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Under some conditions many types of laser oscillators are known to produce their output in the form of
an infinite periodic pulse train, even when the pump rate and cavity losses are independent of time. For
some lasers the underlying cause of the instability is well understood, while for others the source of
pulsations remains unknown, Emphasis here is on a coherent pulsation effect which previously has only

been analyzed in relation to Doppler-broadened gas lasers. The same effect is shown to apply also to lasers

with non-Doppler line broadening and the governing stability criteria are derived.

I. INTRODUCTION

It is ordinarily expected that a laser with time-
independent pumping and cavity loss rates will
produce its output in the form of a cw beam of
light. In fact this conclusion can be demonstrated
analytically for a single-mode laser if one uses
the standard pair of phenomenological rate equa-
tions governing the inversion and photon densities.
These equations can be solved numerically, and
any perturbations of the steady-state solution in-
variably damp out after a train of relaxation os-
cillations. ' ' The damping rate and pulsation fre-
quency depend on the details of the pump rates and
lifetimes. The stability of these equations can also
be demonstrated analytically. Against this back-
ground one then encounters the real-world result
that a wide variety of "stable" lasers actually
emit periodic pulse trains. One is thus obliged to
consider more general models which might some-
how account for the observed instabilities.

This study is primarily concerned with a recent-
ly reported model in which the rate equations are
replaced by a more general set of semiclassical
equations. "This set has been shown to provide
the explanation for the spontaneous pulsations that
have been obse'rved in xenon lasers and it probably
accounts for instabilities in other low pressure
gas lasers as well. The purpose of this work is to
extend the model to also include non-Doppler
broadening mechanisms and the resulting stability
criteria may be relevant to instabilities that have
been observed in nongaseous laser media. Semi-
conductor lasers, in particular, represent im-
portant practical systems that are noted for their
instabilities. Even single-mode GaAs lasers often
produce strong periodic pulsations, and in some
recent studies this phenomenon has been attributed
to inherent saturable absorption in the semicon-
ductor medium. ' ' However, the existence of a

suitable absorption mechanism has not yet been
demonstrated experimentally. ' While such pulsa-
tions are generally regarded as undesirable, they
yield useful information about basic processes in
the laser material. They might also provide a
convenient light source for communications ap-
plications requiring steady or frequency-modu-
lated pulse trains, and in any case it would be de-
sirable to understand the physical principles
u.&derlying the instabilities.

In Sec. II the stability criteria are derived for
one-directiorial non-Doppler ring lasers and the
corresponding results for standing-wave lasers
are obtained in Sec. III. Of special interest in Sec.
III are new analytic formulas governing the light
intensity of standing-wave lasers for arbitrary
levels of saturation. Although the physics is quite
different, the methods used here are similar to
those employed in deriving stability criteria for
Doppler-broadened lasers. Basically, the laser is
first assumed to be operating in a single cw laser
mode. After the intensity and frequency of this
mode have been derived, the equations are reex-
amined to determine whether any infinitesimal
sidebands of the saturating mode can also satisfy
the oscillation phase condition and exhibit net gain.
If any such sidebands exist, it is concluded that
the original cw mode is unstable. The result of
these calculations is that the semiclassical equa-
tions for a non-Doppler inhomogeneously broad-
ened laser are indeed unstable for certain broad
ranges of values of the various damping coeffi-
cients. Stability contours are presented for easy
determination of the stability of specific laser
systems.

II. ONE-DIRECTIONAL RING LASERS

The most general approach that is usually needed
for studying the characteristics of laser oscilla-
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tors involves a set of equations governing the en-
semble-averaged density matrix coupled to Max-
well's wave equation for the electric field. ' ""
These equations are fully adequate for the pulsa-
tion phenomenon of interest here. The equations
governing the ensemble-averaged density matrix
for a four-level system with both Doppler broad-
ening and a distribution of intrinsic resonance fre-
quencies can be written

(a/et+ v a/az) p.,(v, ~., z, t)

= -(i (v, + y) p, ~(v, (d„z, t) —(i p/h) E(z, t)

x [p„(v, (v„z, t) —p„(v, (d„z, t)],

(8/Bt+ v 8/Bz) p„(v, (d„z, t)

v.,(v, v, t) f=v.,(v, tv. , v, t)dtv. ,

v.(v, v, t) f=v.(v, tv. , v, t)dtv
0

etc. In the present study we are concerned with
the alternative case of nongaseous laser media
where the inhomogeneous broadening, if signifi-
cant, will be due to intrinsic differences in the
center frequencies of the nearly stationary atoms
or molecules. The governing equations for this
situation can be derived from Eqs. (1)-(4}by
imagining a very narrow range of velocities cen-
tered on g= 0 and defining new matrix elements
and pump rates according to

p„((v„z, t) = p„(v, (d„z, t)dv,
~do

= X,(v, u&„z, t) —y, p„(v, (d„z, t)

+ [(i p/h) E(z, t)p„(v, (d„z, t) + c.c.],
(8/Bt+ v 8/Bz) p»(v, (d„z, t)

(2)

v.(tv. , v, t)= f v.(, tv. , v, t)dv,
~d)O

etc. With these substitutions Eqs. (1)—(4) reduce
to

= X,(v, (v„z, t} —y,p„(v, (d. , z, t)

—[(i p/n) E(z, t)p,.(v, (d„z, t) + c.c.],
p„(v, (v„z, t) = pf„(v, (u„z, t),

(3)

(4)

where y, and y~ represent the decay rates of the
diagonal matrix elements, y= (y, +y,)/2+y, „ is the
decay rate for the off-diagonal elements with yp
the rate of phase interrrupting collisions, X, and
A.„are the pumping terms, and ~, is the center
frequency of the laser transition for members of
an atomic or molecular class g. Maxwell's wave
equation for the electric field of a linearly polar-
ized wave in a laser medium can be written as

8'E(z, t) BE(z, t) 8 E(z, t)—P oo'
~t

—&o&o at2

8'P(z, t)= Pp ~t2
~

The polarization driving this equation can be re-
lated back to the off-diagonal matrix elements by

t'(v, t) ff VV ,(vtv. , v, t=)dvdtv +v..v. , .
p

(6)

Equations (1)-(6}are a complete set from which
the time and space dependences of the electric
field can be determined, subject to the boundary
conditions at the resonator mirrors. In a previous
stability analysis, only the possibility of Doppler
broadening was considered, and the starting equa-
tions for that case can be derived from Eqs. (1)-(6)
by imagining a very narrow range of center fre-
quencies , near &o and defining new matrix ele-
ments and pump rates according to

(8/Bt) p„((v„z,t) = -(i &u, + y) p,~((d„z, t)

—(i p/h)E(z, t). [p„((d„z, t)

—p„((v., z, t)],(7)

(8/Bt) p,.( „(dzt) = X,((v„z, t) —y, p„((v„z, t)

+ [(i p,/h)E(z, t)p„((d„z, t)+ c.c.],

.(8/Bt) p„((d„z, t) = X,((v„z, t) —y,p,„((d„z,t)

—[(ip/h)E(z, t}p„((d„z, t) + c.c.],

p( ((v„z, t) = p ((~„z,t) .
(9)

(10)

E(z, t) = —,
' E'(t) exp(ikz —i (vt) + c.c. ,

p,„(~„z,t) = P'((v„ t) exp(ikz i(dt)/2 p, -
(11)

(12)

and with the standard rotating-wave approxima-
tion, one obtains the set

BP'((v. , t) = i((v —~,)P'((v„ t) yP'((d„ t)-
(i p'/h) E'(t)D(—(d„ t, ), (13}

= X.( ) —(vX,( )(d

l(y. +y.)D(—~., t) l(y. y.)M-(~. , t)-

+ (1/2h) [iE'(t)P'*((t) v+ c.c.], (14}

For a one-directional ring laser both the electric
field and polarization are traveling waves. Thus it

- is helpful to factor the rapid time and space vari-
ations from Eqs. (7)-(10) by means of the substi-
tutions
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=x (~)+x (~)

'(y-.-+ r„)M( ~., &) --'(y. —r, ) D(~., &),

E'(f}= QE„exp(-i~a, (ut), (16)

P'(&„ f) = gP„(&u.) exp( —in& ~i), (17)

where D(~„f) = p„(~„f) —p»(~„ f) is the popula-
tion difference and M{&„f) = p„{&„f)+ p»(~„ f) is
the population sum.

If the output of the laser is believed to be har-
monic in time, it is reasonable to introduce the
Fourier expansions

erned by Eqs. (20)—(23). For the present stability
analysis the general solutions of this set are not
required. It is assumed initially that only a sin-
gle frequency component is oscillating strongly,
and this saturating field may greatly distort the
gain and dispersion profiles. It is next inquired
whether, in the presence of this saturation-in-
duced distortion, some sideband of the oscillating
field can also satisfy the oscillation phase condi-
tion and have net gain. If such a sideband exists,
the initial single-frequency solution is unsta'ble
and pulsations must occur. On the other hand, if
no such sideband exists, the single-frequency so-
lution must be stable.

From Eqs. (20)-(23) the fundamental frequency
component is described by the equations

D(~., f) =QD„((u.) exp( —inn, (uf),

M(~„ f) =gM„(~,) exp(-i~6 ~f),

(18)

(19)

0= i(& —&,)P,(~,) yP, (&u, )-—(i p, 'lh) E, D(~,),

0 = x,((u, ) —x,((u.)

(24)

where 4 is the frequency difference between the
harmonic components or alternatively the funda-
mental pulsation frequency. With these substitu-
tions in Eqs. (13}-(15},the equations for the nth
frequency harmonic take the form

0= i(&a+&b, &u &u, }P„(~.) yP (~ )

2 (r.+ r,)D.(~,) —2 (r, r, )M.—( & .)
+ (i I2h) [E,P,*(~,) —E,*P,( &u, )],

0= X,(&u,)+ X,((u, ) --,'(y, + y,)M,(~,)

'(r. r-,-)D.(~—.),

(25)

(26)

(27)

QE,D~((u, ), .

0= [X,(u&,) —X,(&u,)]5~+in~~D„(~,)

l(y, + r,—)D„(&,) l (r. r,—) M(-~. )

E, ,„g*. v, —E,*. „Q,. co,
2I

~

0= [X.((o,) + X,((o,) ] 5~+ i~a (uM„((u, )

(20)

(21) P,((u, ) = C,(s), ) + iS,(~,) . (28)

As a result of this substitution Eqs. (24)-(27) can
be replaced by the real set

Without loss of generality, the phase of the elec-
tric field can be set equal to zero (E, real), and
the polarization amplitude can be separated into
its real and imaginary parts by means of the sub-
stitution

'(r, + r,)M.-(&-.) --'(r, —r, )D„(~.) . (22)

If these same substitutions are used in the wave
equation, Eq. (5), and one employs the standard
rotating-wave approximation, isolation of the nth
harmonic, and integration over z, the result is

Z
+ ( &+ n4 &d —0) E„=— P„(~,)d&, ,

000)

C 0

(23)

o = (~ —&.)Co(&,) rSo(&,)—
—(P&@)E.D.(~.),

0 = -(&u —&u, )S,(~,) —yC,(~,),
0= X,(u).) —X,((u.) - ,'(y. +y, )D,(~.)-

——,'(y, —y, )M,(&u.) + E,so{(u.)/fl, ,

0= X,((o,)+ X,(&u,) -~(y, +y, )M,((u, )

(29)

(30)

where l is the length of the amplifying medium and
1. is the length of the cavity. The cavity lifetime
can be related to the distributed losses, the inten-
sity ref lectivities, and the round trip time t„by
f, = f„[2o.& —In{I7,,ft, )]-'.

In principle„ the limit cycles associated with the
spontaneous pulsations are completely character-
ized by their harmonic components which are gov-

l (r. r,)D.(~—.), —

S,( &u, )d(u. ,
Ep
2t, 2m+

( R —0)Eo = — Co((d~}d~~ .(dpi

0

(32)

(33)

(34)

If Co(~, ) is eliminated from Eqs. (29) and (30),
the result can be written as
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(35)

Do((u, ) = ' ' Ego((o, ) + Ii((o,),28y,y,
(36)

where the unsaturated population difference is

g'EpDp(&o. }/yh
1+ [(&o —ur, }/y]'

Similarly, Eqs. (31) and (32) may be combined to
obtain

u'&N(~. )lr@
1+ [((o —(u,)/y]'+ sI '

where the normalized intensity is

I
'&o y. +y~sI=

25 yy, yq

With Eq. (30) the in-phase component is

(39)

(40)

D ( )
&(~o)

1+sl{1+[(~ —~.)/y]') ' ' (38)

&(~.) = &.(~.)/r. &,(—td.)/r,
With Eqs. (35) and (36) the population difference
and the out-of-phase polarization component can
be written explicitly as

p &&PK ~o)/y~

1+ [(~—(u,)/y]'+ sI
(41)

Substituting Eqs. (39) and (41) into Eqs. (33) and
(34}yields two implicit equations for the laser in-
tensity and frequency. These equations can be
written as

1 " N( to, )d&, "
N( ~o)d~pr, 1+ [(~—&u,)/y]'+ sI o 1+ [(& —& )ly]'

2((u —Q) t, " ~ —(o,l X(~.)d~.
o y i 1+ [(~—& )ly]o+sI

N((u, )d~,
o 1+ [(~-&,)/y]' '

(42)

where r is a threshold parameter defined by 0= -((v+4(o —(u, )S,((u, ) -yC, ((u,), (47)

p, '(oot, l " N((v. )d(o,
(44)eprI p 1+ [((o —|d,}/y]'

lt is clear from Eq. (42) that at threshold (sI = 0}
the value of this parameter is unity.

It remains now to be determined whether any in-
finitesimal sideband at frequency offset ~~ can
also satisfy the phase condition and have a net
gain. From Eq. (20) the first-order polarization
must satisfy

0= i(&+ &&o —(u, )P~(&u, ) -yP, (&p,)

—(iP' R/) E, D(o&o,), (45)
where population fluctuations have been assumed
to be negligible (see the Appendix). Since the
phase of the sideband at a remote time in the past
must be irrelevant, E, is arbitrarily chosen to be
real. Then Eq. (45) can be separated into the two
equations

0=(&o+4ar- &u,)C,(&o,) -yS, (&,)

, (46)

—u'&.Do(~.)/r@
1+ [(~+&(u —(u,)/y]' ' (48)

( )
(d+ 4 Qp —Q)p pEgDp(&~)/yk ,

(1+ [((o+a(o —(u,)/y]'

But from Eq. (23) the oscillation condition is

Ex (uo

p

(~+ b ~ —Q)E, = — C,(e,)d(u, .COp)
(51)

Thus, with Eqs. (38), (44), (48), and (49) these
conditions become

where C,(&,) and S,(~,) are, respectively, the
real and imaginary parts of the sideband polari-
zation. These equations may be combined to yield

1 1+ [(~—(o,)/y]' N((u, )d(o,

p 1+ [(~+&~—(oo)/yj' 1+ [(~—&o,)/y]'+ sI

2(~+ &~ —Q}t,

N(&u, )d~,
1+ [(~ —~,)/r]' '

(d+ 4(d —(d
I

1+ [(~—&d )/y] N(& )d&

o 'r i 1+[(~+La&-~,)/y]' 1+ [(~ —~,)/y]'+sl r N(~, )d~,
0 ].+ [(~ (d,)/y]'

To test a laser oscillator for stability, one now must first solve Eqs. (42) and (43) to determine the in-
tensity sI and frequency ~ of the oscillating mode. These values are then substituted into Eq. (53) to de-
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termine the frequency shift » of a sideband, if any exists, which also satisfies the oscillation phase con-
dition. Finally, all of these values are substituted into Eq. (52) to determine whether the sideband will
have ga, in. Such gain would be indicated by the right-hand side of Eq. (52) being greater than the left-hand
side and would be proof of an instability.

The four equations which have just been discussed can also be greatly simplified or solved for many
cases. As a first step it may be noticed from Eq. (43) that when the laser cavity is tuned near the atomic
center frequency (0 = ~o), the actual laser frequency is also at the atomic resonance (&u= &o), provided
that N(&u, ) is an even function of u&o —~,. Thus, Eqs. (42), (52), and (53) reduce to

1 " N(o},)do}, " N(v, )dv,
(54)r o 1+ [(w —&,)/y] + sI o 1+ [(& —o},)/y]

1 " 1+ [(~,—~,)/y]' N(ur, )d~,
1+ [(&u, +b, a a&,)/y]' 1+ [(&u, &u, )/y]'+ sI

N(~o)d~o
1+ [( 0) —M )/y]

(55)

2g(uf, " (o, + &~ —~, 1+ [(o}o—~,)/y]' N(~.)d~,
y 1+ [((u, + a(u (u, )/y]' 1+ [((u, —(u, )/y] + sI r N(&, )d~,

o 1+ [((uo —&u.)/y]'
(56)

sI=~' —&. (5'I)

With the substitutions U= & &/y and V= (&, —&o)/

y, Eqs. (55) and (56) take the simpler forms

]. 1 1+ U dU
„1+(V-U)' r'+ V' '

2yvt, 1 "(V-U)(l+ V') dV
1.+(V- v}' r'+ V' '

The integrals in Eqs. (58) and (59) can be eval-

if the inhomogeneous broadening function N(&, )
has a width which is large compared to the homo-
geneous linewidth hu„= 2y, then N(v, ) may be re-
placed by its line center value N(&o) and'removed
from the integrals. Also the lower integration
limit can be extended to minus infinity with neg-
ligible error. Thus the integrals in Eq. (54) can
be evaluated analytically, and the result is

v "vv-(2+ v') dv
„1+(V-V)' r'+ V' ' (60)

The integrals in Eqs. (58) and (60) are a,ll known,
and after some algebra these equations reduce to

(r' 1)'+ (r' —r'+ 3r+ 1—) V'+ rV
(r' —1)'+ 2(r'+ 1)U'+ U' (61)

(r'-1) [(r -1)'+ V']
(r' 1)'+ 2(-r'+1) V'+ V' (62)

Equation (62) is a quadratic in U' and the solutions
are

uated analytically. First it is helpful to simplify
Eq. (59) by long division with the divisor 1+ (V —U)'
and the result is

2yUt, 1 " U+ U
, dU

(r —1) —2(r + l)56 [(r —1)' —Br(r' —1)5+ 16r 5']'~
U' 2

25
(63)

where 5=2yt, . The factor in brackets is a perfect square and the physically interesting solufions (U'&0)
may be written as

rq }r*—1}—(r+}}'ll)"*
&v„

(64)

r,„=(1+ 6)/(1 —5),
,and this stability condition is displayed in Fig. 2. Using this plot, one can determine immediately whether
or not a given laser will pulse spontaneously.

The results presented here can be understood physically in terms of a spectral hole burning model of

(65)

where the pulsation frequency is },= b, ~/27}', and the homogeneous linewidth is b v„=y/}T.
Equation (64) is plotted in Fig. 1 for various values of the parameter 5. The importance of these results

is that oscillating sidebands are possible which satisfy the phase condition and have the same number of
wavelengths between the mirrors as the dominant oscillation mode. It can be shown from Eq. (61) that
these sidebands always have net gain. Another feature of the solutions is the fact that pulsations can never
occur for 5& l. It follows from Eq. (64) that the minimum value of r for which pulsations will occur is
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gain saturation, and this can be demonstrated by considering some explicit solutions to Eqs. (55) and (56).
H the threshold parameter r is eliminated from these equations using Eq. (54), they may be written as '

1+ V' N(V)dV
„1+(V-U)' 1+ V'+sl

N(V)dV
„1+V'+sI ' (66)

"(U—V)(l+ V') N(V}dV
1+(V—U} 1+ V'+ sl

" X(V)dV
„1+V'+sI '

To be specific, it is assumed that the inhomogeneous frequency distribution of the active atoms or mole-
cules is a Gaussian of full width at half maximum b, p„and it is now convenient to normalize the frequency
with respect to the inhomogeneous width using the relation x= 2(q —p,}(ln2)' '/6 p,. and the damping ratio
&= hp„(ln2)'~'/hp, With these definitions Eqs. (66) and (6I) can be written as

1+ V' exp(-e'V')dV
„1+(V-x/e)' 1+ V'+ sI

exp(-e'V')d V
&+ V'+ sI (68)

-x& "(V-x/e)(1+ V') exp(-e2V')dV
1+(V-~/e}', 1+ V'+ sI

"exp(-e'V')dV
1+ V'2+ sI (69)

The right-hand sides of Eqs. (68}and (69}are
plotted, respectively, in. Figs. 3 and 4 for the in-
tensities sI = 0 and 10 with the damping ratio g
= 0.1. These curves show the gain and dispersion
that would be felt by an infinitesimal field detuned
from line center by the amount z. The sI = 0
curves give the gain and dispersion when the line-
center mode is exactly at threshold. With higher
levels of intensity a hole is burned in the gain
curve to the depth of unity (gain always equals loss
for the oscillating mode}, and a glitch is intro-
duced in the dispersion curve. Also shown in
Fig. 4 is a negatively sloping straight line corre-
sponding to the left-hand side of Eq. (69) with the
values q= 0.1, 6= 0.1. The points at which this
straight line intersects the dispersion curve yield

l

the frequencies of any sidebands having the same
number of wavelengths between the mirrors as
the saturating mode. It is clear from the figure
that such sidebands can exist, and from Fig. 3 it
is apparent that the sidebands have net gain.
Thus, the spontaneous pulsations can be inter-
preted as a consequence of spectral hole burning
and the associated distortion of the dispersion
properties of the laser medium.

The spontaneous pulsations discussed here may
appropriately be referred to as superoscillations,
because they represent a low-frequency oscilla-
tion (typically 10'-10' Hz} superimposed on the
ordinary optical frequency fluctuations of the elec-
tric field. These superoscillations also bear a
close relationship to super-radiant (sometimes

IO IO

5=
8

6

4

IO 0
I

0.2
I I

0.4 0.6
5

I

0.8 I.O

FIG. 1. Norxnalized pulsation frequency in a ring
laser as a function of the threshold parameter r for
various values of 6.

FIG. 2. Instability threshold in a ring laser in units
of r as a function of 5. %'ith 6 greater than unity, no
instability is possible.
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3 0.8

—0.8

0
—2

—1.6
4

FIG. 3. Gain profiles fright-hand side of Eq. (68)J
seen by a small amplitude signal propagating in a laser
medium which is saturated by a line center signal of in-
tensity sI. As the excitation level is increased the in-
tensity increases and a hole is burned in the gain spec-
trum.

FIG. 4. Dispersion profiles fright-hand side of Eq.
(69)] seen by a small amplitude signal propagating in
laser medium having the gain profile shown in Fig. 3.
The possible sideband frequencies having the same num-
ber of wavelengths as the saturating mode are found as
the intersections of the dispersion curves and a straight
line of slope (-6/e).

called superfluorescent) pulsations. In a typical
superQuorescence experiment, a system of atoms
or molecules is raised to an excited state by
means of a brief light pulse from a modulated
laser. Following this excitation, the amplified
fluorescence may be able to phase up all of the
emitting dipoles if the gain is high enough and the
coherence time long enough, and the result is a
short radiation pulse. It should be noted, how-
ever, that there is no fundamental reason why cw
excitation could not be employed in superQuores-
cence studies provided the initial field can be held
to a sufficiently low level. An important result
of this study is that an individual pulse in a super-
oscillation train may be equivalent to an ordinary
superflourescent pulse. In both cases a weak
radiation field in a laser amplifier builds up into
a pulse which is short compared to the coherence
time of the amplifying medium. This conclusion
can be illustrated by displaying for comparison a
superoscillation pulse obtained in xenon'" and a
superfluorescence pulse obtained in HF." These
results are shown in Fig. 5, and it is clear that
except for the time scale the pulses are closely
similar. It is also significant that both pulsations
have been modeled by essentially the same Max-
well-Schrodinger semiclassical equations. "" In-
creased feedback was found to reduce the super-
fluorescence pulse delay" and to increase the
superoscillation frequency. " The only substantial
difference between the experiments represented
in Fig. 5 concerns the time duration of the pump.

0.4 0.8
& {ps)

1.2

{b)

f

0.2 0.4
t {ps)

0.6

FIG. 5. Comparison of a super-radiant pulse in HF
from Ref. 13, (a), with a superoscillation pulse in
xenon from Ref. 3, (b). In the super-radiant case the
optical excitation pulse is represented by the leftmost
blip in part (a), while the laser of part (b) uses cw elec-
tron impact excitation.

It is now appropriate to inquire whether the
spontaneous pulsations observed in semiconductor
lasers might also be interpretable in terms of a
semiclassical model, and in this regard a possible
limitation of the more conventional saturable ab-
sorption rate-equation interpretations may be
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noted. Rate equations are only applicable in light-
matter interactions if all field and population
quantities vary slowly compared to the coherence
time. However, in spontaneously pulsing semi-
conductor lasers the field risetimes, photon life-
times, etc. , may be on the order of a picosecond
(published data are often acknowledged to be lim-
ited by detection and display electronics). On the

other hand, the coherence time in diode lasers is
also on the order of a picosecond, so the rate-
equation approximations should be used with cau-
tion. It wi11 be interesting to see whether with

sufficient detection resolution the output pulses
from diode lasers having short and quasi-cw pump-

ing will resemble the characteristic inhomo-
geneous semiclassical waveforms shown in Figs.
5(a} and 5(b}, respectively, rather than the rela-
tively simple pulse shapes predicted by the rate-
equation models.

E(z, t) =-,' sin(kz}E'(t) exp(-i&et)+ c.c. , (VO)

wave. For an exact treatment of the output charac-
teristics including possible pulsation phenomena,
one is obliged to take account of spatial hole burn-
ing. As before, the steady-state behavior is de-
rived first, and then the possible existence of an
infinitesimal sideband is tested. A useful aspect
of these results is a set of simple new analytic
formulas for the intensity and frequency charac-
teristics of a steady-state laser. Previous studies
of spatial hole burning have either been mainly nu-
merical or have emphasized the operating regime
near threshold.

Equations (1)-(6) are again the starting point for
this stability calculation, but the initial substitu-
tions involve the standing-wave field and polariza-
tion functions

III. THE STANDING-WAVE LASER p„((o„z,t) = P'(&„z, t) exp(-i(dt)/2 p, . (V1)

In some practical lasers the electromagnetic
field distribution is best described as a standing

With these substitutions the density matrix equa-
tions take the form

(s/st)P'((d„z, t) =i((d —(d,)P'(~„z, t) —yP'((d„z, t) —(ip'/ft) sin(kz)E'(t)D((d„z, t),
(s/&t)D(o)„z, t) = x,( o).) —x,((d,) - -,'(y. + y,)D((d„z, t) - -', (y, —y,)M(~„z, t)

+ [sin(kz)/2k] [iE'(t)P'*((d„z, t)+ c.c.],
( s/&t)M((d. , z, t) = & ( o) ) + &„(&,) --,'(y, + y,)M(~„z, t) --,'(y, —y, )D(o)„z, t) .

(V 2)

(VS)

(V4)

To investigate the possibility of stable li.mit cycles, these equations are expanded with harmonic expan-
sions similar to those indicated in Eqs. (16}-(19).The results are the set of algebraic equations

~ 2

0 = (((a zz v —+)p (fd„z) —zp, (v„„z)— zizOz)QE„z Dz(w„z),

0= [X,((d,) —X,(~,)) 6~+in (dD„((d„z) ——,'(y, +y, )D„((d„z)--,'(y, -y, )M„(&u„z)

(V5)

(V 6)

0= [X,((d,)+ A.,((d, ) ] 5~+ inn (dM (&o„z) ——,'(y, + y, )M„((d„z)--,'(y, -y,)D„(o)„z). (VV)

With the same substitutions in 'the wave equation, use of the rotating-wave approximation, isolation of the

zth harmonic, multiplication by sin(kz}, and integration over z, one obtains

coo
+ ((d+ n&+ —0) E„=— ' sin(kz)P„(o). , z)dz d(d, .

2t. o o
(V8}

From Eqs. (V5)-(V8) the equations governing the fundamental n= 0 frequency component can be written as

0= ((d —(d,)Co((d„z) —ySo(&u„z) —( p'/k) sin(kz)EoDo((o„z),

0 = -((o —(d, )So(o)„z) —y C,(~„z),
0 = )).,(&o,) —A &((u, ) —o (y, + y&)Do(m„z) —z (y, —yo)Mo((o, z) + [sin(kz)/h] EoSo((u, z),
0= ~,(~.)+ ~,((d.) 2(r. + r,) M-(o~„)zo(r. r,)Do-((d. , z)-,

l

sin(kz)So( o)„z)dz d &o, ,
tc

(V9)

(80)

(81}

(82)

(83)
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(up
(&o —Q)Eo= — '

sin(kz)Co((o„z)dz d(d. ,
0 0

(84)

where Co(&o„z) and So((d„z) are, respectively, the real and imaginary parts of the polarization. These
equations may be combined in a manner similar to that used in Sec. II to obtain the set

1 2 " ' sin'(kz)N((o, )dz d(d, N((d, )d&,

o o 1+ [((o —(d )/y] + 4 sin'(kz)sI o 1+ [(u& —(o,)/y]'
2((d -Q)t, 2 " ' (d —(d, sin'(kz)N(&, )dz d&o,

o y 1+ [((o —(d, )/yj'+ 4 sin'(kz)sI f N((oo) d(oo

o 1+ [((o —(o.)/y]' '

(85)

(86)

where the normalized one-way intensity is

p Eo ya+yy
8@' yy, y~

(8'I)

I

the intensity and frequency of the laser mode.
Thus Eq. (91) is basically a quadratic equation,
and it can be inverted to obtain

2 ' in'kz dz

o 1+4sin'(kz)sl(l+ [((o —(o,)/y]'] '

2( ~ —O)r, 2 rr —~,
)l y

(89)

sin'(kz) dz

~o 1+4 sin'(kz)sill+ [((d —(o,)/y] ]
(9O)

With some simple manipulations these integrals
may be put into a standard form and averaged over
a wavelength. The results are"

4sI
1+ [((d —(d )/y]

4sI ~/'
+ 1+

1 [(r0 —rr )jyj')
2(~ - &)&,= (~.- ~)/y.

(91)

(92)

Equations (91) and (92) can be readily solved for

and the threshold parameter is

t, (dog l " N(~, )d(d, (88)
&pySL 0 1+ e —(d, y

''
Equations (85) and (86) a,re the governing formu-

las for the intensity and frequency characteristics
of a laser oscillator including the effects of longi-
tudinal spatial hole burning. The integrals can be
evaluated analytically for the cases of greatest
practical interest. We consider first the case of
homogeneous line broadening. In the homogeneous
limit the function N((d, ) is very narrow compared
to the Lorentizian terms and is centered at the
frequency &o. Thus Eqs. (85) and (86) can be
written as

sI 4r —1-(8r+ 1)"'
1+ [((o —(oo)/y]

'

Since the product 2yg, is usually large compared
to unity, Eq. (92) implies a, slight mode pulling
toward gain center. Thk explicit solution is

(o= (n+ (d,/2yt, )(1+1/2yt, ) ', (94)

which may be used to eliminate &o from Eq. (93).
If the laser is tuned to line center ((o= 0= (oo),

Eq. (93) is simply

sI = ,' [4r ——1 -(8r+ 1)'~'] . (95)

Equation (95) is plotted in Fig. 6 and compared
with the more conventional rate-equation result
sI = (r —1)/2, where the factor of 2 accounts for
saturation by the right and left traveling waves.
It is evident from this comparison that for any
given value of r, spatial hole burning has the ef-
fect of reducing the intensity by about 20 or 30
percent. It is reasonable that such a reduction
should occur since the standing-wave fields cannot
interact effectively with atoms that are situated
near the field nodes. The largest discrepancy oc-
curs near threshold (sI «1) where Eq. (95) reduces
to sI=(r -1)/3. Thus Eq. (95) provides a substan-
tial improvement over the standard rate-equation
intensity formula, but it is not significantly more
difficult to apply.

The other limit of practical interest concerns
lasers which are predominantly inhomogeneously
broadened. The inhomogeneous limit also applies
directly to the spontaneous pulsation phenomenon.
In this case the function N((d, ) is broad compared
to the Lorentzians in Eq. (85) and to first order
may be removed from the integrals leaving

1 2 " ' sin'(kz) dz d(d,

o o 1+ [((o —(d,)/y]'+4sin'(kz)sl
2 ' sin'(kz)dz

o [1+4sIsin'(kz)]'~' '

r d40g

o 1+ [((o —(d, )/y]'. '

(96)
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The remaining integrand in Eq. (96) may be av-
eraged and integrated using a tabulated integral,
and the result is"

1/r = (2/~)a(-.', —,')F(-,', —,'; 2; -4sI), (97)

sI

where B is a beta function and F is a hypergeo-
metric function. But the value of this beta func-
tion is" v/2, so Eq. (97) is simply

1/r = F(', —;—2; 4sI-) . (98)

0
0 IO

where the lower limit of the frequency integration
has been extended to minus infinity. In this ap-
proximation the numerator frequency integration
in Eq. (86) vanishes, since the integrand becomes
an odd function of the frequency difference (~
—v,). A more accurate evaluation of Eq. (86)
would require detailed information about the func-
tion N(e, ), and for most purposes mode pulling
can simply be ignored.

I

FIG. 6. Normalized internal one-way intensity sI
versus the threshold parameter r for various types of
lasers. The curve labeled &0 is the conventional
result sI= 2(r —1) for homogeneously broadened lasers
neglecting longitudinal spatial hole burning, while h&

denotes the homogeneously broadened laser of Eq. (95)
with spatial hole burning. Similarly i 0 represents the
conventional inhomogeneously broadened laser governed
by sI= 2(r —1), and i, is from Eq. (9'8).

0 = ((u+ b u) —&u, )C,((u„g) -yS,(&u„z)

- ( p'/k) sin(kg) E,D,((o„g),
0= -((o+ a(u —(u, )S,((o„z) -yC, ((o„z),

Jf sin(kz)S, (u)„z)dz d~, ,2' & o 0

(99)

(100)

(101)

co

((u+ b (o -0)E, = — ' sin(ks) C,((u„z)dz d~, .
o o

(102)

These equations may be combined to obtain the set

Equation (98) is plotted in Fig. 6 for comparison
with the more familiar result sl = (r' —1)/2, which
is obtained for an inhomogeneously broadened la-
ser neglecting longitudinal spatial hole burning.
As in the case of homogeneous broadening, spatial.
hole burning has the effect of reducing the inten-
sity. The largest percent reduction occurs near
threshold, where Eq. (98) may be readily shown
to have the useful lowest-order approximation sI
= -',(r' 1).

As a final step in the stability analysis, it is
necessary to determine the conditions under which
the first-order sideband can satisfy the oscillation
conditions. From Eqs. ('75) and ('l8) the equations
governing this sideband can be written as

1 2 sin'(kz)N(~, )ds d~,
~ "o 0 '{1+[((a+ a(u —(u,)/y]')(1+4 sin'(kz)sl(1+ [(&u —~,)/y]') ')

2((O+ 6(d —Q)t~
r

N(&a)d~,
0 1+[(~-~.)/y]' ' (103)

2 [(u&+ b &u —e,)/y] sin'(kz)N(&u, )dade, " N(&, )d~& (104
l 0 o (1+ [(++2 &u —v,)/y]'](1+ 4 sin'(kz)sl(1+ [(& —&,)/y]'] ') 0 1+ [(& —~,)/y]

Equations (85), (86), (103), and (104) now constitute a complete set with which one can test the stability of
a longitudinal mode in a laser oscillator. First the intensity and frequency of the mode are determined
using Eqs. (85) and (86). Then Eq. (104) is used to see whether in the presence of the saturating mode a
sideband can also satisfy the oscillation phase condition. Finally, the gain of the sideband is tested using
Eq. (103).

While some simplifications of the stability equations are possible, closed form solutions do not seem to
exist except in the stable homogeneous limit. If mode pulling is neglected in the more interesting inhomo-
geneous limit, the frequency of the saturating mode is equal to the empty cavity frequency, and the inten-
sity is given implicitly by Eq. (98). This result is also obtained rigorously if the laser is tuned near line
center with a symmetric gain curve. In the same limit Eqs. (103) and (104) reduce to
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(106)

(107)

1 2 " ' sin'(kz)dz d V
(1. [1+(V-U)'][1+4sin'(uz)sl(1+ V')-'] '

2yt, U 2 " ' (V- U}sin'drdV
-- o [1+(V- U)'][1+4sin'(az)sf(l+ V') ']

where as before U=L~/y and V=(&u, —&u)/y. These z integrations are similar to those in Eqs. (89) and

(90) and the results are

j t 4 I 4sI 1/2

„1+(V-U)' 1+ V' 1+ V2

™~ 4s1
~

4sI
7l 1+(V' U)P l+ Vz+ 1+ Va (108)

EIluations (98), (107), and (108) can be evaluated
numerically, and the resulting stability plot is
given in Fig. 'l. Perhaps the most notable feature
of Pig. 7 is i.ts close resemblance to Fig. 2, the
stability plot for a ring laser. In both cases the
stability boundary starts out at x= 1 and ap-
proaches asymptotically to 6= 1. However, for
any given value of 5 the pulsation threshold r,„
is slightly higher for the standing-wave laser than
for the ring laser. Thus the spatial variations of
the saturation in a standing-wave laser increase
the laser stability with respect to coherent pulse,
tions in much the same way that ordinary relaxa-
tion oscillations tend to be damped out by a radial
field profile or longitudinal variations in the beam
spot size.""

IV. MSCUSSION

O
0 0.6

FIG. 7. Xmstability threshold in a standing-wave laser
in units of r as a function of 6.

A spontaneous coherence effect can cause a laser
with cw pumping to produce its output in the form

of an. infinite periodic pulse train. In previous ex-
periments and calculations this effect was shown.
to apply to Doppler-broadened gas lasers. In the
present study it has been. demonstrated that the
same phenomenon must also be manifested by la-
sers subject to non-Doppler line broadening mech-
anisms, and both standing-wave lasers and one-
directional ring lasers have been considered in
the analysis. In, short, the onset of the pulsations
occurs close to the laser threshold for small val-
ues of a parameter ~= 2yt, . For larger values of
6, excess ga. in and saturation are required, and
with 6 greater than unity the pulsations cannot oc-
cur. The possible instability of specific laser
systems can be readily assessed by reference to
to pigs. 2 and t.

The source of the instability can be understood
physically by frequency domain arguments involv-
ing spectral hole burning in the amplifying medi-
um. In the presence of an intense oscillation mode
the dispersion profile of an. inhomogeneously
broadened medium may be distorted to such an
extent that sidebands of the saturating field can
also satisfy the oscillation phase condition. Since
these sidebands are displaced from the minimum
of the hole in the gain profile, they experience net
gain and pulsations result. In the time domain
these "superosciQations" are the oscillator analog
of super-radiance in laser amplifiers. An indivi-
dual burst in the periodic output resembles a typi-
cal super-radiant burst, and the main experimen-
tal differences concern the level of optical feed-
back and the presence of continuous pumping.

Besides its intrinsic physical interest, the spon-
taneous pulsation instability may a1.so have prac-
tical consequences. For nonlinear optical appli-
cations it is often desirable to have a laser's out-
put condensed into short pulses, and such pulses
are also commonly required in metrology and
communications. One of the prin. cipal application
areas for semiconductor lasers involves fiber op-
tical communications, and for this purpose it is
particularly important that the high-frequency
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laser behavior be well understood. The spontan-
eous pulsations in these lasers typically occur just
in the frequency range (200-2000 MHz} that is of
interest for optical communication. ' A correct
physical understanding of these pulsations would
obviously increase the likelihood that they could
be eliminated. Alternatively, suitable control of

the pulsation phenomenon might lead to its direct
employment in pulse modulation schemes.
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APPENDIX: POPULATION FLUCTUATIONS

In developing the stability criteria used in this work and in a previous study it has been assumed that the
population difference is essentially constant in time and hence representable by a parameter Do. This as-
sumption would seem reasonable since the only saturating field is the constant E,. However, in determin-
ing the gain of the pulsation sidebands, even infinitesimal population fluctuations may not be negligible.
This appendix describes briefly the procedure that one could employ to study fluctuation effects.

From Eq. (23} the first sideband E, of the electric field is driven only by the polarization sideband P„
and from Eq. (20) this polarization component is in principle related to all components of the pulsing popu-
lation. These population components can in turn be expressed in terms of the fields by means of Eqs. (20)-
(22). First, Eqs. (20) and (22) yield the polarization and population sum components:

2[X,((u.)y„—x,((o.)y,] p,
' g P E, Eq,„E,* E,

( )

2 (y, +y, )/2 in«u 2K~
~
-y+i(&u+j b& —&u+ y-i(u&+j4~- cu, )

For the present stability analysis the only saturating field is Eo, and &, is much larger than the other pop-
ulation components. Thus Eq. (A4) reduces to the two expressions

(A4)

(„) -( '/ ), .-p( .) (A1)n a 7

y-i(u)+na~-~, )

[X.(~,) + x,((u,)]5„,—D„((o,) (y, —y,)/2
(y. +y,)/2 —in a(u

These components may be substituted into Eq. (21) and the results written in the form

2[&.(~,)y, —&,(~.)y.] 6, „.y. +y, [(y.—y,)/2]'

E&~E&, e, Ey E; (d,
(As)2'' i((u+j «o (o.)+y —i(&+j && —&,) —y

where use has been made of the relationship D*=D, which is required for a real population difference.
Equation (A3) can be solved for any particular population component, and the result for the nth component

ls

&.(~.)/y. &,(~.)/y—,

1+sI 1

(A6)

which is the same as Eq. (38), and

(A6}

(A7)

(
-sf[a,(n(o) + n„(a(o)]D,((o,)E„/E,

y. +y, (nz~)' 2inz&u1-2in&(o ' ' — 1- +n (a&a)sl
2P ~b ~~b ~ +~b

Here use has been made of the relationship E„*=E„, and the parameter &„ is defined by

( „) y/2 y/2
y+i(u& —namur - u&, ) y - i(&o+nLco - u&, )

'

The main interest is in the first sideband, and from Eq. (A1} the leading terms in the polarization driv-
ing this sideband are
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(i p'/if) [E,D,((u.) +Eg, ((u.)]
y —i(~+ a(u —(u, )

(Aa)

With Eq. (A6) it is clear that the population pulsations lead to a correction of the first sideband polariza-
tion that is proportional to

-sl[u, (au&)+ o.„(ace)]
'y + y& (EQ3) " 2f 4(d

Ej7~ &a&,

E&DO(CO ) 1 —256(d —— 1
2Y Yb Y Yb Y + Yb

+n (a(u)sl

This correction is clearly unimportant for small values of the saturating intensity, but if necessary the
real and imaginary parts of Eg. (AB) could be substituted into Egs. (50) and (51) to include the effects of
population pulsations in the stability criteria.
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