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A class of pulse functions is found for which analytic solutions to the problem of two levels coupled by these pulse

functions is obtained. The hyperbolic-secant coupling pulse is included in this class of functions leading to the

Rosen-Zener solution, but all other pulses belonging to the class function are asymmetric. The asymmetric pulses

lead to qualitatively new features in the solutions; in general, it is impossible to have a zero-transition probability

with such asymmetric pulses.

I. INTRODUCTION

A problem of considerable interest in physics is
to determine the time evolution of a two-level
system whose levels are coupled by a time-depen-
dent potential. The probability amplitudes for
the two levels in the interaction representation de-
noted by a, (t) and a,(t), obey the coupled differen-
tial equations

da, /dt= -iX(t)e "'a, ,

da, /dt = -ix(t)e'"'a, ,

(la)

(lb)

where w is the frequency separation of levels 2

and 1 and g(t) is the coupling parameter (assumed
real). By introducing a characteristic time scale
T and defining dimensionless parameters

7 =t/T,
Q =(dg

(2a)

(2b)

(2c)

one can transform Eqs. (1) into

(2d}

a, = -iPf(7')e 'a, , (3a)

a, = -iPf(v )e'"a, , (3b)

where a dot indicates d/dv. Owing to Eqs. (2c) and

(2d), the function f(r) is normalized as

f f(7 )d7=m'
a

and the parameter S is the pulse area.
Equations (3}arise in any semiclassical two-

state calculation in which the two levels, sep-
arated in energy by Kn/T, are coupled by a poten-
tial SPf(r)/T. These equations also arise in two-
state problems in which the levels are coupled by

(Sb)

where A.; and B, are constants. For &40, how-
ever, there are, to our knowledge, only two
smooth envelope functions f(7') for which an analy-
tic solution of Eqs. (3) has been obtained. One
such function is f(7')= const=1 for which the solu-
tion' is

a, ,=A, ,coso, ,v +B, ,sino, ,&,

=-'[-~+ (&2+ 4p'p»jly2

(Ga)

(6b)

It should be noted, however, that this envelope
function does not vanish at v = + implying that it
cannot represent a physical pulse of finite dura-
tion. The other function for which an analytic so-
lution of Eqs. (3) is known is f(7') = sech'. By
employing the change of variable

z =
& sech27'dT',

Rosen and Zener2 were able to show that the gen-

a nearly resonant oscillating field. In that case,
assuming the "antiresonant" component of the
field can be neglected, the quantity KPf(7')/T takes
on the role of an envelope function for the field
while &/T represents the atom-field detuning.
Since Eqs. (3) are of such fundamental importance
in many branches of physics, it is useful to have
analytic solutions of these equations for various
envelope functions f(r) Of cou.rse, one can nu-
merically integrate Eqs. (3), but such procedures
can be costly (especially for large n) and do not
necessarily yield the more general qualitative
features of the solutions.

If 0. =0, a simple solution can be found for ar-
bitrary f(r). The probability amplitude a, or a, is
given by

ag =+; cos8('r) + Bg sln8 (T),
8(r)=P f(7 )dr',
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eral solution in this case could be given in terms
of hypergeometric functions.

It is the purpose of this note to indicate that an-
alytic solutions to Eqs. (3) may be found for an
entire class of positive definite functions f(r).
The hyperbolic secant is included in this class of
functions as a special case, but the rest of the
functions are not symmetric about any given 7.
This asymmetry leads to new features in the solu-
tions.

H. SOLUTION FOR A CLASS OF FUNCTIONS

Equations (3a) and (3b) may be combined to yield
the following second-order linear differential
equation for a, (v'):

ii, +(in -f/f)a, + p'f a, =O. (8)

The amplitude a, obeys a similar equation with
-o' replacing o. . In order to determine a class of
functions f(r} for which analytic solutions of Eq.
(8) exist, we introduce the change of variable

nonidentically zero at z = 0 and 1.
By equating Eqs. (10) and (11), one may obtain

P'f '/(z)' = D/z (1 —z ) (13)

z =inz(1-z)/[(1+A)z+ (B-z)]. (14)

A+ 1=i&~, & real

B -p =i& p, p real

p, & 0, X/p, & -1,
D real, D& 0.

(15a)

(15b)

(16)

(lV)

In terms of these new variables, Eqs. (3) take the
form

In order to have a one to one mapping of v' onto
z, we require that z(r) is a monotonically in-
creasing function, implying that z is real and posi-
tive. This requirement used in conjunction with
Eqs. (13) and (14) implies the following restric-
tions:

z =z(7) - 0, (9a)

subject to the restriction that z is real and that
a~= -i~

'(z(1 -z) ) (18a)

z(-~)=0,
z(~)= 1;

(9b) a~=-i 8' "'a, .~z(1-z)& (18b)

the transformation z(r) changes the range of the
independent variable from (-~,~) to [0,1].

In terms of the variable z, one may write Eq. (8}
in the form

—(lnz)+ (in -f%f)
d

p2y2
a + . a~+

8 2

where a prime indicates differentiation with re-
spect to z. 'The general idea is to see whether or
not Eq. (10) can be cast into the form of a standard
equation of mathematical physics. In this paper,
we determine the conditions under which Eq. (10)
becomes the hypergeometric equation'

Equation (10) becomes

z(1 -z)a,"+ (c —(a+ b+ 1)z]a,'-aba, = 0

with

/=in/[ 1, + (1 4D/n~ya)~~2]/2

b = in'[-I - (1 4D/n2A2)x/ s]/2

C=g+ZAP,

and Eq. (14) may be rewritten

z =z(1-z)/(p+Xz).
The general solution of Eq. (19) is'

a, =A,E(a, b, ; c)z

(19)

(20a)

(20b)

(20c)

(21)

z(1-z}a/+ (Az+B}a,'+Da, =O,

where

A = -(a+ b+ 1),
B=c,
D= -ab,

(12a)

(12b)

(12c) In(z~/(I z)u+i] (23)

+Amz' '+(a-c+1, b -c+1,2 —c;z), (22)

where E(a, b, c;z}is the hypergeometric function,
and A, and A, are integration constants. The time
variable v' as a function of s may be obtained by
integrating Eq. (21); one finds

and a, b, c are the constants appearing in the hy-
pergeometric equation of standard form. ' We
could determine equally well those conditions un-
der which Eq. (10) becomes a generalized hyper-
geometric equation (equation of gauss); however,
the hypergeometric equation is the only equation
of gauss that yields physical s.olutions which are

s =i(-sb) ~~2z~(1 z)~ + +~@' . (24)

By differentiating Eq. (22} and using some simple
properties of E functions, ' one finds

'The upper-state amplitude may now be calculated
by combining Eqs. (23), (18), (20}, and (12c) to
give
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a, = i(-ab) '/'[(ab/c)z'F (c —a, c —b, 1+c;z )A,

+ (1 —c)(1 —z)' """F(a—c+ 1, b —c+ 1,1 —c;z)A,]. (25)

The constant A, and A, appearing in Eqs. (22) and (25) may be evaluated by imposing initial conditions
a, (z= 0) and a,(z= 0). In terms of a, (0) and a,(0), Eqs. (22) and (25) become

~( ab)1/2z1 c
a,(z)=F(a, b, c;z)a,(0)- F(a-. c+ 1,b-c+1,2-c;z)a, (0), (26a)

i(-ab)'/'z'
a,(z)=- F(c -a, c —b, 1+c;z)a,(0)

+ (1-z}'"'"F(a-c+l, b -c+ 1,1 -c;z) a,(0), (26b)

which together with Eqs. (20), (12c), (13), and (21) provide a complete solution to the problem.

III. NATURE OF THE PULSE

In this section, we describe the pulse shapes
for which the solution (26) is valid and in Sec. IV,
we present an analysis of the solution in light of
these pulse shapes. The pulse shape P(t), as de-
fined by

P = Ptdt, P, = Ptdt,
t may

and an asymmetry parameter

P, -P
P,+P

(33)

(34)

P(t)= (p/T)f(T), T=t/T, (27) one can use Eqs. (28a), (21), and (31a) to obtain

S [z(1,)] /

7/T 1+ Xz
(28a)

t = T ln[z/(1 -z)"~], (28b)

is obtained from Eqs. (13), (21), (4), (23), and

(2c) to be
/ = 1 (4/7f) tan '[1/(1+ y)'/'] (35)

As X varies from -1 to 0 to , A varies from -1
to 0 to 1.

If X=O, A=0 and the pulse is symmetric. In this
limit one obtains from Eqs. (28) and (21)

where S is the pulse area defined in Eq. (2c). In
arriving at Eq. (28), we used the normalization
condition (4) to obtain

P(t) = (S/27/T) sech(t/2T),

z =dz/d7'= —' sech (t/2T),

(36)

(37)

D=P2=S'jv'

and set
(29)

without loss of generality.
The pulse is characterized by its area 8, its

time-scale parameter T, and the parameter
X(-I& A. &~). Various properties of the pulse may
now be listed as fo&lows:

Pulse amp/itude. 'The pulse maximum A, oc-
curring at

which corresponds to both the pulse and transfor-
mation [Eq. (7)] used to arrive at the Rosen-Zener
solution.

Pulse width. To find the full width at half maxi-
mum (FWHM) of the pulse, we seek those values
of z, labeled z,/„for which P(z) =zA, and then
calculate the corresponding tg/g values using Eq.
(28b). From Eqs. (32) and (28a), it follows that

~,&, may be obtained as a solution to

[z„,(1 -z„,)]'/'
4(1+ &)'/' 1+ Xz, /,

z ~=1/(2+ &),

t „=T[Xln(2+ X) —(1+ X) ln(l+ A.)],
(31a)

(3lb)

which yields values
7X+ 8+ 4'(1+ A}

/2+ 16/+ 16 (38)

is given by

1
wT 2(l+&)' '

Pulse area. The pulse area is f"„P(t)dt=S.
Pulse asymmetry. For any value ~4 0, the

pulse is not symmetric. Defining

(32)

Using Eqs. (38) and (28b) one can evaluate the
FWHM in t space as

7X+ 8+ 4W3(1+ A. )
7X+ 8-4~3(1+~)

(39)
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TABLE I. Pulse characteristics.

X=-1+c
(O ««1)

X=O

X»1

Amplitude ~

Ap

-e(1+ ln~)

1 —ink.

Asymmetry
A FWHM

19.1cT

5.27T

19.1T

Comments

Most pulse
area for
t&t

Symmetr ic,
hyperbolic-
secant pulse

Most pulse
area for
t&t

In units of ($/mT).

At„„~=T 1n[g'(1+g2)~] -ln2 ~ (2+ ~}'
(40a)

where

Half-area seidth (HA%). Another useful param-
eter is the HAW defined as

tsAw- ~tz-t -~
where t~ is the time defined such that half the
pulse area lies between t~ and t ~. Setting

~max
&S=+ P(t)dt

gH

and using Eqs. (28a), (21), (3la), (28b), and (3lb),
one may obtain

described in the previous section. Although Eqs.
(26) could be used to determine the transient re-
sponse to a pulse, we consider only the transition
probability induced by the pulse. That is, we take
as initial conditions

a,(t=-~}=a,(z=0)=1,

a,(t = -~)= a,(z = 0)= 0,
and calculate the probability

P.= [a.(t =")['=
[
a.(z =1)(' (42)

that the atom has been excited by the pulse. Set-
ting z = 1 on the rhs of Eq. (26b) and using. Eq. (41),
we find

1 —(1+ A.)'~'
1+ (1+ A.)»' ' (40b)

Pg [c~ ~F(c a c b 1+c 1)~
(ab I

For symmetric pulses the HAW is infinite since
half of the pulse area lies between t=- and
t= t,„.However, for very asymmetric pulses
(A. = -1 or 1), the HA% is a characteristic long-
time scale pulse width.

The pulse properties are summarized in Table
I for A. =-l+z(0&&«l), A. =O, and A. »1. For
X= -1+ a or»&1 the pulses are very asymmetric,
containing narrow central peaks and long tails ex-
tending out toward f= - and I;=+ ~, respectively.
The case ~= 0 represents the symmetric hyper-
bolic secant pulse. Less extreme pulse asymme-
tries are represented in Fig. 1 where pulse shapes
P(t)(mT/S) are drawn for X=-0.8, A. =O, and X=5.

[ab[ ~I'(1+c)I'(1-c+a+ b)
i c [' I'(1+ a)I'(1+ b)

P('t} ( wT/S }

(43)

IV. NATURE OF THE SOLUTION

The general solution for the state amplitudes is
given by Eqs. (26) along with Eqs. (20), (12c),
(13}, and (21}; the class of pulse envelope func-
tions f(7') for which this solution is valid has been

0
t/T

IO

PIG. l. Graphs of the pulse function P(t){xT/S) ver-
sus t /T for X= -0.8, X=O (hyperbolio secant), snd
A, =5.
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P2= sin'S sech2ma,

which is the Hosen-Zener solution. '
(47)

Both solutions (46) and (47) are of the form P,
= ~F(o'. ,S)sinS/Si', where 6'(~,S) is the Fourier
transform of the pulse evaluated at frequency n/T.
Hosen and Zener conjectured that this result will
be valid for arbitrary smooth pulses. For asym-
metric pulses, the general solution (44) clearly
violates this conjecture. Moreover, even for sym-
metric smooth pulses, one can show that the con-
jecture is false by numerically integrating Eqs.

where I" is the gamma function. ' By substituting
the values for a, b, c from Eqs. (20) into Eq. (43)
and using some elementary properties of the
gamma functions, ' one may obtain the transition
probability

P, = [sinh'5+ sin'(S2 -5')' '] sech(«) sech(en+ 25),

(44)

where S is the pulse area (2c) and

5=7jnA. /2 ( «/-2&6&~).

As a function of S, P, increases until S =
i

5
~

and

then oscillates between sech(wo'. ) sech(wn+ 26)
(sinh'5) and sech(vn) sech(«+ 25) (cosh'5).

Whereas the pulse was characterized by the pa-
rameters T, S, and ~, the transition probability
is a function of the detuning parameter n = ~T,
the pulse area S, and the quantity 5= «&/2 which
reflects the pulse asymmetry through Eq. (35).
We now examine the nature of the solution (44)
for several specific cases in light of the pulse
structure described in the previous section.

n = 0. For zero detuning, the solution (44) re-
duces to the well-known solution [see Eq. (5)]

P2= sin'S .
6=0. For & arbitrary and 5=0, one must

have &= 0. The pulse is the hyperbolic secant
given in Eq. (36) and Eq. (44) becomes

P, = [sinh'5+ sin'(S' -5')'~'] sech25 . (48)

'The solution is graphed as a function of S for
+=0.001 and two non-zero values of 5 in Fig. 2

along with the corresponding 6 = 0 solution [Eq.
(47)] for the hyperbolic-secant pulse. One notes
that P, oscillates as a function of S about its sa-
turation value of —,

" and that the oscillation ampli-
tude decreases with increasing 5 (increasing A. ).
With increasing 6, it is the central peak region
that is providing the major contribution to the tran-
sition probability since the pulse wing is becoming
increasingly adiabatic [i.e. , ~t„A„(o'/T)&1—see
Table I]. The sharply asymmetric nature of the
central peak cannot give rise to the zero-transition
probability effect (i.e., P, = 0 for S& 0) that oc-
curs with symmetric pulses. Even though the peak
amplitude decreases as ~ ' ', the transition prob-
ability from the central peak region still leads to
saturation behavior for S& 5.« = ~, 6 = («/2)(-2+ z)(0& e««1). This limit
implies &= -1+c(c«1) which is an asymmetric
pulse of amplitude I/2&@, FWHM 19.leT, and
HAW T ln2. The transition probability is given by

P = [sinh'(«/2)+ sin'(S' -w'o. '/4)'~'] sech« . (49)

and is plotted in Fig. 3 for &=3, a=0.001 along
with the corresponding P, for the 5= 0 hyperbolic-

(1). However, numerical calculations using i,or-
entzian and Gaussian pulses do seem to indicate
that, for symmetric pulses, there is an oscillatory
behavior of P, as a function of S, and there are
values of the pulse area S for which P, = 0. In
contrast to this result, the result for asymmetric
pulses and nonzero detuning 54: 0 always yields
P,& 0 regardless of the value of S.

wa «1, 5 & 2., This limit implies that

A. = 25/mn» 1

which is an asymmetric pulse of amplitude 1/2v X,
FWHM 19.1T, and HAW &T ln2 (Table I). The cor-
responding transition probability (44) is given by

a = 0.00l —a = I/3 ———a-2

CL

0.5 0.5 3.I 38

0

FIG. 2. Graph of the transition probability P2 as a
function of pulse area S for e =0.001 and 5 =0 p. =0),
6=1 (A. =637), and 5=3 P, =1910).

I'IG. 3. Graph ofP2 versus S for o. =3, 5=0 P.=O),
+=3, 6= -0.523 (A, = —1+0.001), and+ =2, 5= -3.138
(A, = —1+0.0011).
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secant pulse. A graph of P, versus S for a = 2,
e = 0.0011 is also drawn (the corresponding hyper-
bolic-secant solution has amplitude 1.4 x 10~)
showing its similarity to the 5= 3 curve of Fig. 2.

These graphs are explained by the fact that the
hyperbolic-secant pulse is "semiadiabatic" (u= 1),
and becomes increasingly adiabatic with increas-
ing u (with a corresponding decrease of P, ) In.

contrast, the central peak region of the asymme-
tric pulse is always sudden with respect to 1/u.
It is true that the long-tail region of the asymme-
tric pulse is also "semiadiabatic" [ht„„~(u/T)=1]
and this tail gives rise to the oscillations in P,.
However, for & & 2 the central asymmetric region
dominates the contribution to P, and a saturation
behavior similar to the 6= 3 curve of Fig. 1 re-
sults.

mo. =1, 5»2. This limit corresponds to the
asymmetric pulse with A. » 1, amplitude I/2v A. ,
~HM 19.1T, and HAW ~T ln2. The transition
probability is given by

P,= —(2S'/5) eshclue ', S'«5
=& sechro. e ', S'& 5'.

(50)

= —,
' e~~' sech(rue), S'z 5' (51)

'The central peak of the pulse is "semisudden"
(evu= 1) and gives rise to the major contribution
to P,. As in the previous case, for large enough
8, the pulse is strong enough to lead to saturation

Only the central peak contributes to P, since the
HAW wing is adiabatic for a detuning vu = 1 [i.e. ,
w(u/7) bf„„~»1]. Thus, the probability is much
less than that in the corresponding hyperbolic-
secant case (4V), except when the pulse area S is
strong enough to have the central peak region of
the»& 1 pulse saturate P, .

vu»1, 5=(vu/2)(-I+a), emu=i. This limit
corresponds to the asymmetric pulse ~= -1+e
(0&@«1) having amplitude I/2v e', FWHM 19.1cT,
and HAW T ln2. The transition probability is given
by

P, = e'sech—(rue), S'«~5~S

behavior. The transition probability for this case
is larger than that for the corresponding hyper-
bolic-secant pulse since the hyperbolic-secant
pulse is adiabatic for a detuning mu»1.

nu»1, Z5+wu»I, ~5»&. This adiabatic
limit can apply to a wide variety of pulses. The
transition probability is given by

P =(S'/i5i)e-'"e" 'i-' S'«I5i
e t&2e-2(l51-5& S2~ 52 (yg 0) (52)

and

P = 4 sin'S e " (&= 0) . (53)
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'The entire pulse is adiabatic for the conditions
given, but the central portions of the asymmetric
pulse can still provide the major contribution
to the transition probability. The transition prob-
ability for the asymmetric pulse does not oscillate
as a function of 8 in contrast to that for the X= 0
(hyperbolic-secant pulse). (Actually there is an
oscillatory term in P, even for the asymmetric
case, but its amplitude relative to the background
term is negligible. )

To summarize, we have found a new class of
functions for which analytic solutions of the two-
state problem may be obtained. These positive
definite pulses vanish at t= +~. %'ith the exception
of the hyperbolic-secant pulse which is a member
of this class of functions, the pulses are asym-
metric. For the asymmetric pulses, the transi-
tion probabibty does not vanish for any pulse area
S& 0 (provided u& 0), a result that differs from
the corresponding calculation for symmetric
pulses.

*Permanent address.
~The normalization (4) cannot be maintained for a con-

stant pulse amplitude. In this work we shall consider
only pulses which vanish at t =+ ~ for which Eq. (4)
may be satisfied.
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