Ãth harmonic. By ex-
panding the density-matrix operator and its quan-
tum correlation functions in terms of the eigen-
functions of the conditional averaging integral. ,
the problem of finding the solution of their sto-
chastic equations of motion reduces to the simpler
problem of finding the solution of the determistic
system of equations for the expansion coefficients.
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III. INTENSITY OF RESONANCE FLUORESCENCE

In this section we calculate the average intensity of the fluorescent light emitted from a two-level atom
interacting with the stochastic laser field described in Sec. II. The two-level atom is characterized by
the transition frequency x», the electric-dipole moment p», and the spontaneous decay rate I' from the
excited level (~2)) to the ground l.evel (~1)). The interaction is described in terms of the atomic density
matrix p(t) in the rotating-wave approximation. Introducing the slowly varying amplitudes o&,.(t), defined
by

p (t ) o't (t )e t Etllot+ 4I ( z) l p (t ) p't (t)e tL' t«)oz«))t( z & L p (t )
—ot (t )

the equations of motion for the density-matrix elements take the form

o,', (t) ) -r 0 i ,'u&s -' o,', (t)

o,', (t) I' 0 i ze„
dt o,', (t) -z-, &u„z-,~„z[a+v(t)] —I /2

(12)

o,', (t)
~ 1 ~ 1-Z2%g 0 -i[t), + v(t)] —I"/2 o,', (t)

where 6= ~0 —m» is the detuning from resonance
and co„=25-' p,»$, the Habi frequency. If we now

integrate these equations with initial conditions
o,', (0) =1, o,', (0) =o,', (0) = v,', (0) =0, we obtain the
integral equations

n(t) =-1—i(us er "z "[o,', (t, ) —o', gt, )]dt, ,
0

(13)

o,', (t) =i e' '~'" ""&"[v(t,)o, (t, ) —gu~(t, )]dt, ,
0

(14)

where n(t) = o,', (t) —o,', (t) is the population inversion
and we use the normalization o,', (t)+oz, (t) =1. To
average these stochastic integral equations over
the frequency fluctuations first we expand n(t) and

a,', (t) in terms of the eigenfunctions of the condi-
tional averaging integral; for example,

tt(t) = Q («(t))„tt„), „,),Ã0 t& yD

where the averages (n(t))„—=(Hgv(t)/(py~)' ')n(t))
are expansion coefficients. Note that since H, (x)
=1, the zeroth-order coefficient in such an expan-
sion is the average value of the expanded stochas-
tic function. Next, multiplying Eqs. (13) and (14)
by H„(v(t)/(PyD)" ') and the joint probability den-
sity f(v, v, ;t, t, ) =f(v, t

~
v„t,)f(v, ), and then inte-.

grating over the random variables v and v„we
obtain the following equations for the determinis-
tic .expansion coefficients:

t

(n(t))z) = —
orat

—i&uzz
e'"'" ""' "[(o,', (t,))„—(o,',*(t,)&„]dt, ,

0
(16)

(ot (t)) =z e~ tt)'«rt z«Nsz~zz z)
(py )zt z

) (o (t )) + — (o (t ))
0 ««

-', t«„( (t,)) «}d«t, ,

where (o,', (t))»=—(Hgv(t)/(PyD)'~')o, ', (t)) . In deriving these two equations we have used Eq. (11), the ortho-
gonality relation for the Hermite polynomials and the recursion relation" "

xHgx) = [-,'(i)t+1)]"'Hs. , (x) +(-,'N)" 'Hs, (x) .

The integral Eqs. (16) and (17) can be solved by Laplace transform. The Laplace transforms of the ex-
pansion coefficients satisfy the infinite algebraic system of equations

(s + I'+ Np)L(n(t)) „=— o„o—i ~s[L(o,', (t))s —L(o,',*(t))«] t
(s+ r)

(s —i b, + r/2+Np)L(o z(t))s =i[2py~(%+1)] ~ L(o'zz(t))s, z

+t(-,'Py, e)"'L(o,', (t))„,—z-,'~„L(n(t))„ (20)
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X,(s) =
a
2a

Sa
b +b,

3 (22)

This expression can be evaluated numerically using
the iteration method for evaluating continued frac-
tions. '2 ~ '6 The time-dependent averages (o,', (t))
and (o,',*(t)) can then be evaluated by taking the in-
verse Laplace transform of Eq. (22), numerically.
In this paper, however, we consider only the
steady-state solution which can be obtained from
the relation

lim sX,(s) =((o,', (t = ~)),(o,*(t= ~))) .

The steady-state value of the average population
of the excited state is obtained from the relation

(am' = -i —s ((o,'g —(o,",) ) .

The average intensity of the fluorescent light is
proportional to (o2,). If the continued fraction in
Eq. (22) is truncated after b„Eq. (23) reduces
to

S/2
(24)

where the saturation parameter S is given by

where L and s denote the Laplace transform opera-
tor and its argument, respectively. Eliminating
L(n(t))» from the equations above and defining the
column vectors X„(s)—= [L(o,', (t))„,L(o,',~(t))„]and
Y —= (ix~(os, i~(us) we obtain the matrix recursion re-
lation

iv-aÃX», (s) + b»X»(s) —i[a(N+ I)]"'X„„(s)= I'o»0,

N=0, 1, . . . , (21)

where a = Py~/2 and 5» is a 2 x 2 complex matrix
with elements

b„~„=s i6+—r/2+Np+ 'uP/—(r+Np),

b
j

=s+ib. +r/2+Np+ —(cp/(r+Np),

I „~„=-I„~„=--,'&/(I +NP) .
The solution for the column vector X,(s)
=(L(o,', (t)), L(cr,'~ (t))) can be written in terms of
a matrix continued fraction

S/2""=I.S
Co

1- C
0 ~ ~ (27)

where S is the saturation parameter given in Eq.
(25) with b, =0 and

(2py~)'(N+ 1)(N+2)" [r/2+(N+I)P]'dg„. , ' (28)

with

In the limit of P-~ (PDM), Eq. (24) is exact. For
realistic finite values of P, however, Eq. (24) is
a good approximation only if 2PyD«bP+ (I'/2+P)'
and v„«(r+ p). These conditions insure that the
fluctuations in 022 are negligible compared to the
average value. From the first condition above we
can see that if P» yD, in which case the spectrum
is Lorentzian with Gaussian wings, Eq. , (24) is a
good approximation for arbitrary detunings. This
is also true for ~Pyn«(r/2)', that is when the
standard deviation of the frequency fluctuations
is much smaller than the atomic linewidth (quasi-
monochromatic field). If, however, —,'Py~
» (I'/2+ P)', in which case P«y~ and therefore
the whole spectrum is essentially Gaussian, then
Eq. (24) is a good approximation only for detunings
much larger than the width of the spectrum
(g'» —2py~). For excitation far off resonance
[~» I'/2+ p, (~py~)"'], Eqs. (24)-(26) show that
as the detuning is increased the incoherent part
of the excitation decreases much faster than the
coherent part. Note that the coherent part of the
excitation is the part which depends only on the
total intensity of the field, while the incoherent
part depends on the bandwidth of field as well and
vanishes in the case of monochromatic fields. In
the approximation of Eq. (24), the incoherent part
decreases as 6 4, while the coherent part as ex-
pected, decreases as 6 '. Note that for an ideal
Lorentzian line shape (P-~) the incoherent part
decreases as 6 ', and for y~&I' it is larger than
the coherent part. An ideal Lorentzian laser line
shape is, however, unrealistic in the case of far-
off-resonarice excitation. Exactly on resonance,
the averages (o,',)»-(o,',*)», N=0, 2, 4, . . . , satisfy
a three-term recursion relation and the steady-
state value of the average (o,',) can be expressed
in terms of a continued fraction

—.'(r+ w)
W~' 1-— +-,' I'+W'I'+ 2P

(25)
" 2 r+NP r/2+(N-1)P

pPyD(N+1)
r/2+ (N +1)p

(29)

with

p(»2+a)
& g~+(I/2+P)2 (26)

The continued fraction in Eq. (27) is more simple
to evaluate than the matrix continued fraction in
Eq. (22).
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Intensity correlation

The expansion of the stochastic density-matrix
elements in terms of Hermite polynomials [see
Eq. (15)] allow us also to evaluate multitime cor-
relation functions. As an example we evaluate
the two-time intensity correlation' ((&»(t)o»
x (t+r)&»(t+r)&»(t)», where the inner and outer
brackets denote quantum and field average, re-
spectively. As has been shown in ref. 10, this
correlation reduces to ((&»(t))(&»(t+ 7 it, i 1))))
.=(a»(t)o»(t+ v it, i 1))), where o„(t+v it, il)) is
the population of state

i
2& at time t+ 7, given that

the atom is in state il) at time t. Using Eq. (11)
and the orthogonality relation for Hermite pol.y-
nomials we can show that

(cr»(t)o„(t+7 It, 11)))

=Z&o22(t»~&o»(t+~lt I»»" ""* (30)
N-"0

where the averages (o»(t))„=a(o„o+(n(t)&„) can be
evaluated from Eqs. (19) and (22). Note that for
v=0, (o»(t+ 7'it,

i
1))&~=0 and the intensity cor-

relation vanishes, thus exhibiting antibunching. ' '
In the phase-diffusion limit (P -~) the averages
(o»(t)) „, (o,,(t+ T

i
t,

i
1&)&» B&0, are zero and there-

fore (o„(t)o„(t+~ it, i
1))& =(o„(t))(o„(t+~ it, i

1&)).
Thus, the two-time intensity correlation fac-
torizes into a product of average intensities,
in agreement with previous work. ' In the gen-
eral case (P e ~), however, this factorization is
not valid as can be seen from Eq. (30). The phy-
sical interpretation for this difference is the fol-
lowing. Pure phase fluctuations (P-~) do not pro-
duce any fluctuations in the intensity of fluores-
cence. This is because for P -~ all the frequen-
cies in the exciting spectrum act on the atom si-
multaneously. For finite values of P, however,
the different frequencies act on the atom randomly
and, therefore, produce fluctuations in the intensi-
ty of fluorescence. Since the intensity correlation
[Eq. (30)] is a sum of exponentials with different
decay rates and amplitudes, the intensity fluctua-
tions are non-Markovian. The effect of the fre-
quency fluctuations in the laser field is also ex-
hibited in the quantum averaged population of
state

i
2&. The standard deviation of o„(t) is given

by

Numerical calculatIIons and discussion

To illustrate the influence of the laser line shape
on the average intensity of resonance fluorescence,
we have performed numerical calculations for
three different values of the line-shape parameter
P, P=~, P=I', and P=0.1I'. The value of the dif-

. fusion constant yD has been chosen so that for
each value of P the FWHM of the spectrum takes
three characteristic values, y =0.1I (narrowband),
y= 1, and y =10I" (broadband). In the actual cal-
culations, the atomic linewidth I is set equal to
unity. For P =~ the line shape is ideal Lorentzian,
while for P =0.1I' the lineshape is essentially
Gaussian. In the case of P = I', the line shape con-
sists of a Lorentzian peak with Qaussian wings.
Figure 1 shows the ratio of the stationary average
population(o, ',) for p=0.1I' (solid line) and p=I
(dashed line) to the average population (cr,',&~ for a
Lorentzian line shape (P =~) as a function of the
Rabi frequency under exact resonance. As can be
seen, for very weak fields a line shape which
falls off faster than a I.orentzian produces a larger
excitation than a Lorentzian line shape with the
same FWHM and total. power. Even in the narrow-
band case (y=0.1I'), a Gaussian spectrum excites
-8% more atoms than a Lorentzian spectrum
(co„«1), while for y = I' this difference becomes
38%. For broadband excitation (y» I") in the weak-
field limit, the ratio of the populations excited by
a Qaussian and a I orentzian spectrum goes to the
limit (v ln2)'~' = 1.48, which corresponds to the
ratio of the peak of a Qaussian spectrum to that
of a I.orentzian spectrum with the same FWHM
and power. If y» 1', as the intensity of the field
increases, the ratio (o,',&/(oa, &~ decreases mono-
tonically to unity because of saturation. If, how-
ever, y&l the ratio decreases to a minimum val-

1.50

1.25
b
Al

~V
A

CV

1.00

[&o»(t)& -&oem(t)&']"'=(2 &o»(t»' I
(»)

0.75 I I

4
~R

10

Note that for p-~, the averages (o»(t))„, N&0
vanish and, therefore, the standard deviation of
o»(t) is zero. This shows that pure phase fluc-
tuations do not produce'fluctuations in the quan-
tum-averaged p6pulations.

FIG. 1. Plot of the stationary excited-state popula-
tion &o22) for p= I' (dashed line) and p=0.11' (solid
line), normalized to the population (~22) for P =, as
a function of the ratio co~/I' of the Rabi frequency to the
spontaneous decay rate. The detunirg of the fields from
resonance is zero and the laser bandwidth (y) takes
three different values.
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ue below unity and then goes to unity in the limit
of &ua/F-~. Therefore, a strong broadband i,o-
rentzian spectrum excites more atoms than a
Qaussian spectrum. The reason for the broad-
band Qaussian spectrum becoming less effective
than the Lorentzian spectrum at high-field inten-
sities, is that the power broadening of the atomic
line is stronger in the case of the Qaussian spec-
trum. In the case of P=0.1I' and y=101", the
minimum value of the ratio (oaf/(oa, )~ is 0.793
((oaa)

~ =0.385) and occurs at &ua-—4.3I". Figure
2 shows the average population (o,',) for P =0.1I'
(solid line) and P =~ (dashed line) as a function of
the detuning, for a Habi frequency e~ =101". As
we can see, the width of the various resonance
curves for (o,',) is much larger than the sum of the
laser and atomic l.inewidths, owing to saturation
broadening. The broadening is stronger in the
case of the Lorentzian spectrum which, because
of its higher wings, can cause saturation for de-
tunings larger than those in the case of a Qaussian
spectrum. In the case of a Lorentzian spectrum
(PDM), the saturation-broadened resonance curve
is also Lorentzian and its FWHM is equal to
(I'+y)[1+2&v'„/(I'+y)/I']"'. For a Gaussian spec-
trum we cannot find an analytic expression for the
width of the saturation-broadened resonance
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FIG. 2. Plot of the stationary excited-state popula-
tion {ovv) for p=~ {dashed line) and p=0.11' {solid
line) versus the ratio of the detuning (&) to the spon-
taneous decay rate (&), for a Babi frequency ~&=101"
and different values of the laser bandwidth (y).

curve. However, as we see from Fig. 2, for a
narrowband spectrum the width is approximatel. y
the same for Qaussian and Lorentzian line shapes.
It is only in the case of broadband spectrum that
the widths are considerably different. For y =101,
the FWHM of the resonance curve in the case of
a Lorentzian spectrum is -48t', while in the case
of a Qaussian spectrum it is only -19?'.

IV. SPECTRUM OF RESONANCE FLUORESCENCE

As has been shown in the case of exciting fields with Lorentzian line shapes, the spectrum of resonance
fluorescence is very sensitive to fluctuations in the exciting field. ' ' In this section we investigate for
the first time the dependence of the emitted spectrum on the laser line shape. The stationary spectrum
of the fluorescent light is given by"

S((u) = e"""o"(o„(t)&„(t+v))dt, (32)
CO

where eo is the center frequency of the exciting field and (&»(t)o»(t+ v)) =(p»(t)p»(t+ r))e'"&' the quantum

correlation function of the slowly varying atomic raising (&r» = ~2)(1 ~) and lowering (o» =
~

1)(2 ~) operators.
This quantum correlation can be calculated by solving the stochastic system of integral equations, '

g(t+r) =o2, (t)e "~ ""—i2(ue e' '~+ "'"i "[q(t, t,) —r(t, t, )]dt, ,
0

'r

f(t, r) = e "~'r'""& "(-i2v(t t,+)f(t, t,)+i '& [q(t, t, ) —r(t—, t,)]]dt, ,
0

(33)

(34)

q(t, r) = er "& "(-iv(t+t, )q(t, t.,) —i—,'(u„[g(t, t, ) -f(t, t, )]]dt, ,
0

(35)

r(t, r) = o,', (t) + (-iv(t t,+)r(t, t, ) I'+q(t, t,)+i ,'e [g(t, t, ) -f(t—,t, )])dt, ,
0

where

g(t, r) —=(o»(t)&»(t+ v)), f(t, r) =—(&»(t)o»(t+v))e @~""',

q(r, v) =-(&„(t)o„(t+r))e """',

(36)

r(t, v) =—(&x»(t)o»(t+ v))e '
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are quantum correlations, and o'„.(t) =-(o'„.(t)&, i,j =1,2 are quantum averages of the slowly varying ele-
ments of the atomic density-matrix operator. Averaging Eqs. (33)-(36) over the frequency fluctuations
)/(t), following the same procedure as in Sec. II, and then taking the Laplace transform with respect to 7

we obtain

)
&o,', (t)&„-i-,'(o [q„(t, )-R„(t,s)]

s —iA+ F/2+Np

Z„(t,s) =(i2f[a(N+1)j"'S'„„(t,s)+ &aNZ„, (t, s)}+i2~, [q„(t,s) —R„(t,s)])/(s+it + r/2+Np),

Q„(t,s) =(-i{[a(N+I)]2/'@~, (t, s) + KaN@„,(t, s)}—i 2(d„[G„(t,s) —E„(t,s)])/(s+ F +Np),

R„(t,s) =((o,', (t)&„—i([a(N+1)]2/'R„. , (t, s) + gaNR~, (t, s)}+FQ„(t,s)

+i 2&us[G~(ty s) —Fs(ty s)])/(s+NP),

(38)

(39)

where G~(t, s), F„(t,s), Q„(t,s), and R~(t, s) are
the Laplace transforms of the averages [see Eq.
(16)], &a (t, ~)& =-& g(t, ~)R (t (t+ ~)/(Py, )"')&,
(f(t, 7.)&„, (q(t, T)&„, and (r(t, r)&„, respectively.
The constant a =Pro/2 is the variance of the fre-
quency fluctuations.

The average spectrum (S((o)& can be obtained
from the relation'

(S((u)& = G, (t, i(do - i(d) +c.c. (41)

= I' 0~0, N = 0, 1,2, . . . , (42)

where 5„is a 5 x 5 complex matrix with elements

b„ I
„=-b((( I,*, = -i &+ r/2 N+p &+'„/(r N+p),

b,
I
„= b„l„=,'~;-/(r+Np),

b„l„=-(s+ir + r/2+Np)/2,

To solve Eqs. (37)-(40) for G (t, s) first we elim-
inate the equation for G„(t,s) and use the relation
&~,'.(t)& =-i-'~, [&o,'.(t)&„-&o„',*(t)&„]/(r+Np), t-,
to express the stationary averages (o' (t)& in
terms of (oI, (t)&„and (o,*(t)&„. Defining then the
column vectors X„(s)=((o/, (t)&„, ( o,',*(t)&„, ~ (t, s),
QN(t, s), R„(t,s)) and I'—=i —,'(ds(1, 1,0, 0, 0), we can
write the matrix recursion relation

igaNX„-, (s)+b „X„(s)-i[a(N+1)]"'X„.,(s)

b~
I s. = b N I.".=»s/4

b„l„=-b„l~=-b„l„=-1+41„
=--,'&ua/[(r+NP)(s —it), + I'/2+NP)],

b, l„= r+b„l„
=-[s+ I'+NP+ —'(d2/(s —i t(2+ I /2+NP)],

b.I-=-F+b. I-=-'~'/(s —i~+ r/2+Np),

b)( l42 2) l52= s

X,(s) =

ho+

—Y

2Q

3a
b +

+ o ~ ~
3

(43)

from which we. can calculate G,(t, s) using Eq.
(37). If ,'pyn« Is+I'+—pl', a'+(I'/2+p)', and
&us«(I'+ p), then it is a good approximation to
truncate the continued fraction after 5,. In this
approximation the spectrum of resonance fluor-
escence is given by

and all the other el.ements being equal to zero.
The solution for the column vector Xo(s) =((o",,(t))0,
(oI'~*(t)&o, Ilo(t, s), Q, (t, s), Ro(t, s)) can be written
in terms of a matrix continued fraction

(I'(-sss[1- w/(I'+22)]s(1'sw)/2)(s+ I'+ —'y, )(s+is+I'/2+2y, )

(I + W)(s+ ~2,)P(s)

(s+ I'+ ~,)(s+ib, + r/2+2y, )+—'(o'+-
P(s J

+ c .c . (xp2 (44)

where

p(s) = (s+ r+ ~,)(s —i t)+ r/2)(s+it)+ I'/2+2y, )

+ ~'„(s+I'/2+y, ),

o s + F + —,(o'„/(s —i t) + I'/2 + p) + p
'

' (s) ="s+~~+r/2+ p

I

with s =i(vo —(I)). The average population ( oz~&

and the parameter W are given by Eqs. (23) and
(26), respectively. In the limit of P-~, we see
that y, (s) =y, (s) =yo and Eq. (44) reduces to the
result obtained previously in the case of a phase-
diffusion field. ' 9 The effect of a finite, realistic
value for p is that for frequencies

I
e- &uo

I
» p

the effective bandwidths y, (s) and y, (s) tend to zero
and the spectrum (S(&u)& is the same as in the case
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of a monochromatic exciting field. In the case of
a strong (u&s» I', yo) resonant (b, =0) field the spec-
trum exhibits the well-known triplet structure. "
The positions as well as the widths and heights
of the three peaks, which are associated with in-
elastic scattering, are determined by the roots
of the polynomial P(s). In the spectral range
~u& —v, ~«P we can replace y, (s) and y, (s) by their
values at s =0 and the roots of p(it@, —i~) are then
given by

&u, = &u, —i-,'[I'+ 2y, (0)],

e, , = ~0+ ~„—i-,' [-,' I'+ —,'y, (0) + y, (0)] .

The real parts of the roots correspond to the posi-
tions of peaks, while the imaginary parts corre-
spond to their half-widths. The ratio of the height
of the center peak at ~, to that of the side peaks
at &u + es is [31 +y, (0)+2y, (0)]/[I +2y, (0)]. The
integrated spectral intensity of the center peak is
-50% of the total emitted light intensity, tbe re-

maining 50% being divided equally between the two
side peaks. In addition to these three peaks there
is also the elastic scattering peak corresponding
to tbe pole a.t ~ = ~, —i—,'y, (0) in the first term of
Eq. (44). The intensity of the elastic component
is, however, negligible for strong incident fields.

As canbe seen from the expression for the ratio
of the peak heights given above for the case &~
» I, y, the effect of the laser bandwidth is to de-
crease the ratio from 3(yD =0) to &(yD» I').' '
Actually, as ya increases towards ~„, the ratio
decreases even more to values below unity. That
is, the center peak becomes lower than the side
peaks, and the spectrum exhibits a center-line
dip. This effect was reported in a recent paper, '
and it was shown to occur only in the case of .

phase (frequency) fluctuations (amplitude fluctua-
tions cause the opposite effect). To see tbe ap-
pearance of the center-line dip analytically we
consider the special case &us=y» I'/2, b, =0, and

P-~, in which case Eq. (44) reduces to

(s+ ky)(s+ 2y) +!~'„
+C.C.(s+~)s(s+2y)+ ~'„(s+y)

2&@'„/(I +y) 0.087y 0.199y+0.373(v —m, +0.652m )
I'+ 2uPs/(I" + y) (&u —e,)'+ (1.657y)' (&u —&u, +0.652+a)'+ (0.421y)'

0.199y- 0.373(~- ~, —0.652~„)&~
((u —(uo- 0.652(us)'+ (0.421y)' i (45)

The spectrum is symmetric and consists of a
broad Lorentzian peak centered at ~0, two narrow-
er Lorentzian peaks centered at -co, +0.652~~,
and two dispersionlike components centered also
at -(d, ~0.652~~. The FWHM of the center peak
(-3.3y) is about four times larger than that of the
side peaks (0.84y), while the height of the side
peaks is about 35 times the height of the center
peak. The integrated spectral intensity of the
center peak is only -5/o of the total emitted light
intensity, the remaining 95% being divided equally
between the two Lorentzian side peaks. Note that
the dispersionlike components have zero integrated
intensity and they only serve to redistribute the
power from the ~~ —duo~ &0.652~a region into the

~

~ —&uo
~

& 0.652&us region of the spectrum. If we
take the inverse Fourier transform of Eq. (45)

we find that the stationary correlation
((o„(t)o„(t+7))), where the double angular brack-
ets denote both quantum- and classical-field aver-
age, is of the form

((o„(t)o„(t+r))) =he '~"

+e '~'~ (B,cosbr+B, sinb
~

7 ~),

(46)

with the constants being real positive. The term
proportional to sinb

~

7
~

gives rise to the two dis-
persionlike components in the spectrum and van-
ishes in the case of v~» y, 1". To explain the dif-
ference in the on-resonance spectra for the two
cases of m~» y, I' and cv„=y» 1, we decompose
the correlation ((o»(t)o»(t+ r))) as follows":

((o»(t)o»(t+&)&) =((o,', (t) Reo,', (t+ r))e'"'" "'"')+i((o,', (t) Imo,', (t+7))e" "' '" "), (47)

where o»(t) = o",~(t)e'~ "' o (t) =o'„(t)e '~ "' Reo,',
= (o,', + o,',)/2, and Imo,', = (o ~

—o,', )/2i In the cas.e
of a monochromatic field (/ =const), tbe two com-
ponents are uncoupled and for ~~» I', when elastic
scattering becomes negligible, we find that4"

(o„(t)Reo„(t+7)) =-(o",,(t))e r' "",
(va~(t) Imv~~(t + T)) — (o~~(t))e cos QpsT .

2g

It is cl.ear then that the c,enter peak of the spec-



LASER LINK-SHAPE EFFECTS IN RESONANCE FLUORESCENCE 2589

trum is associated with (&»(t) Re&»(t+ 7)) and the
side peaks with (&»(t) lmo»(t+ T)). We can also
see that one-half of the total intensity (o,',) is in
the center peak and the other half in the side
peaks. If the phase of the exciting field is fluc-
tuating, then the components ((&,', (f) Re&,', (t+ 7))
&( e[[~ & ~ &+~&&) and ((gs (f) 1m& I (f + 7))s[[&[&&-&[&+v&&)

are coupled. For ~~» I', y, however, the coupling
can be neglected and in the phase-diffusion limit
P-~ we find that"

((P (f) Re+ (f + r))&i[4(t&-o[t+v&&)

g&(ot (f)))e (['/2+&'»TI

((&I (f) 1m& I (f + +))+ [[o(t & 1(t+ v-& & )

=—.((o' (t)))e ""'""'"cosa& 7'.1
2z 22 B

Therefore, in the case of ~„»y, t we can still
associate the center peak of the spectrum with
one of the components of ((&»(f)&»(f+ 7))) and the
two side peaks with the other. Moreover, the ratio
of the integrated intensities for the center peak and
the side peaks is the same as in the case of mono-
chromatic excitation. In the case of v~ =y» I',
however, the coupling between the two components
of ((&»(t)&»(t+ r))) cannot be neglected. As a re-
sult of this coupling, the correlation
((&,', (f) Re&,', (f+ 7))e&[~"' ~"+"') develops oscillatory
terms and power flows from the center peak out
into the side peaks. There is also some power
flow towards the center of the spectrum asso-
ciated with the dispersionlike components in the
spectrum. As mentioned earlier, the integrated
spectral intensity of the central peak is now only

-5% of the total intensity while that of the side
peaks has increased to -95%. Since ((&,', (f)Re&,', (f)))
=((&,', (f) Im&,', (t))) = ~((&,', (t))) and, therefore, each
of the two components of ((&»(t)&»(t+ 7))), [E[l.
(47)], carries half of the total intensity, we can
no longer associate a particular spectral compo-
nent exclusively with either of the two components
of ((&»(f)&»(t+ r))). Another important difference
between the spectrum for ~~» y, I" and that for
~„=y» P is in the widths of the I.orentzian side
peaks. In the former case the width is 1.5(I'+y)
while in the latter it is -O.S4y, which is less than
the laser bandwidth. The narrowing of the side.
peaks relative to the laser bandwidth is caused by
the fact that for e„~y» 1', 6 =0, the atomic
dipole cannot follow the fluctuations in the field.
As the laser bandwidth is increased, the coherence
time of the atomic dipole increases towards the
maximum value I' ' (y» vz, 'I) and the spectrum
of resonance fluorescence becomes the same as
in the case of spontaneous emission. "'

Numerical calculations and discussion

We present now some representative results of
numerical calculations showing the influence of the
laser line shape on the spectrum of resonance
fluorescence. As in Sec. III, we consider three
different laser line shapes corresponding to P =~,
p = I', and p =0.1I". The I'WHM of each line shape
takes three characteristic values: y =O.ll", y = I',
and y =101". Figure 3 shows the resonance fluor-
escence spectra for P =~ (dotted line), P = I'
(dashed line), and P=0.11' (solid line), in the case
of exact resonance and a Babi frequency of ~~
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FIG. 3. Resonance fluorescence spectra for P = ~ (dotted line), P = I' (dashed line), and P = 0.1~ (solid line). The
values of the Rabi frequency (z), the laser bandwidth (y), and the detuning (&) are given in the figure in units of the
spontaneous decay rate (&).
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FIG. 4. Resonance Quorescence spectra. Same as
Fig. 3 but for a different. detuninl;.

=0.1I". The spectra are symmetric about e= x
and only the upper half (ur&&u, ) is shown. At very
low Rabi frequencies (&us« I') the atom acts like
a linear absorber emitter with very low intrinsic
quantum noise. Therefore, the spectrum of re-
sonance fluorescence is just the product of the
Lorentzian absorption line (FWHM = I') with the
laser line shape, ' "plus some very low quantum
noise. Note that the quantum noise, which is gen-

/

erally a nonlinear function of the incident spec-
trum, corresponds to inelastic scattering, while
the linear and dominant part of the fluorescence
spectrum corresponds to elastic scattering. The
spectra shown in Fig. 3 are predominantly elastic
and to a good approximation, are given by the pro-
duct of the absorption line and the laser line shape.
Notice that for y=0.1F the spectra resemble the
laser line shapes (~e —&u,

~

&I'), while for y=lOI'
they resemble the absorption line (~ &u —coo

~

&p).
Figure 4 shows the spectra in the case of a de-
tuning 6=51', with all other parameters being the
same as in Fig. 3. The elastic part of the spec-
trum exhibits now two peaks, one at approximately
the center laser frequency uo and another at the
atomic transition frequency ~» = ~, —A. If y « I'
then the peak at &» is negligible, while if y» I
then it is the peak at ~, that becomes negligible.
The inelastic part of the spectrum, on the other

, hand, exhibits a triplet structure for h&y, with
a center peak at x and two side peaks at coo

+ (&u~+ a')"'= ~, a A. Although the inelastic part
is negligible compared to the elastic part, its
contribution is recognizable from the triplet
structure of the total spectrum. For y =0.1I', the

triplet structure is resolved in the case of al.l
three laser line shapes, while for y=I' it is re-
solved only in the case of the Gaussian line shape

(P =O. li"). This shows that as the line shape
changes from Gaussian to Lorentzian, or as the
laser bandwidth increases, the inelastic com-
ponent decreases while the elastic increases.
It should also be noted that the asymmetry of the
spectrum, in the case of off-resonance excitation,
becomes less pronounced as the laser line shape
changes from I.orentzian to Gaussian. Note also
that for y=0.1I"and y=I', the peak at -e» in the
case of a Lorentzian line shape is about three or-
ders of magnitude higher than in the case of a
Gaussian line shape (P=0.II). This is because
the height of the elastic peak at ~», which is
determined by the product of the absorption line
peak and the laser spectral density at e= +», is
much larger in the case of a Lorentzian line shape
than in the case of a Gaussian line shape. At this
point we want to bring attention to some conflicting
interpretations. In Refs. 3 and 6, the spectral
component referred to herein as elastic peak at
(102' is identified as an inelastic component. We
should also note that in Ref. 6, the spectral com-
ponent referred to herein as inelastic part, or
quantum noise, is completely neglected. We want
to emphasize that the spectral component referred
to herein as elastic peak at ~» is associated with
elastic scattering and not with inelastic. It arises
from linear scattering and does not involve mixing
of the incident spectral frequencies. The only dif-
ference between the elastic peak at ~, and the
elastic peak at ~» is that the former is associated
with nonresonant scattering while the latter with
resonant scattering. In general, the elastic com-
ponent of the fluorescence spectrum corresponds
to light radiated by the quantum-average electric
dipole, while the inelastic component corresponds
to light radiated by the quantum fluctuations in the
dipole. " That is, if we write o»(t) =(o»(f)) + 5&»(t),
where (o»(t)) and 6o„(t) are the quantum average
and fluctuations of o„(t), respectively, then the
elastic and inelastic and inelastic components are
the Fourier transforms of the correlations
((o„(t))(o„(t+7))) and ((oo„(t)Oo„(t+ r))), respec-
tively. The inner brackets in these correlations
denote quantum average, while the outer ones
denote classical average over the fluctuations
in the exciting field. Note that in the limit of
very strong fields, when (o„(t)) vanishes because
of saturation, the elastic scattering vanishes as
well and all the light is scattered inelastically. "

Figure 5 shows the resonance fluorescence
spectra for a Rabi frequency ro~=10I, with all
other parameters being the same as in the case
of Fig. 3. The spectra are now predominantly in-
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FIG. 5. Resonance fluorescence spectra. Same as Fig.
3 but for a different Rabi frequency.

1.5

elastic and for y & v„ they exhibit the well-known
triplet structure. '9 The effect of the laser band-
width is to broaden the peaks and reduce the height
ratio of the center peak to the side peak. For
y= 0.1I' (quasimonochromatic field}, the effect of
the bandwidth is very small, but we can still
see that it depends on the laser line shape. In the
case of the Gaussian line shape (p=0.11', solid
line), the center peak and the side peaks are 16.5%
and 8.5% higher than the respective peaks in the
case of the Lorentzian line shape (p =~, dotted
line). For y = I', the broadening and suppression
of the peaks become more pronounced and their
dependence on the laser line shape is more evi-
dent. As discussed earlier, in the case of a Lo-
rentzian line shape (PDM) the widths of the in-
elastic center peak and side peaks for (d„» y, 1
are I'+2y and (3I"+3y)/2, respectively. In the
case of a Qaussian line shape, numerical calcula-
tions for y= I' show that these widths are -1"+ 3y
and -(31"+y)/2, respectively. The center peak
and side peaks in the case of the Qaussian line
shape are now 90% and 52% higher than the re-
spective peaks in the case of the Lorentzian line
shape. It is interesting to mention here that for
&us»y» I', in the limit of P-0) (ideal Gaussian
line shape} the three peaks in the fluorescence
spectrum are Qaussian with F%'HM equal. to y,
and the center- to side-peak height ratio is 2 to 1.
Thus, in the case of infinite correlation time for
the frequency fluctuations, each of the three peaks
reproduces the probability distribution for the
random frequency of the exciting field. This should
be compared with the other extreme of P- ~
(ideal Lorentzian line shape), where the three
peaks are Lorentzian and the widths of the center
peak and side peaks are 2y and 3y/2, respectively
(&o„»y» I'). Note that in this case the center-
to side-peak height ratio is 3 to 2. As a final

0.5 1.0
~~-~0~/R
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: ~30
g 25 y/r
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FIG. 6. Resonance Guorescence spectra for P =~
(dotted line), P =10~ (dashed line), and P = ~ (solid line}.

comment on Fig. 5, we should point out that for
y = I' the flat-looking fluorescence spectrum in the
case of P =~ exhibits a very small (2%) center-
line dip. ' The other two spectra for P = I' and

P =0.1I' exhibits strongly broadened triplet struc-
tures with the center peak being only a few per-
cent higher than the side peaks.

The development of the center-line dip and its
dependence on the laser line shape is shown in
more detail in Fig. 6 for a Babi frequency (d~,
=207. The laser line shapes used for this figure
correspond to P=~ (dotted line), P=101' (dashed
line), and P = 1" (solid line). Since the center-line
dip appears only for y.-(d~» I', we consider in
this case the following three values for the laser
bandwidth: y=20T', y=25I', and y=301. One of
the things that become clear from Fig. 6 is that,
as the laser line shape changes from Lorentzian
-to Qaussian, the onset of the center-line dip oc-
curs for larger values of the laser bandwidth. At
the same time, however, the center-line dip be-
comes deeper. The reason for the slower develop-
ment of the dip is that the broadening of the trip-
let from which it evol. ves is less for a Gaussian
line shape than for a Lorentzian one. On the other
hand, the reason for the increased deepening is
that the contribution of the side peaks to the spec-
tral density at ~=~0 decreases as the line shape
changes from Lorentzian to Gaussian and the side
peaks become slimmer. It should also be noted
that, as a result of the l.esser degree of broad-
ening, the separation between the side maxima is
larger in the case of Qaussian line shapes than in
the case of Lorentzian line shapes. The difference
between the center-line dip and the side maxima
in the case of a Lorentzian line shape (P = ~) with
bandwidth y = 20I' is f /0, while the separation be-
tween the side maxima is -0.8~~. When the band-
width of the Lorentzian increases to y=30F, the
center-line dip disappears as the spectral compo-
nents coalesce into a single line. In contrast, in
the case of a line shape with P = I and y =307 the
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FIG. 7. Resonance fluorescence spectra. Same as
Fig. 6 but for different Rabi frequency, detuning, and
laser bandwidths.

difference between the dip and the side maxima
is 62% and the maxima separation is -es. The
center-line dip disappears also in the case of
p= 1", but for larger values of the laser bandwidth
compared to the case of P =~. Finally, Fig. 7
shows the dependence of the asymmetry of the
fluorescence spectrum on the laser line shape, in
the case of a detuning 6=10?' and a Rabi frequency
~~ =101". The laser line shapes considered here
are the same ones as in Fig. 6. For y =0.1I' and
y= I' the spectra exhibit a triplet structure with a
center peak at vo and two side peaks at &u + (v'
+ bP)'~' The side peak at &u —(&u' + a')"' is en-
hanced by the overlap of the laser spectrum with
the Stark-shifted component of the atomic transi-
tion associated with this particular side peak.
This enhancement makes the side peak which is
closer to the unperturbed atomic transition fre-
quency higher than the other side peak, and, in

some cases, even the center peak as in the case
of y= I'. As the line shape changes from Lorent-
zian to Gaussian, the overlap mentioned above de-
creases and, therefore, the fluorescence spec-
trum becomes more symmetric.

En conclusion, we have shown that the laser
shape has a strong influence on both the total in-
tensity and the spectral distribution of resonance
fluorescence. With regards to the total intensity
we have shown the following new result. A Lo-
rentzian line shape, which in the context of our
laser model is associated with zero correlation
time for the frequency fluctuations, excites more
fluorescence than a Gaussian line shape (infinite
frequency correlation time) in the case of moder-
ate and strong resonant fields (&os& I'). This is
in contrast to the weak-field case where the situa-
tion is reversed. We have also shown that, when
the phase fluctuations are correlated (non-Lorent-
zian line shapes), the intensity of the fluorescence
undergoes non-Markovian fluctuations. With re-
gards to the spectrum of resonance fluorescence,
we have shown that as the laser line shape changes
from Lorentzian to Gaussian the following changes
take place: In the case of off-resonance excita-
tion, the asymmetry of the spectrum decreases;
in the case of resonant excitation, for (d~» y, I'
the center- to side-peak height ratio increases,
while for ~~-y» I' the center-line dip becomes
deeper.
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