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Magnetostatic wiggler fields X coskz + y sinkz, commonly used to model the undulators of free-electron lasers,
violate Maxwell’s equations and are “unrealizable.” Realizable wigglers that approximate the unrealizable ones near
the axis have a radial variation and an axial field component, both of which affect electron motion. Exact helical
equilibrium orbits are given for relativistic electrons in a combined uniform guide field and realizable wiggler, in
cylindrical geometry. The parameter ka that measures the size of the helix also measures the imparted quiver
motion, on which the gain of the laser depends. Hence, wigglers that impart substantial quiver motion necessarily
have electrons far from the axis, for which the unrealizable wiggler model is not valid. A linearized stability analysis
shows that the equilibrium helical orbits are either strongly unstable or else exhibit a secular growth, linear in time.
The trajectory of an electron that starts from given position and velocity in combined guide field and wiggler is also
found from the perturbation analysis, with corrections for realizability and for harmonics of practical wigglers, such
as a bifilar winding. Although the helical orbits are either strongly or weakly unstable, a class of nonhelical bounded

orbits is found when the secular behavior is suppressed.

I. INTRODUCTION

The pump wave of a free-electron laser! is often
conveniently provided by a spatially periodic mag-
netic field, called a wiggler. Its purpose is to
impart a sufficient transverse oscillatory motion
to the beam electrons to interact with the radiation
that is amplified. The wiggler field is commonly
generated by a periodic helical winding around the
drift tube, usually distinct from the coils that
provide the strong axial guide field. An electron
in a wiggler field is commonly thought to execute
a simple helical motion with pitch corresponding
to the periodicity of the imposed field.? The wig-
gler thereby acts as a pump wave for a three-wave
interaction whose instability accounts for the
growth of the backscattered wave and the density
modulation of the relativistic electron beam.
Analyses of the growth rate of this interaction
have been based on perturbations of such helical
electron orbits, which are equilibrium trajectories
in an idealized transverse wiggler field that varies
sinusoidally along the axis and has no transverse
variation. What is commonly overlooked or dis-
missed as unimportant, however, is the fact that
this idealized-wiggler field is unrealizable, be-
cause it violates Maxwell’s equations. This paper
addresses the question of how reliable the assump-
tion of an unrealizable-wiggler field may be, by
calculating the corrections to its electron trajec-
tories.

Theories of the effects of wiggler fields'~*S have
been based on their description by a vector poten-
tial that is a simple periodic function of axial
distance alone. This leads to a very simple mag-
netic field and to the consequence that the trans-
verse canonical momenta are constants of the

motion in the absence of a uniform guide field.

The resultant electron trajectories conforming to
these constants are simple helices and integration
along such orbits can serve to deduce growth rates
of the free-electron laser instability, among other
quantities of interest.

The fallacy in such analyses is that the wiggler
fields or potentials that have been used fail to
satisfy all the requirements of Maxwell’s equa-
tions. Although the wiggler field is solenoidal,
it is not irrotational and can hence notbe generated
by any windings, in the absence of a nonphysical
configuration of currents that would fill the entire
space in which the wiggler field is to be set up.
Such wiggler fields are hence unrealizable.

Realizable versions of the wiggler field have
transverse as well as axial dependence and also
an axial field component. Consequently, the trans-
verse momentum is not a constant of the motion
even without a guide field and the electron orbits
are distorted from their idealized spiral. The
stability and growth rates of the system are af-
fected.

As corrections to the motion in an unrealizable-
wiggler field are sought, it is also appropriate
to investigate the further perturbations that arise
in practical, rather than idealized, versions of
wigglers. They may be generated by a winding
such as a bifilar helix'® around the drift tube,
rather than the ideal sinusoidal surface current.
Such windings generate harmonics of the funda-
mental periodic field and these further distort the
motion of the electrons.

The justification for the widespread use of the
unrealizable wiggler, besides its simplicity, is
that it is an approximation to the correct field
pattern near the axis of the system. There is
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hence a need to determine how far from the axis
an electron may get before the approximation be-
comes unacceptable.

In this paper, both the ideal and practical ver-
sions of realizable-wiggler fields are considered,
in their full cylindrical geometry. The realizable
wiggler is treated as the simple unrealizable one,
augmented by a correction field that may be con-
sidered a small perturbation of the improper sys-
tem. The unrealizable wiggler’s axial field gra-
dient cannot be neglected in applying perturbation
theory to obtain the corrected orbits. A uniform
axial guide field is included in the calculations,
which are analytic throughout and fully relativistic.

The limitations of the calculations presented
herein are that they apply to single-particle mo-
tion in infinitely long wigglers and that, except
for the exact helical orbits, they are based on
linearized equations of motion. What emerges,
however, are corrections to the improper equili-
brium orbit in the unrealizable-wiggler field, the
stability of that equilibrium, and the transient mo-
tion from any given initial position and velocity of
the electron.

In brief, the results will demonstrate that, first-
ly, the unrealizable-wiggler approximation is un-
acceptable whenever the wiggler does impart a
significant transverse oscillation to the electron,
as it is designed to do, because it then also causes
it to travel significantly far from the axis. Se-
condly, the unrealizable-wiggler equilibria are
shown to be at least weakly unstable, within the
linearized regime. It is also shown that helical
equilibria can exist, but with a radius and initial
conditions different from those obtained for the
unrealizable wiggler. There is also a class of
nonhelical trajectories whose motion is bounded.
The results shed light on observations of beam
spreading and can help in designing useful wiggler
configurations. Since collective behavior in a
beam, including growth rates of the wave inter-
actions, are obtainable by suitable integration
along particle trajectories, the corrections to the
unrealizable-wiggler electron orbits can serve to
advance the theory of operation of free-electron
lasers.

II. WIGGLER FIELDS

A. Unrealizable wiggler

The prototype of the wiggler field is a unit vector
that varies periodically in direction along the z
axis, with period 27/k:

ﬁ)(kz) =% coskz +9 sinkz . 1)

As one progresses élong the z axis, this vector
is observed to rotate uniformly about the axis; it

is circularly polarized. The function #(0) satis-
fies the differential equation

aw(d) _~ _ -

'—d—é—— =z X w(e) N (2)
which implies precession. In cylindrical coor-
dinates, the wiggler field is

W(kz) =7 cos(kz — ¢)+ P sin(kz — ¢) . (3)

The wiggler . magnetic field is proportional to
w(kz) and when a uniform axial guide field is
superimposed, the combination is expressed by

(e/m)B(z) = wyib (k2) + w 3 . 4)

The magnetic field lines are helical. The cyclo-
tron frequency, in the laboratory frame, of the
uniform axial field is w, and the corresponding
frequency for the amplitude of the sinusoidal
transverse field is wy; m and —e are the rest mass
and charge of an electron.

This wiggler magnetic field is derived from the
vector potential

(e/m)A(z) = = (w, /k)ib(kz) , (5)

exclusive of the axial guide field; i.e., the wig-
gler’s vector potential is of the same form as the
wiggler itself.

It is clear, however, that this magnetic field is
unrealizable by any set of coils or windings out-
side of the space in which the field is to be gen-
erated. Since B is the curl of a vector potential
of the same form, its own curl is also of that
form and cannot vanish. The wiggler magnetic
field can hence exist only in the presence of a
volume distribution of current of density J given by

(Loe/m)I (2) =V X (e/m)B = —wkib (kz) (6)

throughout the space occupied by the wiggler field.
No such current distribution is present, of course,
within the drift tube where the wiggler field is
desired. Nor does the wiggler field become more
realistic in the presence of a beam of electrons,
not only because the flow implied by J includes no
axial flow but also because the current is opposite
in direction to that of a distribution of electrons
gyrating in the wiggler field, in accordance with
Lenz’ law. Thus, no distribution of electrons,
with or without accompanying ions, can make this
wiggler field self-consistent. The wiggler is truly
unrealizable.

Why, then, is this field used so commonly in
analyses of free-electron lasers? Besides the
simplicity of the periodic, circularly polarized
wiggler field and the fact that the field is just
proportional to its potential, the property of de-
pendence on only the axial coordinate z implies
that the transverse components of the canonical



momentum are constants of the motion. Combining
this with the constancy of the particle energy
fully determines the particle orbits in a simple
way and greatly facilitates the further analysis of
beams, collective effects, and wave interactions.
The justification for considering the unrealizable-
wiggler field, despite the violation of Maxwell’s
equations, is that it does exist on the axis of an
appropriate helically wound solenoid and is an
approximately correct description of its field
close to the axis. How far from the axis one may
get before the approximation breaks down is an
important question to be resolved.

B. Realizable wiggler

A wiggler magnetic field configuration that can
be realized within a region by appropriate surface
currents surrounding the region must be both sole-
noidal and irrotational. The field may be derived
from a potential that satisfies Laplace’s equation
within the region. The potential field may be
either a vector potential,

B=VxA, v*A=0, ‘ )

or a scalar potential (except at the source winding
itself),

(e/mB=Vp, vx=0. (8)

If the region is cylindrical and the axial variation
is to be sinusoidal, then the radial variation is
that of a modified Bessel function. The field that
reduces to the unrealizable wiggler when evaluated
exactly on the axis of the cylindrical space is de-
rived from

b, b,2) =2(w, /R, (kY) cos(d — kz) + w2z (9)
or, if the vector potential is preferred, from
(e/m)A =2%X VM with
M(r, ¢,2) =2(w, /R, (k7) sin(¢p — k2) + w /4. (10)

These represent a single cylindrical harmonic,
in the sourceless region up to the radius » =b
where the source winding or surface current is
located.

The realizable-wiggler vector potential is given
by ‘

(e/m)A,=~(w,/R)[21,(k7)/k7] cos(¢ — kz) , (11)
(e/m)A, = (wo /R)[21(k7)] sin(¢p — k2) +wr/2, (12)

and its magnetic field is

(e/m)B, = w 2L, (kr) cos(¢p — kz) , (13)
(e/m)B, == wy2[I, (kv)/kv]sin(¢ - kz) , (14)
(e/m)B, = wy2I, (kr) sin(¢ — kz) + w, . (15)

Since I,(x) - x/2 as x - 0, the realizable-wiggler
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field does approach the unrealizable one as » —0.

Near the axis, the lowest-order correction terms

to the unrealizable field vary quadratically with
radius for the transverse components and linearly
for the axial one. Up to cubic terms,

(e/m)B, = wtb(kz)

= (w, /8)k*r?[73 cos(¢ — kz) - ¢ sin(P - kz)], (16)
(e/m)B, - w 2 = wez (kr +k*°/8) sin(¢p — kz) . @an
The full corrections to wgb(kz)+ w2 are
Ale/m)B, = wy[l,(k7) = 1+ L(kv)] cos(¢ — kz),  (18)
Ale/m)B, ==wy[Iy(kr) = 1 = L(kv)] sin(¢ - kz), (19)
Ale/m)B, = w I, (kv) sin(¢ — kz) . (20)

Consequently, w, should be more precisely defined
as the laboratory-frame cyclotron frequency cor-
responding to the purely sinusoidal transverse
field amplitude as measured on the axis; the field
strength is a function of radius

[(e/m)B ], = ol (k) + (k) M2, @1)

so that measurements of transverse-wiggler-field
strength made off-axis should be corrected ac-
cordingly to arrive at w,.

C. Practical wigglers

Wiggler magnetic fields are commonly generated
by periodic helical windings at radius b outside the
drift tube. The ideal wiggler source current is
free of harmonics and constitutes a sinusoidal
surface current sheet at the surface »=5. Since
the radial component of magnetic field must be
continuous across this surface, the scalar poten-
tial outside the winding is

W, ¢, 2) =2(w, /R)[I(kb)/K] (kD) IK, (k7) cos(p — kz) ,
(22)

for »>b, instead of Eq. (9) for » <b. The fields
outside are as in Eqgs. (13)-(15), but with I, (k7)
replaced by

[1; (kD)/K; (kD) K, (k)

and without w,. The source current density is
given by the discontinuity in tangential field

pole/m)R (¢, 2) =7 X [(e/m)B,,, — (e/m)B,]
=dw +(p+2/kb)(w,/E,) sin(p — kz),
(23)
where
£, =[-kbK!(kD)]/2 = [RbK (kD) + K, (kD)]/2 . (24)

Besides the simple solenoid that generates the
guide field w,, this surface current involves a
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helical sinusoidal flow, periodic with pitch 27/k,
directed at angle tan™'(kb) to the axis.

The sinusoidal surface current sheet is, of
course, an idealization. In practice, a periodic
winding carrying concentrated currents approxi-
mates the current sheet, in the sense that the
fundamental component of the Fourier series that
represents the periodic current distribution can
correspond to the ideal current sheet. An example
is the conventional bifilar winding,'> which is a
double helical winding with equal and opposite
currents [, in wires spaced a half-period apart,
with pitch 27/k. Assuming the uniform static
magnetic field is generated by a tightly wound
solenoid separate from the wiggler winding, the
combined source current can be expressed as

K(¢,2)=K_ $+ (<z> +£;)13k ZKB(qb - kz -127), (25)
1

where pug(e/m)K,=w, gives the uniform field, the
summation over all integers makes the source
periodic, and the surface current for a single
period of the bifilar helix is

Kp(p—kz)=06(¢p—kz—1/2)- 6(p—kz+71/2), (26)

if the concentrated currents in the wires are
represented by delta-function surface distribu-
tions.

To obtain the magnetic field generated by any
such winding, it is convenient to express the
periodic surface current as a Fourier series in
the helical coordinate ¢-kz, because each Fourier
component of the source current generates a field
given by the corresponding cylindrical harmonic.
For the bifilar helix, the Fourier series is

ZKB(¢’ - kz - 127) =% Z sin(nn/2) sinn(¢ - kz),
1

0
(@7

where the origin has been located midway between
neighboring wires; only odd harmonics are pre-
sent. The field generated by any surface current
with a Fourier series given by arbitrary coeffi-
cients @, as in

(& JR= bt o475 ) Taasimn(o-k2), (@9)

is derivable as in Eq. (8) from a scalar potential
with corresponding series

W, p,2)=wz +?-k£° Z%’Q,,I,,(nkr) cosn(¢p — kz),

where

£,=[~nkbK!(nkb)]/2 = [nkbK,_, (nkb) + nK (nkb)]/2 .
(30)

The fundamental component, »=1, reduces to the
unrealizable-wiggler potential near the axis, pro-
vided that @, =1/¢,. For the case of the bifilar
helix, this requires a current

I5=(wo/ke),, /88, , (31)
in each helix, where
I, =4megmc®/e =17.0 KA.

As an example, for a wiggler of 8-cm period and
2-cm radius to provide a transverse magnetic
field of 500 G on axis (i.e., to achieve w,=1.4
GHz with 2c =3.75 GHz and kb =1.57) would require
I;=2.85 KA in the bifilar winding. It is important
to note that the required current increases roughly
exponentially as the radius of the winding in-
creases; it can easily get prohibitively large if
kb is not kept of order unity.*®

For a general winding of radius b and period
27/k, with Fourier spectrum @, as in Eq. (28),
the magnetic field generated within the enclosed
space will be that of an unrealizable wiggler,
plus two corrections. One correction is to the
fundamental Fourier component, as required to
satisfy Maxwell’s equations and already presented
above in Egs. (18)-(20). The other correction
field is comprised of the inevitable harmonics for
any practical coil configuration. The field is

(e/m)B = [wyib(kz) + w 2] + W Ry, p— kz), (32)

with correction fields

ﬁ(n,e>=§1(n,e>+§§"<n, 6), (33)
given by the fundamental
Qt(n, 6)=[I,(n) - 1 +1,(n)] cose , (34)
Q4 (n,0) == [I,(n) = 1 = L,(n)] sing, (35)
Qk(n, 6) =21, (1) siné , (36)
and the harmonics
Q7(1,6) = £,Q L n1(n0) + 1,y () | cosnt 37
Q5 (n, 0)==£,Q [Ly (21) = 1, (nn) ] sinné , (38)
Qn, 0)= £,Q.21,6nn) sinnf . (39)

Both the radial dependence of the correction field
and the oscillatory axial field component will be
seen to affect the electron dynamics significantly.
In the preceding formulas, the wiggler winding
has been assumed to have zero average current,
so that its Fourier series has no dc term. If a
winding is not balanced to zero net current per
period, the resulting uniform field simply affects
the value of w_. Also, the origin of the helical
coordinate ¢-kz has been chosen to give the wind-
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ing odd symmetry, making the cosine Fourier
components superfluous.

III. ELECTRON MOTION IN WIGGLERS
A. Unrealizable wiggler

Consider a single electron moving in a combined
wiggler and uniform guide field. In a magneto-
static field, the total energy remains constant at
its initial value but there is some division of the
available energy between axial and transverse
motions. In the uniform field, the axial drift and
transverse gyration combine into a helical orbit
about some rectilinear guiding center. With the
addition of the wiggler field, a helical orbit is
still allowable, as will be seen, but with its pitch
determined by the period of the wiggler and the
gyration radius affected by both the wiggler and
guide field strengths. For the case of the un-
realizable wiggler, which is independent of the
transverse coordinates, the location of the guiding
center is arbitrary.

To account fully for relativistic effects, it is
simplest to use the proper time 7 in the equation
of motion that governs the orbit ?(T)

&T_e

=== B'(?)xd—;

ar® m ar’ (40)

The observed time coordinate is just proportional
to the proper time,

t=y71, (41)

since the total energy ym:c? remains constant. The
constant magnitude of the velocity is given by

7 \2

where gc is the observed speed and, as usual,
Y=y -1 (43)

to satisfy the principle of relativity.

We develop the theory*:*%15 of helical motion in
combined wiggler and guide fields, in terms of
orbital position rather than velocity alone. In Eq.
(40), the magnetic field is B(¥(7)), evaluated at
the location of the electron. For the unrealizable
wiggler

(e/m)B° = w 2 + wyb(kz) , (44)

this depends only on z. We assume uniform axial
motion z =7, which means an observed axial
velocity #/y, and we seek spiral motion of some
radius ¢ about a guiding center line through ?o,
with the period of the wiggler,

T(T) =Ty +utz + a2 X d(kur) . (45)

This way of expressing the orbit gives the velocity

a form similar to that of the magnetic field, be-
cause of Eq. (2) and 2X (Z X ®)=—w
dr

Iy TUE= Rauw (kuT) . (46)

The acceleration
ar 2a o~
d—Ta——kaku z*w(kuT), (47)

is to be equated to that imposed by the magnetic
field at z(7)=uT:
€ =

ar . -
o s, A
po Box —=[w.2 +wu(kut)] X [uz — kawb(kut)]

==u(wy+wika)z X w(kut) . (48)

The assumed helical orbit is seen to be consistent
with the equation of motion, provided the axial
speed and the gyration radius are related by

ku=w, +wy/ka. (49)

However, these same two parameters are already
constrained by Eq. (42) to satisfy

= \2
(%) =u2(1 +k2a2)=726202 s (50)
so that
ku=yBkc/(1 +E2a?)"? - (51)

relates the drift and gyration to the electron ener-
gy. Combining Eq. (49) and Eq. (51) shows that the
axial speed and gyration radius are determined

by two adjustable parameters, the pump strength

p=wy/w, (52)

or ratio of transverse to axial field amplitudes,
and the energy parameter

g=vBkc/w,, (53)

which compares the relativistically Doppler-shifted
spatial frequency of the wiggler to the cyclotron
frequency of the guide field. The gyration radius
is given by a quartic equation for ka, obtained by
eliminating ku,

k*a*+2pk%a® + (1 +p? - g*)kPa® + 2pka+p® =0, (54)
and the axial motion is then determined by

ku/w,=1+p/ka. (55)

In case the guide field is absent (w,=0), the
normalization to the cyclotron frequency is inap-
propriate and the two relations are replaced by

(bu/ wo)? = (yBlc/we)? = 1=1/k2a2 . (56)

Before exploring the quartic Eq. (54) that gives
the basic characteristic of the wiggler/guide sys-
tem, the interpretation of the parameters must be
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clearly delineated. Because the unit vectors
w(kut) and z X w(kuT) rotate uniformly, the orbit
in Eq. (45) involves uniform axial drift and uni-
form rotation about a rectilinear guiding center.
These combine into a helical orbit, of pitch 27/k
and gyration radius 4. The magnetic field lines
are also helical, but the two helices do not cor-
respond. At axial distance z, the field line of the
unrealizable wiggler points along Z + pi(kz) while
the electron orbit is directed along z — kai(kz);
by Eq. (55), these directions must differ. The
electron does not follow a field line; if it did, it
would be unaccelerated and yet its trajectory
would not be rectilinear.

It is vital to realize that the parameter kq has
a dual physical significance. On the one hand, it
gives the size of the circle of gyration, as pro-
jected onto a transverse plane, in relation to the
period of the wiggler or pitch of the helix: It is
the ratio of the circumference of this circle to
the wiggler period. On the other hand, the axial
velocity of the electron is dz/dt =u/y while the
transverse velocity is, from Eq. (46) and Eq.
(41), kau/v, so that ka is also the ratio of trans-
verse to axial velocity; (ka)? gives the division
of the available energy between transverse and
axial motion.

In its latter interpretation, the wiggler has per-
formed its function of imparting a transverse
quiver velocity to the electron when the velocity
ratio ka=p, /B, is not too small. On the basis of
the former interpretation, however, ka measures
the transverse displacement of the electron from
its guiding center, normalized to the wiggler
period. When the guiding center lies on the wiggler
axis, the argument 27 of the Bessel functions that
give the magnetic field’s radial variation as in Egs.
(13)-(15) is exactly ka; when the guiding center is
off-axis, the apogee of the electron orbit is at a
value of k7 that exceeds kq. But k7, and hence
ka, is required to remain small for the electron
to sense a field that approximates the unrealizable
wiggler. The contradiction in the requirements
on the size of the quiver parameter ka is what
renders any analysis based entirely on an un-
realizable wiggler at least potentially suspect and
makes it important to determine at what values
of ka such analyses begin to break down.

The generality of the characteristic equation
(54) is enhanced when it is realized that kg is an
algebraic quantity; negative values of ka are as
significant as positive ones. The radius of gyra-
tion in Eq. (45) should be understood to be |al;

a negative value of ¢ merely shifts the phase along
the helical orbit by a half-period, since #(ka+m)
=—g(kz). Even the wiggler wave number % can be
assigned an algebraic sign. The vectors w(-%z)

and % (kz) rotate in opposite directions. The heli-
cal coordinate ¢-kz has right-handed helicity for
positive 2, while negative values of 2 represent

a left-handed helix. Similarly, both w_ and w,

can have a physically significant sign, specifying
the direction of the guide field along the axis and
the sense of the wiggler winding. Thus, both p
and g, as well as ka, are signed quantities; how-
ever, y and 3 must be considered essentially posi-
tive quantities.

Considering the quartic Eq. (54) to give ka as a
function of pump strength p =w,/w,, with electron
energy g =ygkc/ w, as a fixed parameter, the char-
acteristic curves pass through the origin with
slopes d(ka)/dp=1/(-~1+g) and are asymptotic to
ka=-pxg. There are two branches, correspond-
ing to the two signs of the square root in Eq. (51),
implying two signs for #, or axial motion either
forward or backward along the axis. For g<1,
ka and p have opposite signs and there are just
two values of kg for each pump strength, one for
each direction of axial drift. For g>1, one branch
has a positive slope near the origin and there can
be as many as four allowable values of ka, for
sufficiently small pump strengths. From the in-
version of Eq. (54) to give p as p(ka,g) in the form

p=—ka[l+g/(1+k*a®)"?], (57)

it is readily found that the pump peaks as a func-
tion of ka for

(ka) = (g% =1)2 (58)
at
b, =(g¥*=1)*2=(ka)y, (59)

beyond which there are only two solutions, rather
than four. The transition point g=1, at which the
Doppler-shifted spatial frequency equals the cyclo-
tron frequency of the guide field, is termed mag-
netoresonance. Since the total energy is a fixed
quantity, nothing spectacular happens to the elec-
tron at this point. However, the resonant branch
of the characteristic curve begins with infinite
slope when g=1. This gives rather large values
of ka for even small pump strengths; near zero,
ka=—(2p)'".

Figure 1 shows plots of the characteristic equa-
tion for an unrealizable wiggler, both below and
above magnetoresonance. The quiver parameter
ka is plotted against pump strength p=wy/w,
=B,/B,, for two fixed values of magnetization
g=‘yﬁkc/wc. The solid curves are for g=2.0 and
the dashed ones for g =0.8. The steeper branches
are for k4 >0, i.e., right-handed helical motion.
Typical parameters of a wiggler system might
involve a wiggler of 2 cm period and peak B, on
axis of 500 G, with a 10-kG guide field and elec-
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ka

FIG. 1. Quiver parameter kg vs pump strength p
= wo/wc for an unrealizable wiggler with guide field, for
g =Ypkc/w,=2.0 (solid) and 0.8 (dashed).

trons accelerated by 511 kV. These correspond
to kc =15 GHz, w,=1.4 GHz, w,=28 GHz, and
v=2. Hence, g=0.928 and »=0.05, for which the
characteristic equation yields 2a=-0.379 for
forward drift and ka=-0.0259 for backward mo-
tion. For the former, B,=0.810 and B, =0.307,
while for the latter, the motion is almost entirely
axial, with g, =0.0225, 3,=0.866 = 3.

Since the unrealizable wiggler is a justifiable
construct only at radii such that k7 is small, the
characteristic equation and the curves shown can
be considered reliable only in the region of small
values of ka. The nature of the deviations from
these results when kg gets large will now be ex-
plored.

B. Realizable wiggler

In a realizable wiggler, electron motion differs
from the above results because of both the radial
gradient and the axial field component. Yet, a
helical orbit with its guiding center along the wig-
gler axis can still be an exact equilibrium orbit.
The electron’s location at proper time 7 is now
expressed in terms of a rotating unit vector with
arbitrary initial azimuth 6:

T=uts+aw(eut+0). : (60)

This implies cylindrical coordinates »=a, ¢ =kut
+0, z=u7, and a helical coordinate ¢ — kz fixed at
0 along the orbit. For the unrealizable case, 6
was set at 7/2 to conform to the magnetic field.
The velocity along the trajectory is now

%E=u§ +hauz X w(kut+0), (61)

and the acceleration is
%I—;=—k2u2aﬁ)(ku7 +6), ' (62)
which is directed radially inward.
The general combination of a uniform guide field
and a wiggler derived from a helically symmetric
potential ¥(», ¢-kz) has the form

e/mB=w, 7+w,d+(w, - krw,)z , (63)
where
w, =3Y/or, w,=03Y/rd¢.
Along the electron trajectory, this becomes
(e/m)B=w,(a, )i +w,(a, )2 X d+[w,~ kaw,(a, 6)]2,
(64)

where @ =@ (ku7+6) again. The cross product of
Eq. (64) and Eq. (61) shows that the acceleration
imparted to the electron is equal to that in Eq.
(62) provided the following two conditions are sat-
isfied:

w,(a,0)=0, (65)
ku=w,— (ka+1/ka)w,(a,0) . (66)

The first condition states that the radial compo-
nent of the magnetic field must vanish along the
helical orbit. In the second condition, w,/ka is
the transverse field contribution and kaw, is that
of the axial component, which was neglected in
the case of the unrealizable wiggler. In fact, the
two conditions in Egs. (65)—-(66) were satisfied in
Eq. (49) for the unrealizable wiggler, which is
based on

W, =w,C080 , W, =-w,sinf, w,=w,, (67)

by neglecting the axial component kgw, and fixing
6 at 7/2 to annihilate the radial component along
the helix.

For the ideal realizable wiggler without har-
monics, the field components along the helix are

w, =wy2l] (ka) cosb , (68)
Wy ==—wy|2I, (ka)/ka] sing , (69)
w, = w,+ w,2l (ka) sinb , : (70)

so that 6 = ¢ — kz must again be fixed at 7/2 to
satisfy Eq. (65), or else at —7/2, which is equi-
valent to allowing for negative values of ka. The
axial motion is then given by

ku=w, + (ka+1/ka)(21, (ka)/kalw, , (71)
which should be compared to Eq. (49) for the un-
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realizable wiggler. Since the energy condition
still dictates Eq. (51), the exact characteristic
equation for an ideal realizable wiggler becomes

p=—kaF(ka)[l xg/(1 +k2a?)*"?], (72)
instead of Eq. (57), with the correction factor
F(ka) =ka/[2I,(ka)(1 +F%a®)] . (73)

This factor approaches unity as ka— 0, reverting
to the case of the unrealizable wiggler, but it is

a roughly exponentially decaying factor when ka
gets large. Note that the correction to Eq. (57)
involves more than merely increasing the effective
value of w, from its magnitude on axis to that cor-
responding to the transverse field at radius a.
That approach would still ignore the effects of the
axial field component.

Figure 2 presents plots of the exact character-
istic equation for the ideal realizable wiggler,
giving the quiver parameter as a function of pump
strength measured on axis, for the same magneti-
zation parameters used in Fig. 1, g=2.0 (solid)
and g=0.8 (dashed). Comparing the realizable and
unrealizable cases, it is evident that the curves
differ markedly as soon as the quiver parameter
attains even modest values, of the order of 0.25.
The asymptotes are completely different, as large
quiver parameters ka=ﬁl/ B, are allowable at
fixed total energy only for slow axial drift, which
demands only a weak wiggler. Consequently,
exactly helical orbits can be sustained in a wig-
gler/guide field combination only for sufficiently

ka

FIG. 2. Quiver parameter ka vs pump strength p
:wo/wc for an ideal realizable wiggler with guide field,
for g =vpkc/w,=2.0 (solid) and 0.8 (dashed).

weak pump strengths, contrary to the unrealizable-
wiggler result. For large ratios of wiggler to
guide field strengths, the available energy is insuf-
ficient to allow both the axial and transverse mo-
tions that would be consistent with the combined
magnetic field. A further consequence of this is
that the number of allowable values of the quiver
parameter can be six or none, in addition to the
two or four permitted by the unrealizable field.

In case the guide field is absent, w =0 and the
appropriate normalization of wiggler strength is
the parameter wo/ vBkc. The exact characteristic
equation for the ideal realizable wiggler is then

wy/vBlc =k2a?/[(L +k2a?)* /221, (ka)], (74)

which may be compared with Eq. (56) for the un-
realizable wiggler. Figure 3 shows kg plotted
against w,/yBkc for the exact case (solid lines)
and the unrealizable one (dashed line). The curves
are similar to those in Fig. 2, for which there is
a uniform guide field, but exhibit the symmetry
that is lacking when _#0. There is a peak value
of wiggler strength at a finite ka, unlike the case
of the unrealizable wiggler. Beyond w,/ygkc
=0.369 at 2¢=0.652, there is insufficient energy
to permit any helical orbit of the required period-
icity. For weaker wigglers, the allowed helix
may have either a small or a large radius, in-
stead of a unique one, for either direction along
the axis.

It is clear that calculations of the performance

ka

\\
S
-1 -05 _~
7~

FIG. 3. Quiver parameter ka vs pump strength
wy/vBkc for the realizable wiggler (solid) and the un-
realizable wiggler (dashed), in the absence of a uniform
magnetic guide field.
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of a wiggler system based only on unrealizable
fields can be relied upon only if conditions are
such that the quiver parameter %q is kept quite
small. In the literature on this subject, the trans-
verse motion imparted by the wiggler is often
cited but is has not been recognized that the quiver
parameter also measures the size of the helical
orbit. Imparting substantial transverse velocities
implies electron excursions far from the axis; as
is usually conceded, the wiggler model used is
valid only near the axis. Friedland and Hirsh-
field™ illustrate their work on the effect of the
uniform field on free-electronlaser gain witha case
of (yBkc/w,)? =99 at which the critical magnetiza-
tion implies that a quiver parameter (ka), =0.525
is contemplated. This is now seen to be beyond
the limits of applicability of the unrealizable-wig-
gler theory. Davidson et al.!? consider a wiggler
without the guide field, at (yBkc/w,)?=3, for which
ka=0.707 for an unrealizable wiggler, and also
at (yBkc/w,)?="15, for which k2=0.116. The latter
seems small enough for the assumption of the un-
realizable-wiggler field to be harmless but the
former is clearly not acceptable; the realizable
wiggler has no helical equilibrium for (yBkc/w,)?
less than 7.34. Bernstein and Friedland'® discuss
illustrative cases with (ygkc/w,)? =32. Without
the guide field, this implies a quiver parameter
ka=0.18, which is tolerable. The corresponding
critical guide field mentioned, however, is such
that p,=0.312 and (ka),=0.678, which invalidates
the unrealizable wiggler. The rest of their illus-
trations deliberately maintain 22=0.18, however.
Another way to illustrate the limited range of
applicability of the expressions for the unrealizable
wiggler is to replot its characteristic equation as

1) 1 1 | 1
2

4 5
we / ke
FIG. 4. Axial velocity vs guide magnetic field, for
fixed energy y=3 and pump strength wy/kc=0.5, for
the realizable (solid) and unrealizable (dashed) wigglers.

a relation between axial velocity 8, and magnetiza-
tion 'uc/ kc, for given energy y and pump strength
wy/kc.  This is the form presented by Fried-
land,!!+13-15 based on the unrealizable wiggler.
Figure 4 gives this form of the characteristic
curve for the realizable (solid curve) and unreal-
izable (dashed curve) wigglers for w,/kc =0.5

and y=3. Because the two cases agree only for
small ka, which implies small 8,/p5,, only the
portion of the dashed curves where g, is nearly 8
is reliable. Here, $=0.943 and if B, is appreciably
less than B, it can only be that g, has become sub-
stantial at the expense of 8,, so that 2z is large
and the basis for use of the unrealizable-wiggler
model is not valid.

For practical free-electron lasers, ka will not
exceed ~1 because of excessive coil current re-
quirements!® and reduced output frequency up-
shift'* when the axial velocity becomes too low,
but zq will also not be made too small because
the gain of the laser increases with the quiver
velocity. For highly energetic beams (large y
and g), ka will remain quite low.

IV. TRANSIENTS AND STABILITY IN WIGGLERS
A. Linearization

The helical orbits of unrealizable and realizable
combinations of wiggler and uniform guide fields
found above are equilibrium electron orbits. They
are the trajectories of an undisturbed electron
whose initial position and velocity conform exactly
to the predicted helical orbit. An investigation of
the response of an electron to small distur bances
of these orbits can answer several important
questions. Among these are the stability of the
equilibria, a determination of which of the several
possible equilibria for given energy and pump
strength can be expected to develop, the transient
development from given launch conditions differ-

. ent from the perfect helical ones, the natural fre-

quencies of the system, and even the corrections
to the unrealizable-wiggler orbits imposed by the
axial field or transverse gradient of the realizable
version or the harmonics that accompany practical
source windings.

The approach taken herein is to consider realiz-
able and practical combinations of wigglers and
guide fields as the superposition of a simple un-
realizable-wiggler and guide field and a small cor-
rection field. Perturbation theory is applied by
linearizing the equations of motion about the un-
realizable-wiggler helical orbit. The gradient
of the wiggler field enters into the perturbation
equations and is not negligible. The corrections to
the unrealizable field, the deviations of the initial
conditions from those that conform exactly to the
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equilibrium orbit, and the harmonics generated
by the source winding can all be treated as per-
turbations of the unrealizable-wiggler system
under appropriate smallness conditions.

Let the unrealizable-wiggler electron orbit,
given in Eq. (45), be r°(7) and let it be perturbed
to

T(1)=T(7)+5(7) . (75)

The accompanying perturbations in velocity and
acceleration are then d$/dt and d?5/dr?; T is the
proper time, as before. The magnetic field that
affects the electron differs from the unrealizable
field in Eq. (44) not only because of the correction
for realizability as in Eqgs. (18)-(20) and the har-
monics in Egs. (37)-(39), but also because it is
to be evaluated at a perturbed location, Eq. (75).
The field seen by the electron is

§(§°+ 8) =B°[®) +B'(7) , (76)
where
B’ = [B(1°+35) - BO(T°)] + aB(r° +8) )

includes both the change in the unrealizable field
due to the displacement of the orbital point and all
the corrections to the field, fundamental and har-
monics, evaluated at the displaced location. Sub-
stituting into the equation of motion, Eq. (40), and
subtracting the unperturbed portions leaves the
following equation for the orbital perturbation 5(7),

- d*s ~C Foo e-», dr® e =, _ds
s B @B B
This equation is exact but nonlinear, since B’
depends on 5(1)..

In recognition of the smallness of B’ compared
to BO if the electron is not too far from the axis,
the displacement may be considered small and
the equation of motion linearized about the un-
perturbed state. Quantities of the order of § are
to be considered first-order, as are also the small
correction fields A(e/m)B=w, as in Eq. (32).
Second-order quantities are to be neglected and,
to be consistent, the last term in (78) must be
considered second-order, being a product of two
small quantities. By this same consistency re-
quirement, the already small correction field
AB in (77) need only be evaluated along the unper-
turbed orbit T°(7). Finally, the change in the un-
realizable field that accompanies the displacement
$ may be replaced by the first term of the Taylor
series, the one linear in §:

Bo(r°+3) - Bo(r°) =5 - VB°(¥") . (79)

The linearized equation of motion for the displace-
ment S(7) is therefore

&5 _e = o(70 ds ( ,,.o) dr°
dar? —mB( )Xd +8-v BA(r7) | dar
dr®
+ on(r ) X 77—' (80)

The three terms on the right involve, respective-
ly, the original unrealizable field, its gradient,
and the correction fields, due to realizability and
to harmonics, all evaluated along the original,
unperturbed helical orbit.

B. Solution

The linearized Eq. (80) is the basic relation
that yields information on transient trajectories
from given initial conditions and on the stability of
equilibrium orbits. Note that it is a second-order
differential equation, despite the fact that the orig-
inal equation of motion, Eq. (40), appears to be
first order in velocity. This is due to the fact that
the displacement couples to the field gradient,
which can not be neglected.

To solve the vector differential equation, whose
coefficients are time varying, a transformation is
made to a coordinate system that conforms to the
unperturbed orbit. Simultaneously, the quantities
are nondimensionalized. The proper time 7 is
normalized to the Doppler-shifted spatial frequen-
cy, as T =kuT, and the displacement to the funda-
mental wiggler period, as

kS =S0(T)+S;,2 Xi(T)+S,% . (81)

Similarly, the forcing function becomes

-

Q(1°) =@, (T) + 9,2 X (T) +2,Z . (82)

The unrealizable-wiggler field is a function of z
alone and its gradient is a tensor

v (e/m)Bo(D] =w kz[2 X& (T)]. (83)

The normalized time derivatives in the wiggler co-
ordinate system appear as in

d(kS) (ds ) (dz > s @Sg -
d(ku‘r) -S,)w+ a7 +S WTT 2, (84)

because of the time dependence of the rotating vec-
tor #(T'). The transformed equation then becomes
a linear, constant-coefficient differential equation
for the three-component vector S:

dzs ds

T3 +A ST +BS =Ca(T). | (85)



The matrices A, B,C are constants

0 -2 0

A= -(],{]c— 2) 0 Wo 9 (86)
0 -w, 0
w, -1) 0 -w,
B= 0 G,-1) 0 ) @87
—-W, 0 —woka
0o 1 o0
C=wy| -1 0 —ka |> 88)
0 ka O

where w,=w,/ku and wy=w,/ku are the normalized
cyclotron frequencies of the guide and wiggler
fields. The matrices A and C are antisymmetric
and B is symmetric. They are known, once the
equilibrium orbit has been found. For given elec-
tron energy g =yBkc/w, and pump strength p = w,/
w,=w,/w,, this entails solving Eq. (51) with Eq.
(55), or

1+p/ka=g(1+k%a?)™* 2=1/w,, (89)

which then determines all the matrices.

In the standard manner, the solution to Eq. (85)
entails finding the eigenvalues of the 6 X6 matrix
D formed from A, B and the 3 X3 unit matrixI as

D= [A B] , (90)
10

in conformity with the normal, first-order form of
Eq. (85), ’

4% +DR(1)=Q0(D), (1)
where the 6-component vector R is comprised of
dS/dT and S and where the 6 X3 matrix @ is com-
posed of C and the zero matrix. The solution is_
generated by the matrix exp(-DT), whose evalua-
tion is straightforward, once the eigenvalues of D
are known. Alternatively, Eq. (91) may be Laplace
transformed to yield an algebraic solution

R(s)=(s +D)[R,+Q8(s)], 92)

where R(s) and Q(s) are the transforms of R(T)
and Q(T), and where R, is the initial value (T =0)
of the velocity displacement vector R(T). With
this approach, what is needed is the matrix
(s+D)™, which is the Laplace transform of
exp(-DT).

The requirement of finding the eigenvalues of D
can be simplified by resorting to the Cayley-Ham-
ilton theorem. It is readily verified that the ma-
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trix D satisfies

D*(D?+1)(D%*+a?) =0, ’ (93)
where .
a?=(w,/ka)?p (p - k%°). 94)

This reveals at once that the eigenvalues of D are
0, 0, +¢, and xi®, or that the natural frequencies
of the system in the wiggler’s rotating frame of
reference are 0,1, and @, when normalized to ku
and expressed in terms of the proper time 7. The
last of these, ¢, agrees with Friedland’s'! natural
resonance frequency, u.

Using Eq. (93), or invoking Sylvester’s theorem,
the required matrix inversion is easily expressed
as
s -D s-D s-D

sz+a2+ +E Ty (95)

(s +D)*=E, 1s241 770 s

where the constant matrix coefficients are

E,=D*D?+1)/[a®(a?-1)], (96)
E, =D*D%*+a?)/(1 -a?), 1)
Eo=(D*+a?)(D2+1)/0?, ©98)

This effectively completes the general solution to
the linearized equation because substitution of Eq.
(95) into Eq. (92) yields the Laplace transform of
the velocity/displacement vector R(T), for any
initial conditions R,, given the correction field
§(T) or its Laplace transform £(s). Before pro-
ceeding with the inverse Laplace transformations,
however, much can be learned about the system’s
stability by examining its eigenvalues.

FIG. 5. Region of strong instability in the ka -p plane,
shown shaded, with a typical branch of the equilibrium
relation for g > 1. The segments (g%3 — 1)V2<|kq|< (g2
- 1)1/ 2 are .exponentially unstable equilibria.
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C. Stability

The normalized, complex frequencies of the un-
forced system under small perturbations have been
shown to be 0, 1, and a@. The first question is then

'whether a is real, implying oscillation, or imagi-
nary, corresponding to exponential growth or
damping. From Eq. (94), @ is imaginary if the
product p (p —k%3) is negative. In the ka versus p
plots of the characteristic Eq. (89) for the equi-
librium state, this region of instability is con-
fined to the area between the ka axis and the p
=k%?® curve, as shown shaded in Fig. 5.

The characteristic equilibrium curve does tra-
verse the region of exponential instability if g~ 1,
beyond magnetoresonance. There is then a portion
of the positive helicity branch that represents un-
stable equilibria. It extends from the peak point at
(ka),=(g%/® =1)'/2 as in Eqgs. (58)=(59) to the in-
tercept at ka = (g2 -1)*/2. It should be recalled
that the equilibrium is that of an unrealizable wig-
gler, so that ka must be kept small for the results
to be reliable, although the linearized treatment
does provide the first-order correction when ka
becomes appreciable. This condition means that
the instability region is as shown when the wiggler
is operated close to, but beyond, magnetoreso-
nance, g 1. The unstable branch was reported by
Friedland,!! without qualification regarding the
size of ka.

In the region of real @, the perturbation is a
sinusoidal oscillation at normalized frequency a,
without damping. This natural response occurs,
however, in the frame of the rotating vector w0,
whose own frequency is unity, so that in the frame
of the observer, this response will appear at nor-
malized frequencies @+ 1, not at @. This is a con-
sequence of the inherent nonlinearity of the equa-
tions of motion, which was disguised by the trans-
formation to the rotating frame. In terms of the
observer’s time £, the actual natural frequencies
of this oscillatory mode are (@ +1)ku/y. For the
typical case of g=0.928 and p =0.05 discussed earl-
ier, the values of @ are 0.22 for ka =-0.379 and
@ =2.,075 for ka =-0.0259.

Of the other four eigenvalues, two correspond
to oscillations at unit frequency, which is the same
as the rotation frequency of # (T'), so that this
mode would combine with the rotating frame to
double the frequency and also rectify it to a con-
stant displacement. Most important, however, is
the double null eigenvalue, which implies a secular
growth, linear in time. This mode is weakly un-
stable, in the sense that it grows without bound but
only linearly, not exponentially. When combined
with the rotating frame, this mode appears as a
growing spiral. Unless this mode is suppressed,
it renders all equilibria at least weakly unstable.

D. Transient orbits

The complete solution for the perturbation of a
selected equilibrium orbit is contained in the in-
verse Laplace transform of Eq. (92). The factor
(s +D)™ is given as an explicit function of the La-
place transform parameter s in Eq. (95) and is
simply a combination of the transforms of trigono-
metric functions of a7 and T and of a constant and
a linear ramp function; for @ imaginary, the trig-
onometric functions become hyperbolic. The re-
mainder of Eq. (92) involves the initial velocity de-
viation and displacement, in R,, and the correction
field §2, evaluated along the unperturbed orbit and
Laplace transformed. ]

The six-component initial-state vector R, is
composed of dS(0)/dT and S(0), in the coordinate
system 0,2 Xi#,2 which is identical at T=0 to
%,9,z. Since the electron energy is fixed by 7,
only its initial direction need be specified, not its
speed. I the initial direction is along ¥, so that
dr(0)/dT =vBcd, while the initial direction of the
unperturbed orbit is, by Eq. (46),

= (2 —=kax)/ (1 +k%®)V 2, (99)
then
yBed =u (1 +k%a®)Y 2% +udS(0)dT (100)

so that the first half of the R, vector is given by
the rectangular components of

as(0)

77—=(1 +k2(12)1/2(f) —ﬁ). (101)

To specify the second half of R,, which is S(0),
note from Eq. (45) that the initial position of the
unperturbed orbit is °(0) =T,+ay, where r, locates
the guiding center. The latter is arbitrary for the
unrealizable wiggler and could be selected to keep
the magnitude of the perturbation as small as pos-
sible, so as to validate the linearized analysis
over a wider range. It is advantageous, however,
to specify the arbitrary location of the guiding cen-
ter of the unperturbed orbit as the coordinate ori-
gin., This ascribes any deviation from an axicen-
tered helix to the perturbation but also makes both
7 and ¢ -kz constants of the motion along the equi-
librium orbit. This achieves an enormous simpli-
fication of the forcing function, as will be seen.
With this choice, the rest of the R, vector is given
by

S(0)=£T(0) —kaj , (102)

in rectangular coordinates.

The last term in Eq. (92) involves the Laplace
transform of the correction field Q(T), due to
realizability and harmonics of the source winding,
expressed in the #,2X #,2 coordinate system as in
Eq. (82). The great advantage of axicentered un-
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perturbed orbits is that 'S'i(T) becomes merely a
constant vector ﬁo, as is clear from Eq. (32),
where kv is fixed at ka and ¢-kz is fixed at 7/2.
The Laplace transform in Eq. (92) is then £(s)
=Q,/s and the three components of §, are
-Q,(ka,1/2), Q (ka,7/2) and Q (ka,n/2). More
explicitly, as in Eqs. (33)-(39), the vector is

Q=4+ 3, 9, (103)
n>1

with
I,(ka) =1 =I,(ka)
al= 0 ; (104)
21,(ka)

for the ideal realizable wiggler or the fundamental
component for any winding, and

[1,.(nka) =I,,,(nka)]sinnm /2
Qr=tQ | I (nka)+I  (nka)lcosnm/2 |,  (105)
21 (nka)sinnm/2

for its harmonics.

The only remaining task is to invert the elemen-
tary Laplace transforms in Eq. (92), using Eq.
(95), or simply

s -D
= E 1Y)
R(s) ; (sz+ N2 Mot s(s2+ Az)ExQ 0

to obtain R(T), which includes both the dS/dT and
S(T) perturbations, as explicit functions of time.
In Eq. (106), A=a, 1, and 0 and the fact that the
E, and D matrices commute has been used. For
the real and nonzero values of A, the inverse
transforms are cosAT, sinAT/A, and (1 —cosAT)/
AZ; for the case of imaginary o, the functions be-
come hyperbolic; for A=0, the time functions are
the polynomial forms 1,7,T2/2.

Exclusive of the branch of the characteristic
equation corresponding to imaginary « and hence
exponentially unstable equilibria, the response to
small disturbances is seen to involve oscillatory,
undamped motion, except for the terms involving
A=0 in Eq. (106). The latter include functions
growing in time as T and T2 in the rotating coor-
dinate system, which appear as spirals of in-
creasingly large radius in the stationary frame.
They represent a weak, nonexponential instability
or secular growth of the orbits. Upon closer ex-
amination, however, it is found that the quadratic
time factor 72/2 is actually innocuous. This is be-
cause its coefficient DE Q&, in Eq. (106) vanishes
identically. The matrix DE @ is zero, a conse-
quence ultimately of the fact that the two subma-
trices B,C in Eqgs. (87)-(88) both annihilate the
same eigenvector. Consequently, the secular be-

s—=D >’ (106)

havior never includes a disturbance that grows
quadratically in time. However, the linear growth
factor is active, both in response to the initial con-
ditions R, and to the field corrections §,, and
renders the equilibria weakly unstable even when

a is real.

For given electron energy and pump strength
parameters g,p it is a simple matter to find the
equilibrium values of ka and w, from Eq. (89) and
evaluate the matrices A,B,C in Egs. (86)—(88),
then D and, with the natural frequency a obtained
from Eq. (94), to compute the three matrices E,
in Eqs. (96)—(98), as well as DE,, E,Q, and DE, Q.
The minimal corrections to the unrealizable wig-
gler are contained in @} of Eq. (104) for an ideal
wiggler free of harmonics, whereupon the vectors
E,Q¢%} and DE,QQ} can be evaluated. For a prac-
tical wiggler with arbitrary source winding speci-
fied by the Fourier series coefficients @, in Eq.
(28), the harmonics in Eq. (105) may be added to
Q} to arrive at the &, vector for any wiggler.
Also, from the initial location ¥(0) and direction of
motion ¢ of the electron, the vector R, can be
formed by Eqgs. (101)—(102) and E,R, and DE,R,
evaluated. All these constant coefficient vectors
are combined with the oscillatory (or hyperbolic)
and secular time functions given above to arrive
at the perturbation vector R(T), which gives both
the orbital velocity and trajectory deviations from
the selected equilibrium orbit. The last step in
tracing the disturbed orbit is to restore both the
equilibrium helix and the rotating coordinates to
arrive at the electron trajectory from given launch
conditions in a specified wiggler system, in the
form

kx(T)= —kasinT + R ,(T) cosT —R(T)sinT ,(107)
ky(T)=kacosT+R (T)sinT+R (T)cosT , (108)
kz(T)=T+Ry(T), (109)

with 7= kuT=kut/y=(1+p/ka)w,t/y. The products
of trigonometric functions in Eqs. (107)-(108) gen-
erate combination frequencies a +1, frequency
doubling to 2, and rectification to a constant dis-
placement, besides the growing oscillations of the
form T cosT and 7T sinT.

Figure 6 shows the projection onto a transverse
plane of the orbit of an electron in an ideal wiggler
with the typical parameters previously cited g
=0.928, »p=0.05, and ka= -0.379. Its initial posi-
tion was chosen as £¥(0)= —0.3 and its initial di-
rection was 9=2, exactly parallel to the axis. In
the absence of the wiggler, the electron would
simply continue uniformly, parallel to the axis at
its initial radial displacement. Thus, the wiggler
does serve to impart a transverse undulation to
the electron. The radial oscillations are evident
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FIG. 6. Transverse projection of electron trajectory,
from initial position 2y = — 0.3 with initial velocity along
the axis, for guide and wiggler parameters g=0.928 and
p =0.05, based on the equilibrium quiver parameter
ka = —0.379. The weak instability becomes evident after
about five axial periods of the wiggler.

in the figure. The time-averaged transverse posi-
tion, or guiding center, is found at -0.31j but it
is also clear that the electron spirals outward, as
predicted. After four or five periods of the wig-
gler, the electron has reached points far enough
from the equilibrium radius ]ka’= 0.379 to make
the linearized analysis doubtful.

The features illustrated in this figure, of oscil-
lations superimposed on a gyration with the event-
ual dominance of the unbounded outward spiraling,
are typical of the results for general initial condi-
tions, although the oscillation frequencies and the
rate of growth of the spiral may vary over wide
limits.

E. Bounded orbits

The tendency of an electron to spiral outward in
a wiggler is a consequence of the participation of
the null eigenvalue of D in the solution, Eq. (106),
for the perturbed orbit, leading to disturbances
growing as 7'. If the coefficient of that linearly
growing perturbation mode could be made to van-
ish, the remaining disturbance would be merely
oscillatory (assuming real @) and the orbit would
remain bounded. Examination of Eq. (106) shows
that for the secular behavior to be eliminated the
vectors DE R, and E Q8, must be made equal. In
fact, these two six-component vectors are always
proportional to a single eigenvector, which de-
pends only on ka, so that just one condition on a
combination of initial positions and velocities need

be satisfied to suppress the linearly growing mode.

|

FIG. 7. Transverse projection of a bounded-electron
trajectory, from initial position £y = — 0.636 and axial
initial velocity, for the same equilibrium helix as in
Fig. 6. The weak instability is suppressed. The real-
izable-wiggler corrections are for an ideal one, without
harmonics.

The ratio, %, of a nonzero component of E Q8 to
the corresponding component of the eigenvector of
DE is predetermined by the equilibrium orbit pa-
rameters and the combination of initial conditions
in DE R, involves only ky(0) and 9 .7%. There is
therefore a class of bounded orbits, conforming
to the condition

Ey(0)=h+ ka+ (ka+ 1/ka)(1 -0 -71), (110)

which suffices to suppress the secular behavior.
Figure 7 shows the orbit of an electron launched

in the axial direction for the same parameters as

for Fig. 6, except that the initial location is at

kT (0)= —0.636% instead of ~0.3%, in accordance

with the bounded orbit condition, Eq. (110). It is

~ clear that the secular behavior has been sup-

pressed, leaving only the oscillations.

If, in addition to satisfying the bounded orbit
condition Eq. (110), the initial direction is chosen
to be 7, then the oscillations are also suppressed
and what remains is a perfect helix, with a fixed
radius )

(ka) =ka+h, (111)

representing a correction to the radius predicted
for an unrealizable wiggler. The ratio 2 of vector
EQRQ, to the eigenvector of DE is a function of
&,p.

To illustrate the influence of harmonics gener-
ated by a practical winding of a realizable wiggler,
Fig. 8 presents the bounded orbit for axial initial
velocity for the same equilibrium as in Fig. 7 but
with the initial position now required to be at £r(0)
= ~0.648% instead of —~0.636 in order to suppress
the unbounded motion, when the harmonics of a
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FIG. 8. Bounded-electron trajectory in the field of
a bifilar helix at 2b=1.5, for the same parameters as
in Fig. 7, but now with initial position 2y ='—0.648 to
suppress the linear growth. Harmonics 3 to 11 are
included. ’

bifilar wiggler winding are taken into account.

The winding was taken to be at #b=1.5 and har-
monics 3, 5, 7, 9, and 11 were included, besides
the fundamental; higher harmonic contributions

are negligible in this case. It appears that the ef-
fects of harmonics introduced by practical versions
of the wiggler are noticeable but not major.

V. CONCLUSIONS

The fact that the unrealizable-wiggler field vio-
lates Maxwell’s equations can not be dismissed as
an insignificant flaw of the theories of the free-
electron laser for which this field has become the
canonical model. It lacks both the periodic axial
field component and the radial variation of the en-
tire field that are inescapable features of realiz-
able versions of the undulator. These affect the
motion of electrons in the wiggler and, in most
practical cases, result in appreciably different
transverse velocities and sizes of the equilibrium
helical orbits.

The gain of the free-electron laser depends on
the quiver motion imparted to the electrons by the
wiggler. One measure of that undulation, the ratio
of transverse to axial velocities, has been shown
to be the same parameter, ka, that measures the
size of the helical orbit and how far from the axis
the electron travels. Calculations based on the un-
realizable wiggler are reliable only if the normal-
ized radial excursion %r is small but the wiggler
serves its purpose of imparting a substantial quiv-
er to the electrons when ka is not small. This con-
tradiction in the requirements on the quiver pa-
rameter is central to the question of whether the

unrealizable wiggler can be a reliable basis for
analyzing the free-electron laser.

A helical orbit is found to be a steady-state tra-
jectory for ‘an electron even in a realizable wig-
gler, by following the locus of vanishing radial
field. There are, however, two important differ-
ences from the case of the unrealizable wiggler.
The first is that the size of the helix and the quiver
velocity are different from the ones expected for
the corresponding unrealizable version, as soon
as ka becomes appreciable. As ka increases,
both the axial field and the radial gradient tend to
enhance the contribution of the pump field to the
axial motion, in relation to that of the uniform
guide field, instead of letting it diminish, as for
the unrealizable wiggler. The second major dif-
ference is that a helical equilibrium orbit can ex-
ist only for sufficiently low pump strengths. For
stronger wigglers, the electron’s energy becomes
insufficient to support a helical trajectory. This
is a consequence of the radial variation of the
field; the unrealizable wiggler allows a helical or-
bit for any pump strength.

The perturbation analysis of the helical equilib-
ria of the unrealizable wiggler reveals informa-
tion about the response of the system to small dis-
turbances, about its stability, about the effects of
harmonics of practical wiggler windings, and about
the transient development of an electron trajectory
from given initial conditions. In the coordinate
system that rotates with the wiggler field, two
natural frequencies of oscillation are found. One
is just the rate at which the period of the wiggler
is traversed by the axial motion of the electron.
The other depends in a more elaborate way on the
wiggler parameters and can even turn into an ex-
ponential instability instead of an oscillatory re-
sponse. In the laboratory frame, combination fre-
quencies are observed, in addition to these natural
ones.

The linearized analysis also reveals a secular
behavior of the disturbances that are not exponen-
tially unstable. This arises from a double null
eigenvalue of the system, implying that the per-
turbations tend to grow linearly in time. Thus,
the wiggler induces outwardly spiraling motion in
general. The equilibrium orbits are hence either
strongly or weakly unstable. In the latter case,
the secular growth can be shown!’ to reduce to a
large but bounded deviation on a long time scale
but, in practical cases, the electron would strike
the wall of the drift tube before turning around.

With arbitrary launch conditions treated as
small deviations from the. initial conditions that
would keep the electron on the nearest steady-state
helix, the perturbation analysis yields the motion
of an electron that starts at a given location with



2552 PAUL DIAMENT 23

a given initial direction. In particular, an initial
velocity parallel to the uniform guide field is seen
to become converted into a mixture of transverse
and axial oscillations at the expense of the axial
drift, as the wiggler imparts a quiver motion to
the electron. The weak instability, however, soon
imposes an outwardly spiraling, growing gyration
that eventually dominates the bounded oscillation.
The analytic solution also reveals a condition on
the initial position and direction that can suppress
the secular behavior. There is then a class of
bounded nonhelical orbits, with oscillatory but

nonsecular response. This suggests attempting to
shape the cathode to favor that class of electron
trajectories and keep the electrons from spiraling
away too soon. The results are clearly relevant
to beam spreading and beam quality in free-elec-
tron lasers.

ACKNOWLEDGMENT

This work was supported by AFOSR under Con-
tract No. 80-0118.

1p, Sprangle, R. A. Smith, and V. L. Granatstein, in
Infraved and Millimeter Waves, edited by K. Button
(Academic, New York, 1979), p. 279.

2. P. Blewett and R. Chasman, J. Appl. Phys. 48, 2692
(1977).

3T, Kwan, J. M. Dawson, and A. T. Lin., Phys. Fluids
20, 581 (1977).

N. M. Kroll and W. A. McMullin, Phys. Rev. A 17, 300
(1978).

SA. Hasegawa, Bell Syst. Tech. J. 57, 3069 (1978).

°l. B. Bernstein and J. L. Hirshfield, Phys. Rev. Lett.
40, 761 (1978). :

1. B. Bernstein and J. L. Hirshfield, Phys. Rev. A 20,
1661 (1979).

8T. Kwan and J. M. Dawson, Phys. Fluids 22, 1089

(1979).

p. Sprangle and R. A. Smith, Phys. Rev. A 21, 293
(1980). :

10p, sprangle, C.-M. Tang, and W. Manheimer, Phys.
Rev. A 21, 302 (1980).

11, Friedland and J. L. Hirshfield, Phys. Rev. Lett.
44, 1456 (1980). ‘

2R, C. Davidson and H. S. Uhm, Proceedings of the
Sherwood Meeting, Tucson, Arizona, 1980, Paper
No. 2C28 (unpublished).

131,. Friedland and J. L. Hirshfield (unpublished).

141, Friedland, Phys. Fluids 23, 2376 (1980).

151, B. Bernstein and L. Friedland (unpublished).

168, M. Kincaid, J. Appl. Phys. 48, 2684 (1977).

175, Johnston (private communication).



