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Accurate calculation of dynamic Stark shifts and depopulation rates of Rydberg energy levels
induced by blackbody radiation. Hydrogen, helium, and alkali-metal atoms
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A highly excited (Rydbergj atom bathed in blackbody radiation is perturbed in two ways. A dynamic Stark shift is
induced by the off-resonant components of the blackbody radiation. Additionally, electric-dipole transitions to other
atomic energy levels are induced by the resonant components of the blackbody radiation. This depopulation effect
shortens the Rydberg-state lifetime, thereby broadening the energy level. Calculations of these two effects in many
states of hydrogen, helium, and the alkali-metal atoms Li, Na, K, Rb, and Cs are.presented for T = 300 K.
Contributions from the entire blackbody spectrum and from both discrete and continuous perturbing states are
included. The accuracy is considerably greater than that of previous estimates.

I. INTRODUCTION

A highly excited (Rydberg) atom bathed in a
flux of blackbody radiation (BBH) is perturbed
by the fluctuating electromagnetic field. The
interaction between the atom and the BBR produces
two principal effects. First, the off-resonant
components of the BBR spectrum induce a dynamic
Stark shift of the atomic energy levels. Second,
the resonant components of the BBR spectrum
drive electric-dipole transitions between atomic
states. This depopulation effect shortens the
effective atomic lifetimes, thereby broadening
the homogeneous width of the energy levels.

The subtle effect of BBR on atoms is usually
neglected in atomic physics. There are two
plausible reasons for neglecting BBR effects.
First, BBR has a very broad spectrum, whose
width is approximately 10"Hz at room temper-
ature. Accordingly, BBR has very low spectral
brightness and hence produces very feeble
perturbations, compared to perturbations due
to radiation from resonance lamps or from lasers.
Second, there is a gross mismatch in frequency
between ambient BBR and the atomic transitions
most commonly studied: those involving the
ground state. The former falls in the far infrared
spectral region; the latter falls in the optical or
ultraviolet region. The reduction in the effective-
ness of any time-varying perturbation when the
perturbation frequency is off resonance consti-
tutes a second, superficially appealing argument
for neglecting the effects of BBR.

On closer examination, however, BBR effects
are not, in fact, always negligible. There are
several reasons to expect enhanced effects in
highly excited (Rydberg) atoms, whose properties

are different in many ways from those of ground-
state atoms. Because Rydberg atoms have very
large radii, electric-dipole transitions between
Rydberg states have very large matrix elements.
This increases the strength of the interaction
between the atom and the BBR electric field.
Also, transitions between Rydberg states often
correspond to the microwave or infrared portion
of the spectrum and are thus more closely matched
to the BBR frequency spectrum than are transi-
tions between low-lying states. Finally, even
very small effects may become detectable by
rapidly advancing ultrahigh-resolution spectro-
scopic techniques.

There is a small and yet incomplete body of
recent theoretical and experimental work on
BBR effects on atoms. We consider first the
depopulation effects of BBR. Gallagher and
Cooke' first pointed out that BBR may have non-
negligible effects on Rydberg atoms, even at room
temperature. They calculated the BBR-induced
depopulation rates in the 17P and 18P states of
sodium. This lifetime-shortening effect accounted
for a factor-of-3 discrepancy between the ex-
perimental lifetimes of these states, as measured
by Gallagher and Cooke, and the theoretical values
calculated by Gounand. ' In the latter calculation,
BBR effects were neglected; the lifetime was
calculated assuming radiative decay to be the sole
decay mechanism.

Cooke and Gallagher' derived a simple asymp-
totic formula to estimate the BBR-induced de-
population rate for very high Rydberg states.
The formula gives a depopulation rate proportional
to absolute temperature T and inversely propor-
tional to the square of the principal quantum
number n. In order to test the accuracy of the
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formula, they performed a more accurate cal-
culation of the BBR-induced depopulation rate
for a few Rydberg states of sodium. They found
that the asymptotic formula overestimates the
rate, often quite badly. While the accuracy of
the asymptotic formula improves slowly with
increasing values of the principal quantum number
n, accurate (-1%}values can only be obtained by
direct calculation. To date, the literature contains
only calculations by Cooke and Gallagher for a
few isolated states. Much more valuable for
connection with other work would be a systematic
survey of BBR-induced depopulation rates over
a wide range of quantum numbers and atomic
species. The present paper constitutes such a
study.

BBR-induced depopulation effects have been the
subject of recent experiments. Beiting et al. ,

'
Gallagher an/ Cooke, ' and Cooke and Gallagher'
have observed BBR-induced redistribution of
population among Rydberg levels. Gross et al. '
have observed amplification of BBR by small
samples of high-Rydberg atoms. In these ex-
periments, otherwise puzzling effects were at-
tributed to room-temperature BBR.

More conclusive proof that the observed effects
are, in fact, caused by BBR comes from experi-
ments in which the ambient temperature is
varied. Koch et al. ' passed an atomic beam con-
taining long-lived Rydberg states through an oven
and observed a temperature-dependent population
distribution among the Rydberg states. Spencer'
made lifetime measurements of a single Rydberg
state over a range of temperature and found a
temperatur e -dependent lifetime. Related w ork
has been done by Figger et al.'

The dynamic Stark shift induced by BBR has
not yet been observed experimentally. The only

theoretical calculation is an asymptotic estimate
by Gallagher and Cooke, ' who obtained an upward
shift, common to all sufficiently high Rydberg
levels in all atoms, of 2.2 kHz at a BBR tempera-
ture of 300 K. In this asymptotic estimate, the
peculiarities of the atomic species do not appear,
and the shift at low and intermediate values of
n remains unknown. Until now, no accurate
calculations of the dynamic Stark shift have been
performed for any atomic state.

There exists a considerable body of related
work in the field of optical pumping. Dynamic
Stark shifts induced by the off-resonant spectral
components of resonance lamps were first
observed by Arditi and Carver. " Dupont-Roc
et al."observed shifts of several tens of Hz, or
more than twenty experimental linewidths.
Kastler" wittily dubbed this effect the "lamp
shift"; it is more commonly called the "light

shift. " The detailed theory of light shifts in
optical pumping experiments was worked out by
Barrat and Cohen-Tannoudji" and by Happer and
coworker s.'4

The theory of light shifts in optical pumping
is, however, not directly applicable to the study
of BBR-induced Stark shifts. Although both
phenomena stem ultimately from the same
quantum-mechanical interaction, the specialized
approximations made in the optical pumping work
render it inapplicable to the BBR case. Specifical-
ly, light shifts in optical pumping experiments are
caused by a nearly resonant source. Consequently,
the rotating-wave approximation is an appropriate
simplification of the problem. In contrast, the
appropriate approximations for studying BBR-
induced Stark shifts are quite different. Because
the bulk of the BBR spectrum is very far from
resonance, the rotating and counter-rotating
components of the radiation field make contribu-
tions of comparable magnitude. In the theory of
BBR-induced dynamic Stark shifts, the rotating-
wave approximation is therefore inappropriate,
and we retain the antiresonant term in the equa-
tion for the shift.

In this paper we present accurate calculations
of two effects induced by the BBR electric
field: the dynamic Stark shift and the electric-
dipole depopulation rate. The much smaller
effects of the BBR magnetic field (dynamic Zeeman
effect and magnetic dipole transitions} are neg-
lected. We also neglect electric-quadrupole
transitions, since they are slower than electric-
dipole transitions, by a factor of order o.', for
Rydberg as well as ground states. In Sec. II, we
derive theoretical expressions accurate to lowest
nonvanishing order in standard time-dependent
perturbatio~ theory. The BBR electric field is
treated classically. Our treatment of the dynamic
Stark shift does not make the usual rotating-wave
approximation. The formalism is developed in
full generality; it includes contributions from
all components of the blackbody spectrum and
from all perturbing states accessible via electric-
dipole transitions, including those in the continu-
um. For convenience, we use the general term
perturbing states to refer to intermediate states
(in the calculation of the dynamic Stark shift) or
final states (in the calculation of the depopulation
rate). The sum over perturbing states consists
of terms which factor italo the square of the
electric-dipole matrix element and a universal
function, applicable to all atoms, which depends
on atomic parameters solely through its argument.
Approximate formulas are developed for both
BBR effects, applicable in the high-n regime.
The range of validity of our theoretical approach
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is discussed. In Sec. III we present details of
the evaluation of the electric-dipole matrix ele-
ments and the summation 6ver discrete and
continuous perturbing states. Section IV presents
the results for many states of hydrogen, helium,
and alkali-metal atoms. In Sec. V we compare our
results with the results of others and discuss
several cases of interest for high-precision
spectroscopy. Appendix A contains details of the
theory of the dynamic Stark shift, and Appendix
B describes the evaluation by numerical integra-
tion of the universal function for the dynamic
Stark shift.

II. THEORY

The interaction of an atom with the radiation
field is a complex topic, and a host of complicated
phenomena are known to occur at strong fields.
In this paper, we shall deal only with weak fields.
Our approach is valid to lowest nonvanishing
order in perturbation theory. We sketch the out-
line of the development from first principles of
the relevant equations. Much more detailed
treatments can be found in standard references. "

The well-known starting point is a model
system consisting of an isolated atom coupled
to the quantized radiation field. The isolated
atom is a wholly fictitious entity which would
exist if one could somehow "turn off" the radia-
tion field. The excited states of such an atom
would not decay; their energies would be arbi-
trarily sharp. Each mode of the quantized radia-
tion field has n+2 "photons", where the photon
occupation number n represents blackbody photons
present when T& 0 in thermal equi1ibrium, and

~ represents the vacuum (zero-point) fluctuations
that remain at T =0.

The interaction of the vacuum fluctuations with
the atom produces two mell-known effects. First,
the fluctuating electric field of the vacuum
stimulates emission from excited atomic states. "
This spontaneous decay produces a finite lifetime
of the excited states and, therefore, a nonzero
level width. The second effect of the vacuum
fluctuations is a radiative shift (Lamb shift) in
the atomic energy levels. The effects of the
vacuum fluctuations are taken into account by
incorporating them into the atomic Hamiltonian.
The decay of the excited states is included
phenomenologically by adding a radiative damping
term in the time-dependent Schrodinger equation.
The radiative level shifts are included by adding
small corrections to the values of the atomic
energies. When these modifications are made
to the atomic Hamiltonian, the vacuum fluctua-
tions are then decoupled from the problem and

can be safely neglected thereafter.
We now detail our assumptions about the nature

of the blackbody radiation field, which we treat
classically. We assume the BBR is isotropic.
Furthermore, we assume that any correlations
between the phases of different spectral compo-
nents of the radiation field average to zero.
Consequently, the effect of the entire blackbody
spectrum can be obtained by calculating the effect
of a single frequency component, and integrating
the result over the BBR frequency spectrum. A
monochromatic off-diagonal perturbation is
represented by V cost, where V is given in the
electric-dipole approximation by

V =er ~ E/8. (I)

In Eq. (I), e is the absolute value of the electron
charge and r is the radius vector of the electron.
We shall neglect relaxation processes and treat
energy levels as arbitrarily sharp. We calculate
BBR effects on an atom at rest; i.e. , we neglect
the Doppler effect. This is justifiable because of
the isotropy and very broad spectral distribution
of the BBR, as long as the atomic speed is small
compared to that of light.

A. The dynamic Stark effect

A time-varying electric field has effects on an
atomic system which are qualitatively different
from those of a static electric field. Because the
Hamiltonian is explicitly time dependent, there-
are no eigenvalues. The time-dependent Schro-
dinger equation is a transient problem rather than
an eigenvalue problem.

Since there are no eigenvalues, it makes little
sense, strictly speaking, to refer to perturbation-
inQuced shifts to eigenvalues. We will nevertheless
speak of a shift in the energy of a state. This
linguistic convention has the following meaning:
An atom is imagined to be subjected to both a
perturbing field and an arbitrarily weak probe
field. In the absence of the perturbing field, the
probe field would induce a I orentzian resonance,
whose line center is given by the energy difference
between the relevant states. In the presence of
the perturbing field, the probe field induces a
resonance at a slightly different frequency. The
frequency difference is referred to as the dynamic
Stark shift. In addition, in the presence of the
perturbing field, the probe field induces new
resonances, which have no counterpart in the
unperturbed case. Figuratively speaking, one
can think of the perturbation as putting sidebands
on the wave function. The new resonances rep-
resent multiple quantum. transitions in which one
photon is absorbed from the probe field and one
or more from the perturbing field. For sufficient-
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ly weak perturbations, these resonances are much
less intense than the principal resonance. Con-
sequently, they will be neglected in this work.

Our discussion of the dynamic Stark shift follows
the approach of Townes and Schawlow. " A simi-
lar approach was taken by Autler and Townes. "
We distinguish four different regimes depending
on the relationship between the frequency of the
perturbing field, the magnitude and width of
atomic transitions, and the magnitude of the
dynamic Stark shift. In the following discussion,
references to "the" atomic interval implicitly
refer to a two-level atom; realistic calculations
require a sum over many levels.

Case I: QuasistaticPerturbation. If the fre-
quency of the perturbing electric field is much
less than the natural linewidth of the atomic
transition, the effect of the perturbation can be
calculated at any instant as if it were static. The
atomic system then follows the perturbing electric
field adiabatically.

Case II: Slovenly varying Perturbation. If the
frequency of the perturbing electric field is greater
than the natural linewidth, but much less than
the atomic interval, the system ean no longer
follow the variation of the electric field, but
responds only to the average (rms) electric
field. The probe field induces a shifted principal
resonance and a number of weaker multiple-
quantum resonances. The position of the principal
resonance can be calculated as in Case I, using
the average (rms) value of the electric field.

Case III: Rajidly varyirig nonresonant perturba-
tion. When the frequency of the perturbation is
much greater than both the linewidth and the
quasistatic (Case I) Stark shift, and when the per-
turbation frequency is far from resonance, the
shift b~, in the energy &, (in circular frequency
units) of level a is given to lowest order in P by

For a fuller discussion, see Eq. (36) of Ref. 18
or Eq. (10-77) of Ref. 17. Here V,~=(a ler
~ E Ib)/5 The symbols. a and b represent the
complete sets of quantum numbers of the atomic
states a and b. We have not made the rotating-
wave approximation; Equation (2) includes both
the resonant and the antiresonant terms. The
latter is responsible for the Bloch-Siegert shift"
in magnetic resonance experiments. The dynamic
Stark shift depends on the frequency of the per-
turbation. The shift can be either positive or
negative. The sign of the shift depends on whether
the frequency of the perturbation is greater than
or less than the frequency of the atomic transi-

tion. Equation (2) has poles at ~, —&, =au&, which
lie on the real axis as a result of neglecting
radiative damping; we discuss this point further
below.

Case IV: Resonant Perturbation. When the
perturbation is approximately resonant with an
atomic transition, the problem can be solved for
a two-level atom in the rotating-wave approxima-
tion. The wave function has two terms with dif-
ferent frequencies. Exactly on resonance, the
two terms are of equal magnitude, and the two
frequencies differ by the famous "Habi flopping
frequency. » This is also variously termed the
Autler-Townes effect or the production of Jaynes-
Cummings doublets. " Away from resonance, the
two terms are of very unequal magnitudes. The
relative importance of the two terms reverses as
the frequency of the perturbation sweeps through
resonance. Neglecting the smaller of the two
terms and radiative damping, we obtain a fre-
quency-dependent dynamic Stark shift which
executes a finite jump from one branch to the
other at resonance.

For the purposes of calculating BBH-induced
effects, the vast bulk of the spectrum of the
perturbation varies rapidly enough that the
relevant cases are Cases III and IV. Therefore
we neglect the tiny regimes in which Cases I and
D apply. The contribution to the dynamic Stark
shift from the nonresonant parts of the BBH
spectrum (Case III) is obtained by integrating
Eq. (2) over the nonresonant parts of the BBR
spectrum.

In order to calculate the contribution to. the
dynamic Stark shift from the near-resonant parts
of the BBH spectrum, one cari integrate the ex-
pression for Case IV over the near-resonant part
of the spectral distribution. Assuming that the
spectral distribution of the perturbation varies
slowly over the resonance region, one finds that
the contributions from the high-frequency and
low-frequency side of the resonance largely
cancel. The net contribution from a spectral
region symmetric around the resonance is pro-
portional to the frequency derivative of the
spectral distribution; a flat perturbation spectrum
gives no shift.

An equivalent alternative way of evaluating the
resonant contribution is to use Eq. (2), the ex-
pression for the nonresonant case (Case III), in
the integral over the spectral distribution. The
pole in Eq. (2) is handled by taking the Cauchy
principal value of the integral. This yields the
same result for Case IV. This achieves a con-
siderable simplification of the calculation, because
a single expression can be used for both resonant
and nonresonant contributions. Details can be
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found in Appendix A.
In this work we neglect radiative damping and

treat energy levels as arbitrarily sharp. This
is a reasonable procedure because the typical
radiative linewidths are much less than either
the characteristic BBH frequency or the relevant
atomic intervals.

The total shift can be calculated by integrating
the contributions to the shift over the source
spectrum. We then have a perturbation,

V„((o)=&a
l
er E(to) lb)/)I,

and a shift,

1 26„@(to)= BM(to, ~) . (5)

The spectral energy density M(to, T) is given in
turn by the BBR formula

Here E, (to) is the component of the electric field
at circular frequency ~ along the direction s.
Since the blackbody radiation is isotropic, each
component of the electric field is related to the
spectral energy density M(&, T) at temperature
T by

6 .=„.Zl & l~, lb&l'
Qp

(&s ) 2c3 1/»kr (6)

X
0

&';((c)l + d(c.
&, -~b+&

(4), Combining Etls. (4), (5), and (6), we obtain

«.=,„,',.El&~I~, I»l' f ~'(~""&"'-~)-'~I', „' + ', '~~«.
ktb 0 a b +a b

where E is given by

a

(6)

We can express the matrix elements in terms
of the Bohr radius a0 and recast the integral in
dimensionless form:

I

It is worth noting that a perturbing state that is
degenerate with the perturbed state (i.e. , to, =to,)
makes no contribution to the shift. Hence our
second-order perturbation treatment is valid
when applied to hydrogen. As an aside, we note
the contrast with the static Stark effect, where
the second-order perturbative expression
notoriously diverges for hydrogen.

and y is defined by

k((c, —(o,) (10)

The dependence of the dynamic Stark shift on
the blackbody spectral distribution is entirely
contained in the function E(y), which is a universal
function applicable to all atoms: Only the argu-
ment depends on atomic parameters. We have
evaluated E(y) by numerical integration and

tabulated the result. Technical details, including
the numerical treatment of the singularity at
x =y, are discussed in Appendix B. E(y), which
is an odd function of y, is displayed in Fig. 1.
The function vanishes at the origin and at y =2.616.
From Fig. 1 we can deduce the sign of the con-
tribution to the Stark shift made by intermediate
states. Nearby states, which satisfy ly [ & 2.616,
attract the shifted state; i.e. , perturbing states
lying above (below) the shifted state make a
positive (negative) contribution to the shift. In

contrast, distant states repel the shifted state.

I I I I I I I I I I I I I I I I I I I

I 2 5 4 5 6 7 8 9 10 I I l2 l5 l4 15 l6 17 l8 IS

V "~(&a cub )/kT

FIG. 1. The function E(y ) defined in Eqs. (8)-(10) in
the text. Blackbody radiation causes a dynamic Stark
shift in the energy u, , of level a by an interaction, with
level b. The shift is proportional to E(y ), multiplied
by the square of the electric-dipole matrix element.
E(y ) is the integral of the off-resonant energy denom-
inator over the spectral distribution of the blackbody
radiation. We show the behavior for positive y; for
negative y, E(-y) = -E(y). The sense of the inter-
action between states a and b is interesting: %hen
states a and b are close in energy (small I y I), the
states attract; when they are distant (large

~ y I), they
repel.



2402 JOHN W. FARLEY AND WILLIAM H. WING

For large and small values of the argument,
F(y) assumes the following asymptotic expres-
sions:

~" xdx n'y
ex ]

F(y) ~ ('

12 " x d~ 2 t ~'dx 2v 16n'

y -, e" -1 y', e" —1 15y 63y' '

ly l»1 (»)

A simplification is possible when the perturbing
states are energy degenerate with respect to J„
i.e. , where, for fixed n, and S„ the variation of
energy with Jb is much less than kT. In the
degenerate case, for fixed nb, we can neglect the
variation of the function E with respect to J, and
sum over J', in Eq. (17) using the sum rule for
the 6-j symbols

In evaluating Eqs. (11) and (12), we have used the
definite integral"

Q(2j +]) s S S

b b

Insertion of Eq. (18) into Eq. (17) then yields

(18)

where B,„are the Bernoulli numbers.
The matrix element in Eq. (8) can be factored

into radial and angular parts. Assuming LS
coupling, we obtain

R,~
=—

J~ R,(r)R,(r)r'dr .
0 0

(15)

Here R,(r) and R,(r) are the radial parts of the
atomic wave function.

We now sum Eq. (14) over all values of M~ and
all three components i of r, , deferring the sum
over Jb for later. From standard angular mo-
mentum theory, we obtain an expression in terms
of the reduced matrix element and the square of
a 6-j symbol

nLSSSf, ~ ,n,L, ,S,J,M,)js Nb

= (2~c +I) ' ' ' lL. llnllL~) I' (18)
L J S

J L

Here n represents the unit vector. The square
of the reduced matrix element equals L, the
larger of L, and L~. Hence we rewrite Eq. (8) to
express the shift in hertz, 5v, =5&v,/2v, as

( n. L,S,J,~. ~
a0

(14)

Here n is the principal quantum number, L is the
orbital angular momentum, S is the spin, J is
the total electronic angular momentum, and M
is the z component of J. The dimensionless radial
integral R,b is given by

e', kT ' ~ L „,k((o. —(o,)~
kT ').

nbLb '0

n(kT)'
5p = (21)

Here z is the fine-structure constant. At 300 K
this expression evaluates to 2.417 kHz.

We can estimate the value of n for which Eq.
(21) applies. As we will show below by explicit
calculation, the largest contributions to the shrift

at room temperature typically come when I nb

-n, ) g1. We want the corresponding atomic
interval to be small enough so that Eq. (11) is
usable. If we take lyl &0.5, we obtain the
condition

Equations (17) and (19) are the expressions for
the shift in the nondegenerate and degenerate
cases, respectively.

We now derive an approximate expression
valid for high values of n, . If the bulk of the
electric-dipole matrix element strength comes
from states which satisfy I &, —~b I «kT, we may
approximate F(y) by its asymptotic expression for
small lyl, Eq. (11). Substituting Eq. (11) in Eq.
(8), we obtain the expression

ge kT

(2o)

The summation in large parentheses is unity by
the Thomas-Reiche-Kuhn sum rule, "which applies
to all atoms provided only that the states lk)

satisfy completeness. We then obtain an expres-
sion for the shift 5v, =5&v,/2w:

e' kT L, J, S, 2

J L 1
1 1 kT" n' (n+1)' 2 ' (22)

xL (S,,)'S(" ' ').
(17)

where R„ is the Rydberg constant in cm '. Since
n»1 this simplifies to

n (4kcR„/kT)'~'.
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At T = 300 K this gi.ves n o 12.8 as a rough value
for the applicability of Eq. (21) and the onset of
Rydberg behavior.

We should not, however, expect the results of
an exact calculation to d.pproach the value given
by Eq. (21) asymptotically. To the extent that
significant contributions come from states which
do not satisfy I y I « I, our use of Eq. (11) intro-
duces error. A glance at Fig. 1 reveals that the
curve is nonlinear [i.e. , Eq. (11) overestimates
the magnitude of E(y)] for I y I

~ 0.5. However, -

one cannot thereby conclude that Eq. (21) is an
overestimate. Contributions of opposite sign
are summed, and different contributions are
affected differently by the use of Eq. (11).

Equation (21}predicts that the shift scales as
T2 in the limit where the major contributions to
the shift satisfy ly l &1. In the other limit, how-
ever, in which the major contributions come from
states which satisfy Iy I &1, the scaling. is dif-
ferent. Such a situation occurs for the 2S state
of hydrogen, for example. E(y), given approxi-
mately by Eq. (12), scales as T. If we neglect
the variation of y in the sum indicated in Eq. (8),
we obtain the result that the shift scales as T4.

B. Depopulation rates

We now consider the depopulation effect. BBR
efficiently redistributes population among Rydberg
states, shortens the atomic lifetime, and causes
line broadening. The effective decay rate of a
Rydberg state is then

(24)

where nr represents natural radiative decay. Our
calculational approach, described below, i.s well
suited only to the evaluation of the second (BBR-
induced) term, for the following reasons. ' The
principal contributions to the natural radiative
decay rate come from transitions to low-lying
states, whereas the principal contributions to
the BBR-induced rate come from transitions to
other Rydberg levels. Our calculations of the
electric-dipole matrix elements are based on
the Coulomb approximation, '3 which represents
the wave function accurately for large values of
r, but diverges for small values of y. Consequent-
ly, we know Rydberg-to-Rydberg matrix elements
accurately and Rydberg-to-low-lying-state
matrix elements inaccurately. We therefore have
not calculated the natural radiative decay rate,
but present instead the BBR-induced transition
rate I'». The BBR-induced line broadening (in
the absence of saturation effects) is then I'»/2v.
In the presence of saturation effects, one can
still use the rates. calculated here in a rate-equa-
tion approach, foQowing the example of Lamb

and Sanders. '4

From Fermi's "Golden Rule" we have the
transition rate to a final state 5 caused by a

A

perturbation V cos&t:

I';.;(~)=2v II'„I'6((d -(u„).
Here V,~(&u) is given by Eq. (3), and &o, = I,w

Using Eq. (3) and integrating over (d, we
obtain

(25)

I';=.,Ql& I, I»l'E', ( .,).
Using Eqs. (5}and (6) and summing over all final
states b, we obtain the total BBR-induced de-
population rate r~~ from state a

(26)

EBB — rBB
a a" b

b

(2V)

This expression can be rewritten as follows:

(28)

1))s 4e ~o"~ Lm» (~ )2 2

3SC3 2L + 1 ab ab
nbI b a

We now apply the sum rule (Eq. 61.11 of Ref. 22)

(32)

(33)

Here

U(y)=I&I'( I'I —1) '

and y is defined by Eq. (10) above. Evidently U(y)
is an even function of y. We now use Eqs. (14)-
(16) to simplify the matrix elements. We obtain in
the general case

24e', kg ' a a a

nb~i ~b b b

x(R„)'U(y) . (30)

When the states with different values of J, are
degenerate in energy, we use Eq. (18) to perform
the sum over 4, . We have then

+2 g ~ 2U ~ 31
nbLb a

Equations (30) and (31) give the depopulation rates
in the nondegenerte and degenerate cases, re-
spectively, corresponding to Eqs. (17) and (19) for
the dynamic Stark shift.

For sufficiently high values of n„we obtain an
approximate expression. Most of the electric-
dipole matrix element strength occurs when

N&u„& kT. We can expand the denominator in U(y)
to obtain
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F88 (34)

At 300 K, this evaluates to 2.03x 10'(n,*) ' sec '.
This expression may be expected to apply when

~~, —u&, ~SAT/2; i.e. , for n*~ 12.S, as discussed
above.

Equation (34) is subject to a stronger caveat
than that expressed above fear the analogous Eq.
(21). Contributions from states which do not sat-
isfy ~y ~«1 will be overestimated more severely
by Eq. (34) than by Eq. (21), because of the extra
factor of ~„ in Eq. (32) compared to Eq. (20).
Furthermore, since all the contributions to Eq.
(32) are positive, no cancellation of errors can
occur, contrary to the case of Eq. (20). Hence,
Eq. (34) is definitely an overestimate.

C. Range of validity

Equation (33) is valid only for hydrogen, but we
can generalize to other atoms in the Coulomb
approximation by using effective quantum num-
bers n* in place of indicial quantum numbers n.
After performing the sum over 1., in Eq. (32), we
obtain

that this particular field-strength parameter is
inappropriate.

Hayfield ' also uses a second parameter for
judging the electric-field strength, the ratio of the
peak kinetic energy of a free electron, e'E'/2m&v,
to the Coulombbinding energy n'mc'/2n'. One ob-
tains the ratio W„, /Wc, „, = Vx10 ~'n'T', where T
is in degrees K. This ratio is much less than
unity; equality is obtained only when nT -4x10' K.
Evidently this limit is not of practical interest.

We now consider a third way of judging the elec-
tric-field strength. When the blackbody radiation
is sufficiently intense, the interaction of the Ryd-
berg electron with the blackbody electric field is
comparable to the interaction with the ionic core.
That is,

en'a, z ——,'n'mc'/n'.

The rms electric field E can be evaluated using
Eq. (35). The threshold condition is then

8 3 I/2 -Z/2 .2
7f (~T)2 2 n y 2mc
15 nzc' ' n'

or

S(d=8n- S7)- 2c 'co' exp —1 de

= Sn'(kT)'/15(ch)' . (35)

Inserting the peak value of ~-3kT/g, we obtain
a value for the excursion of 1.4Sx10 "cm. The
excursion is independent of T, because both E and
&' scale as T', a peculiarity of the BBR spec-
trum. The radius of the Bohr orbit, gon'=5
x10 'g' cm, is much larger than the excursion
for all values of n. In fact, the field-strength
parameter actually decreases as n increases.
This seems intuitively unreasonable and suggests

In this section, we examine the possibility of a
breakdown of our formalism at extreme values of
n and T. We consider two topics: failure of the
weak-field (perturbation) approximation, and
breakdown of the electric-dipole approximation.

Taking up the first topic, we seek an appropri-
ate criterion by which to judge the strength of the
perturbing electric field, and thereby divide the
weak-field and strong-field regimes. A number
of different criteria have been proposed, each
yielding different results. A recent review article
by Bayfield25 uses as a field-strength parameter
the ratio of the excursion of a free electron in
the perturbing electric field at frequency (d,
eZ/mu&', to the radius of the Bohr orbit, a,rP.
We take the rms value of the BBR electric field,
calculated from

For T =300 K, the two interactions are of com-
parable magnitude for n-122. For n =30, this
occurs at T-5000 K. When n and T are suffi-
ciently high to be in the "strong BBR" regime,
multiphoton processes will start to become im-
portant. An arbitrarily weak probe field inter-
acting with the BBR-atom system will then induce
complicated resonance line shapes. The concept
of a simply defined dynamic Stark shift then be-
comes problematical.

We conclude the topic of strong perturbing elec-
tric fields by mentioning briefly two final strong-
field effects. These effects turn out to be impor-
tant only at extremely high values of n and T.

First, the dynamic Stark shift will ultimately
become comparable to the spacing between g
manifolds. Using Eq. (21) for the shift, and
n2mc'/n' for the level spacing between n mani-
folds, we put

n(kT)', mc'
6mc' n

This yields n- 2.6x 104 at T = 300 K. Such states
can hardly be studied in the laboratory, since the
Bohr radius ao pi' for such a state is 3.4 cm.

The other conceivable limit arises from the
BBR-induced transition rate. As the temperature
increases, high-Rydberg levels are coupled more
and more strongly into the continuum. The energy
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levels are broadened until ultimately the width of
the energy levels exceeds the spacing. between
levels. At this point discrete levels do not exist.
Using Eq. (34) for the transition rate, we obtain

1 4 3kT——A ——,-CF mC /S y
2n 3 8 n'

pr

Tn-3.8x 10"K.

We can safely confess to a lack of laboratory in-
terest in this limit.

The final topic in this section is the possible
breakdown of the electric-dipole approximation
for the interaction between the atom and the radia-
tion field. In this paper, we have assumed that the
spatial variation of the BBR electric field over the
atomic volume can be neglected. Mathematically,
we have k„dy «1, where k„d is the wave number
of the radiation and y is the atomic radius. In this
limit, we can make the approximation exp(+ik„„r)- 1. Evidently, higher-order terms will enter
when k«dy™1. Taking k«d to be its value at the
peak of the BBR spectrum, 3kT/kc-, and using
the Bohr radius y =g, n', ' we obtain the condition
for the breakdown of the electric-dipole approxi-
mation kTn'- a'mc'/3. At a temperature of 300 K,
the indicated limit in ~ is n-219; for ~=30, the
limit in temperature is 7-1.6x10 K. In the high-
s, high-T regime, the higher-order multipoles of
the radiation field may be comparable in effect to
the electric -dipole component.

This conclusion seems superficially to contra-
dict the well-known fact that the electric-dipole
approximation continues to hold for Rydberg-to-
Rydberg transitions as well as transitions among
low-lying states. Because the radius of a Bohr
atom scales as n', while atomic energies scale as
yg ', the factor k„„y remains small for transitions
among Rydberg states as well as low-lying states.
The apparent contradiction disappears when we
realize that the off-resonant dynamic Stark shift
is an inherently different phenomenon from reso-
nant transitions: The value of k„d depends on the
temperature, not on the atomic intervals.

To sum up: Only two ways of approaching the
problem give limits which are likely to be realized
in practice. At T =300 K, the interaction of the
Rydberg electron with the BBR electromagnetic
field is comparable to the binding energy at &-122,
while the electric -dipole approximation breaks
down at g-219.

III. CALCULATION

The calculations were performed on a Nova 2/10
minicomputer (3/o) and an Eclipse S/230 mini-

computer (97%), both from Data, General Corpora-
tion, in double precision (16 decimal digits). Ap-
proximate total running time was 12 h on the Nova
and 8 h on the Eclipse.

8. Summation over discrete perturbing states

In order to reproduce accurately the energies
of a large number of atomic energy levels, we
represented the energy by the quantum defect for-
mula

E/bc= -R/(n*) =——R/(n —6) (36)

where ff is the Rydberg constant (in cm ') for the
atom.

&=~0+&i +~a

We performed least-squares fits to atomic energy
levels to obtain optimized values for 60, G„and

Atomic energy-level data for the fit came
from the work of Bashkin and Stoner" (Li, Na, K),
Charlotte Moore" (Rb, Cs), and the authors"
(He). For hydrogen we included the Lamb shift
and relativistic corrections to order 0.~. For all
elements considered, our treatment of the energy
included fine structure and the reduced-mass cor-

A. Evaluation of electric-dipole matrix elements

For hydrogen, we used the exact expressions in
terms of confluent hypergeometric functions. "
The evaluation of the confluent hypergeometric
functions involves the gamma function, which, for
large values of quantum numbers, easily exceeds
the 10"' dynamic range of the computer. Accord-
ingly, one of us (W.H.W. ) wrote a wide-ranging
arithmetic software package to extend the dynamic
range, allowing numbers in the range 10"" ' to be
treated with 16-digit accuracy.

For helium and the a,lkalis, we used the follow-
ing calculational techniques described by Zimmer-
man et gl." W'e used the Bates-Damgaard meth-
od,"based on the Coulomb approximation, for
low values of the principal quantum number n. As
n increased, the Bates-Damgaard calculation ra-
pidly lost accuracy by the accumulation of round-
off error. Consequently, for either the initial
or final value of ~ greater than 15, the radial wave
function was integrated directly using a Numerov
algorithm whose source- code implementation was
kindly suppl. ied by Zimmerman. We tested these
programs for possible coding errors by compar-
ing the results with exact hydrogenic expressions
and with existing Bates-Damgaard tables. The
effect of spin-orbit interaction on the matrix ele-
ments was taken into account only through the
binding energy (i.e. , through n~).
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C(n, ) = (R„)'n,(n, —n,)' (38)

varies much more slowly with n, than does (R,)'.
For example, for n, =20, when n, varies from
30 to 90, (R„)' varies by over two order of mag-
nitude, whereas C(n~) varies by only 20/0. We
also found that C(n, ) varies more slowly with n,
than does the expression (R„)'n,'.

In our calculation, we included a linear variation
of C(n, ) with n, In this. approximation, C(n, ) is
given by

C(n, ) = C(n, )(n, —n, )/(n, —n, )

+ C (n, ) (n —n, )/(n, —n, ), (39)

where n, and n, are two specific values of n~ for
which the explicit evaluation of R~ is performed.
(R„)' is then given for n, by Eq. (38).

When n, &n~&n» and n, —n, is not too large,
this interpolation procedure yields accurate re-
sults. It is exact at the end points n, and n, . The
only source of inaccuracy in (R,~)2 is the assump-
tion of linearity in Eq. (39).

When performing the sum, the function F was
evaluated explicitly for each individual term. The
evaluation of the contribution of the intermediate-
s regime is probably accurate to a few percent at
worst, because even the cruder approximation,

rection, but neglected hyperfine structure. When

performing the calculation, in certain cases we
neglected the relativistic fine structure because
its effect was negligible. Those cases are noted
in the appropriate tables.

In order to perform the sum over the infinite
number of discrete states, we made use of series
regularities which obtain for large values of the
principal quantum numbers n, and n, . The asymp-
totic behavior of the dipole matrix elements was
then used to extrapolate to the ionization limit.

The sum over the perturbing states n, was per-
formed in three parts, according to the value of

n, . In the low-n regime, we calculated the con-
tributions of individual states until the contribu-
tions had fallen off significantly. Typically the
cutoff was n~ =n, + 10, the largest contributions
coming from n, -n, . Next, in the "intermediate-n
regime, "we calculated every tenth state and inter-
polated as described below, thus obtaining contribu-
tions up to some high n~= f(/ (typica—lly I)/ = 50).
Finally, in the 'high-n regime, we estimated
analytically the small residual contribution from
all states with n~&N.

In the intermediate-n regime of hydrogen, we
used a simple formula to model the dependence of
the matrix elements (R~)2 on n~ for fixed n, . For
a fixed value of n„we found empirically that the
quantity

Eq. (38), with C(n, ) = constant, would be correct
to -20/o, as mentioned above. Our level of ac-
curacy is quite satisfactory, because the contribu-
tion of the entire intermediate-n region to the total
shift is rather small. For the 15D state of hydro-
gen, for example, the intermediate-n region con-
tributed 2/o of the total dynamic Stark shift.

In addition, we remark on the behavior of very
high Bydberg states (n~&f)t). At large values of
the principal quantum number n~, the sum over
perturbing states can be replaced by an integral
over the binding energy E of the perturbing state.
We obtain

(40)

In Eq. (40), p(E) represents the density of per-
turbing states and E is the binding energy of the
perturbing state, given by Eq. (36). Therefore
p(E) =

I
d~* /dE

I
is given by

p(E) =R'"/2lz I'~'. (41)

The electric-dipole matrix element A„, defined
in Eq. (15), represents the operator y evaluated
between the radial wave functions for state g and
state b. For sufficiently large values of the prin-
cipal quantum number n, of state b, (R„)2 falls
off smoothly as (n~)

' or IE I'+. This can be ob-
tained in Eq. (38) when n~/n, » 1.

In Eq. (40), as n~ increases, E approaches zero.
The decrease in the squared matrix element can-
cels the increase in the density of states p(E). If
we neglect the relatively slow dependence of F
on energy, we then obtain the interesting result
that equal energy intervals contribute equally to
the shift in the very-high-Rydberg limit.

In our calculation, we estimated the small con-
tribution from the infinite number of very-high-
Rydberg states by refining the previous remark.
We assumed that Eq. (38) gives the falloff of R„
with n~. We then used the integral"

J +—,ln ' ' I. (42)

For n~/n, » 1, this expression approaches I/(2n', ).
We took into account the variation of E over the
asymptotic region by replacing E with its mean
value, averaged with respect to the binding energy
of the asymptotic region. This is the appropriate
average because all energy intervals contribute
equally in the limit of constant E.

The evaluation of the depopulation rate proceeds
in an exactly analogous way. We perform the in-
dicated sum in Eqs. (30) or (31) over all discrete
perturbing states.
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C. Contribution of continuum states

Accurate calculation of oscillator strengths of
transitions between bound states and the continuum
is quite difficult, " except for some special cases,
such as the ground state of hydrogen, for which
a closed-form expression exists. ' Burgess and
Seaton gave a semiempirical calculational meth-
od"~" similar in spirit to the BatesandDamgaard"
approach to transitions between bound states. The
work of Burgess and Seaton was later revised and
corrected by Peach. '4 The idea of the calculation
is to use the quantum defects of the Hydberg states
to obtain the phase shift in the continuum. This
approach yields matrix elements as a function of
the energy of the continuum state. For our pur-
poses, one would have to integrate over the con-
tinuum energy. This is likely to yield significant
error because the Burgess-Seaton method is ac-
curate only for small positive values of the energy
of the continuum state. "

For this reason, and because the continuum
correction is a small contribution in any event,
we have chosen another method to estimate its
size. We use a sum rule, valid for hydrogen
[Eq. (61.7) of Ref. 22]:

The sum over n, includes the continuum implicitly.
To estimate the continuum contribution to (R„)',

we summed the matrix elements over all discrete
states using the method of the previous section,
and attributed the remainder to the continuum
using Eq. (43), appropriately generalized by using
the effective quantum number n* instead of n.

When calculating the continuum contribution to
the shift, we used the value which I' assumes at
the ionization limit; i.e., we took (d~=0. Similarly,
when calculating the continuum contribution to the
broadening, we used the blackbody spectral density
at the ionization limit. This is tantamount to
neglecting the variation of I over the continuum,
or, equivalently, to assuming that the entire con-
tinuum contribution is made at the ionization limit.
This method saved enormous amounts of computa-
tion and was warranted in view of the small size
of the continuum contribution. For the 15P state
of hydrogen, for example, the continuum contri-
butes 0.4% of the total dynamic Stark shift and
O.OP(~ of the total line-broadening effect.

D. Estimate of overall accuracy

The sum rule, Eq. (43), can be used to obtain an
estimate of the overall accuracy. The continuum
contribution calculated in the previous section
turned out in some cases to have the wrong sign.

This indicates that the sum over discrete states
of the squared electric-dipole matrix elements
exceeded the value given in Eq. (43). If we assume
the validity of Eq. (43)., the "continuum contribu-
tion" then represents, in part, a first-order cor-
rection for this small effect, in addition to the
actual contribution from the continuum states.

The situation is complicated by the fact that, in
alkalis, the sum of oscillator strengths typically
deviates" from the value given by the Thomas-
Heiche-Kuhn sum rule by a few percent. The use
of Eq. (43) may therefore actually introduce error
into the calculation. In either event, we may take
the typical size of the "wrong-sign" continuum
contribution as indicative of the level of accuracy.
A survey of the magnitude of this effect suggests
that the accuracy is approximately 1'fo for non-
hydrogenic elements, and up to an order of mag-
nitude better for hydrogen. Other possible sources
of error are estimated to be smaller: the evalua-
tion of F(y), the evaluation of electric-dipole
matrix elements, " and the use of Eq. (38).

Additional evidence for the accuracy of the cal-
culation is provided by the results of the calcula-
tion for high-n, high-L states of hydrogen. As
discussed below, the result of the calculation of
the dynamic Stark shift for the n =30, L =29 state
of hydrogen agrees with the asymptotic, formula
within 0.13/0.

IV. RESULTS

A. Dynamic Stark shifts at 300 K

I. Hydrogen

We take the 15D state of hydrogen as a "typical"
Rydberg state bathed in BBH at 300 K. The con-
tributions to the dynamic Stark shift of the energy
of state g from different perturbing states b are
shown in Fig. 2 as a function of the principal
quantum number n~. The largest contributions
come from the n =14, 16, and 17 states, while
the contributions from the n =15 states are negli-
gible. Nearby states attract the perturbed state;
i.e. , states with n&15 and n &15 make, respec-
tively, negative and positive contributions. Dis-
tant perturbing states (n ~ 10), make contributions
of the opposite sign; i.e. , they repel the shifted
states. These contributions to the shift are much
smailer (less than 5 Hz) and are not shown in

Fig. 2. The sum of contributions from only the
states with 14 & n, & 17 is 1791 Hz, or 90'f&& of the
sum of all contributions. The rapid falloff of
contributions outside the region where n~=n, re-
sults "primarily" from the falloff of the electric-
dipole matrix elements; the variation of F (y) is
much slower. Typically the largest single contri-
bution comes from L, = L, + &, n, = n, + &.
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FIG. 2. Major contributions to dynamic Stark shift
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FIG. 4. Major contributions to the dynamic Stark
shift of the energy levels of the 16D state of rubidium
and the 17D state of cesium, which have m*=15. Temp-
erature is 300 K.

For comparison, Fig. 3 shows the contributions
to the dynamic Stark shift of the energy of the 15D
states of lithium, sodium, and potassium. Figure
4 shows the contributions to the shift of the 16D
state of rubidium and the 17D state of cesium. We

made this choice of quantum numbers n in order
to have n* as close as possible to 15. The curves
for the alkalis are qualitatively similar to the
curves for hydrogen. The most important differ-
ence is that the contribution from n, =n, does not
vanish in alkali atoms because the states are not
degenerate.

Summing all the contributions to the dynamic
Stark shift, we obtained the total shift given by
Eg. (19). The results for the nS states of hydro-
gen at 300 K are shown as a function of n in Fig.
5. The results for I', D, and F states are very
similar; numerical results for S, I', D, and I'
states are listed in Table I. The shift is negative
for small n (&7), positive for n ~ 8, and approaches
a limiting value for high n. The value of 2.417
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FIG. 3. Major contributions to dynamic Stark shift
of energy level of 15D states of lithium, sodium, and
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FIG. 5. Dynamic Stark shifts of energy levels of hydro-
gen S states induced by 300 K blackbody radiation. Also
shown is an approximate formula, Eq. (21), applicable
for high g.

JOHN %. FARLEY AND WILLIAM H. SING



ACCURATE CAI CU LATION OF D Y N'AMIC STARK SHIFTS AND. . . 2409

TABLE I. Blackbody-radiation-induced dynamic Stark
shifts (Hz) of energy levels of hydrogen at 300 K. Fine
structure and the Lamb shift were neglected in perform-
ing the calculation.

~ n

1
2
3

5
6
7
8
9

10
ll
12
13
14
15

Si/2

-0.041 28
-1.077
-9.103

-51.19
-209.5
-274.7

1.344
393.9
761.1

1073
1327
1533
1697
1829
1943

2&i/2, 3/2

-1.535
-11.51
-60.37

-235.6
-291.5

15.60
424.8
797.1

1108
1360
1563
1723
1850
1947

D3/

-16.60
-79.36

-288.8
-323.0

48.57
490.3
870.9

1180
1425
1620
1774
1894
1981

+S/2.7/2

-108.15
' -369.37
-362.27
111.54
599.07
987.45
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2. Helium

The dynamic Stark shifts for helium at 300 K
are listed in Table II and displayed in Figs. 7 and
8. The curves for non-S states of helium more
closely resemble the curves for hydrogen than do
the S states. This is not surprising in view of the
small quantum defects of the non-S states of he-
lium.
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TABLE III. Effective quantum numbers n~ and blackbody-radiation-induced dynamic Stark
shifts (Hz) of energy levels of lithium at 300 K. Fine structure was neglected in performing
these calculations.

6v

5
6
7
8
9

10
ll
12
13
14
15
16
17
18
19
20
25
30

1.588 47
2.596 1
3.598 2
4.599 1
5.599 6
6.599 8
7.600 0
8.600 1
9.600 2

10.600 3
11.600 3
12.600 3
13.600 4
14.600 4
15.600 4
16.600 4
17.600 4
18.600 4
19.600 4
24.600 5
29.600 5

-1.43
-38.62

—433.0
-454.1
1728
3673
4423
4532
4385
4158
3929
3721
3555
3408
3410
3253
3128
3032
2813
2661
2602

1.9593
2.9555
3.9542
4,9536
5.9532
6.9530
7.9529
8.9528
9.9528

10.9527
11.9527
12.9526
13.9526
14.9526
15.9526
16.9526
17.9526
18.9526
19.9525
24.9525
29.9525

-1.145
50.80

292.9
269.9

-128.6
-181.8

58.15
375.3
691.0
973.9

1217
1426
1601
1756
1799
18S5
1970
2074
2112
2211
2280

2.9985
3.9983
4.9982
5.9982
6.9982
7.9982
8.9981
9.9981

10.9981
11.9981
12.9981
13.9981
14.9981
15.9981
16.9981
17.9981
18.9981
19.9981
24.9981
29.9981

-47.75
-219.2
-543.2
-694.6
—379.6

74.40
503.1
863.3

1156
1393
1584
1738
1865
1946
2015
2073
2116
2147
2233
2278

Figs. 9-13. The results permit a number of
generalizations. At sufficiently high n, the dynam-
ic Stark shift approaches a constant value, ap-
proximately given by Eq. (21). What is interesting

is the dependence on n and L of the shift before
this limit is reached. In contrast to the hydro-
genic case, the shift is strongly L dependent.
The high-n limit is approached from above in

TABLE IV. Effective quantum numbers n* and blackbody-radiation-induced dynamic Stark shifts (Hz) of energy levels
of sodium at 300 K.

5 v (Dsy2) 5 v (Dsg2)

3
4
5
6
7
8
9

10
ll
12
13

15
16
17
18
19
20
25
30

1.627
2.643
.3.647
4.649
5.650
6.651
7.651
8.651
9.651

10.651
11.651
12.651
13.652
14.652
15.652
16.652
17.652
18.652
23.652
28.652

-1.389
-27.57

-264.6
-536.9

616.2
1660
2178
2421
2528
2571
2585
2590
2582
2585
2564
2539
2697
2508
2468
2472

2.117
3.133
4.138
5.140
6.141
7.142
8.143
9.143

10.143
11.144
12.144
13.144
14.144
15.144
16.144
17.144
18.144
19.144
24.144
29.144

-2.985
44.13

—254.8
-1037
-1511
—1453
—1060
-575.4
-112.0

295.6
608.0
918.0

1189
1383~

1534 a

1660 ~

1755
1837
2103
2212 a

2.1174
3.1133
4.1386
5.1410
6.1423
7.1431
8.1436
9.1439

10.1441
11.1443
12.1445
13.1446
14.1447
15.1447
16.1448
17.1448
18.1449
19.1449
24.1450
29.1451

-2.998
43.94

-253.7
-1037
-1508
-1449
—1056
-571.4
-108.5

298.5
610.0
919.9

1191
1383 ~

1534
1660
1755 ~

1837
2103
2212

2.990
3.988
4.987
5.986
6.986
7.985
8.985
9.985

10.985
11.985
12.985
13.985
14.985
15.985
16.985
17.985
18.985
19.985
24.985
29.985

—61.24
15.73

279.8
784.6

1351
1698
1902
2029
2115
2202
2257
2322
2393
2374
2385
2391
2393
2393
2366
2378

-61.25
14.46

279.7
786.7

1354
1701
1904
2030
2116
2203
2258
2322
2395
2374 a

2385 ~

2391
2393
2393 ~

2366
2378

Fine structure neglected in calculation of shift for this state.
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TABLE V. Effective quantum numbers n * and blackbody-radiation-induced dynamic Stark shifts (Hz) of energy levels
of potassium at 300 K.

6v (D5/2)

3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
25
80

1.770
2.801
3.810
4.814
5.816
6.817
7.818
8.818
9.818

10.819
11.819
12.819
13.819
14.819
15.819
16.819
17.819
22.820
27.820

-2.528
-45.76

-412.5
. -429.8

1143
2284
2769
2941
2973
2947
2900
2852
2822
2780
2727
2862
2798
2533
2503

2.232
2.263
4.273
5.278
6.280
7.282
8.283
9.283

10.284
11.284
12.284
13.285
14.285
15.285
16.285
17.285
18.286
23.285
28.286

-5.370
-76.77
—42.71

87.31
1167
1742
1807
1493
1006
623.2
621.1

1216
2651
2603 ~

2549 ~

2553 ~

2564
2374 ~

2369

2.235
3.266
4.276
5.281
6.283
7.285
8.286
9.286

10.287
11.287
12.287
13.288
14.288
15.288
16.288
17.288
18.288
23.289
28.289

-5.471
-78.97
-43.62
107.3

1216
1798
1858
1536
1043
653.9
648.4

1241
2651
2603
2549 ~

2553
2564
2374
2359

2.854
3.797
4.770
5.755
6.746
7.740
8.736
9.733

10.731
11.730
12.728
13.727
14.727
15.726
16.726
17.725
18.725
19.724
24.723
29.728

-16.47
—171.9

857.3
1293
1734
1676
1228
497.8

-234.8
-585.2
-173.9
1703
3184
2525
2522 ~

2447 a

2605
2502
2455
2465

-16.30
-170.8

358.7
1282 .

1715
1657
1211
488.4

-246.6
-594.8
-181.7
1695
3178
2525
2522
2447
2505
2502
2455
2465

Fine structure neglected in calculation of Stark shift for this state.

some cases and from below in others. For a given
L, , the shift as a function of n can change sign
several times. Naively, one might expect to ob-
tain valid results for alkalis by merely interpo-
lating in the results for hydrogen, using n* in-

stead of n. Evidently, this procedure would fail
badly. Physically the reason is clear: The Stark
shift in the energy of a state depends not only on
the quantum defect of that state, but also on the
quantum defects of the perturbing states.

TABLE VI. Effective quantum numbers n and blackbody-radiation-induced dynamic Stark shifts (Hz) of energy levels
of rubidium at 300 K.

+1/2 +3/2
n*

D3/2

5
6
7
8

10
11
12
13
14
15
16
17
18
19
20
25
80

1.805
2.846
3.856
4.861
5.863
6.865
7.866
8.866
9.867

10.867
11.867
12.867
13.868
14.868
15.868
16.868
21.868
26.868

-2.789
-48.17

-411.7
-386.7
1020
2004
2454
2646
2715
2727
2712
2688
2661
2641
2610
2576
2503
2477

2.280
3.317
4.329
6.335
6.338
7.339
8.341
9.342

10.342
11.343
12.843
18.343
14.343
15.344
16.344
17.344
22.344
27.344

-7.511
-151.8
-484.5

836.6
2372
3096
3318
3324
3247
3147
3054
3016
2915
2910
2816
2736
2461
2407

2.293
3.380
4.342
5.348
6.351
7.353
8.354
9.365

10.365
11.356
12.356
13.356
14.357
15.357
16.357
17.357
22.357
27.358

-8.127
-166.6
-473.8

938.6
2503
3217
3419
3406
3313
3201
3099
3051
2944
2929
2832
2807
2469
2412

2.767
3.706
4.683
5.672
6.666
7.662
8.660
9.658

10.657
11.656
12.655
13.654
14.654
15.653
16.653
17.653
18.653
23.652
28.652

-6.467
' -188.7

71.28
593.8

1185
1586
1823
1932
1964
1969
2013
2152
2382
2434
2439
2441
2440
2419
2425

2.767
3.707
4.684
5.673
6.667
7.664
8.661
9,.659

10.658
11.657
12.656
13.656
14.655
15.655
16.655
17.655
18.654
23.654
28.653

-6.975
-181.4

66.51
554.2

1147
1558
1805
1921
1956
1965
2009
2150
2381
2436
2441
2442
2442
2420
2425
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TABLE VII. Effective quantum numbers n and blackbody-radiation-induced dynamic Stark shifts (Hz) of energy
levels of cesium at 300 K.

Pi I2
n* I5V

P3y2 &3/2
n*

&5C'2
5v

5

7
8
9

10
11
12
13
14
15
16
17
18
19
20
25

1.869
2.920
3.934
4.940
5.943
6.945
7.946
8.947
9.947

10.948
11.948
12.948
13.949
14.949
15.949
20.949
25.949

-3.589
-59.67

-477.4
-291.7
1206
2174
2603
2779
2833
2828
2764
2733
2702
2676
2640
2531
2497

2.329
3.374
4.389
5.396
6.399
7.402
8.403
9.404

10.405
11.405
12.406
13.406
14.406
15.407
16.407
21.407
26.408

-14.85
-153.4

410.6
1096
1498
1741
1905
2029
2120
2203
2246
2275
2291
2303
2311
2315
2305

2.362
3.406
4.421
5.428
6.432
7.434
8.435
9.436

10.437
11.438
12.438
13.439
14.439
15.439
16.439
21.440
26.440

-17.24
111Q7

425.2
1049
1437
1671
1840
1973
2093
2146
2187
2223
2251
2269
2280
2296
2298

2.513
3.519
4.522
5.523
6.524
7.525
8.525
9.525

10.526
11.526
12.526
13.526
14.526
15.526
16.526
17.526
22.526
27.526

5.497
—70.41

-810.4
-409.6

738.2
1594
2042
2172
2093
1908
1799
2604
2601
2581
2670
2627
2475
2431

2.5550
3.536
4.534
5.534
6.534
7.534
8.534
9.535

10.535
11.535
12.535
13.535
14.535
15.535
16.535
17.535
22,535
27.536

5.315
-99.18

-825.8
-299.4

929.2
1804
2239
2346
2231
2038
1903
2696
2678
2648
2724
2675
2502
2450

B. Depopulation rates at 300 K

1. Hydrogen

4,0—

I & I I I I I I

C

I
I

5.0—

We return to our typical Hydberg state, the 15D
state. Figure 14 shows the major contributions
to the total depopulation rate from various per-
turbing states. The largest contributions come
when n, =n, . All contributions are, of course,
positive, because Eq. (30) is positive definite.

Summing all the contributions to the depopula-
tion rate yields the total BBB-induced depopula-
tion rate. The results for the S states of hydro-
gen are shown as a function of n in Fig. 15 and

M 20-
X,'

I I I I I I I I I I

high-n opproximotion ~

listed in Tab1.e VIII. The results for the I', D, and
F states are very similar and are also listed in
Table VIII. The depopulation rate rises to a maxi-
mum of 36 x 10' sec ' at n = 11 and 12, and then
decreases with n. Figure 15 also displays the
high-n value given by Eq. (34). As discussed in
Sec. IIB above, this is an overestimate, and the
approach to asymptotic behavior is not as rapid
for the depopulation rate as is the case for the
dynamic Stark shift.

The variation of the depopulation rate as a func-
tion of L for n =30 is shown in Fig. 16. The rate
increases with L, approaching the value given by
the high-n approximation for high L. The error
in the high-n approximation decreases smoothly
from 6'I /q at I =0 to 2% at f.= 29.

~ 2.0

V)
I.O

E
Q

00

-I.O—

l.p—

lA pp
D
C
OI~ -10— helium

I I i I I I I I I I

2 4 6 8 IO I2 I4 I6 I8 20
n"

25

FIG. 7. Dynamic Stark shifts (kHz) of energy levels
of Rydberg S and P states of helium induced by 300 K
blackbody radiation.

I I I I I I I I I I I

25 502 4 6 8 IO l2 14 16 IB 20
n"

FIG. 8. Dynamic Stark shifts (kHz) of energy levels
of Rydberg D, E, and Q states of helium induced by
300 K blackbody radiation. For n ~ 8, the curve for I'
states overlaps the curve for ~D states.
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FIG. 9. Dynamic Stark shifts (kHz) of energy levels
of lithium induced by 300 K blackbody radiation.

30

2. Helium and the alkalis

C. Hydrogen at other temperatures

As the ambient temperature increase,es the
't d f both effects increase. The asymp-

21totic value for the dynamic Stark shift, Eq. ( ),
increases as , w iT' hile that for the depopulation
rate varies as T. The approach to asymptotic
behavior occurs at lower values of n the thresh-
old given by Eq. (23) scales as T '". Figure 24
shows the dynamic Stark shift and Fig. 25 shows
the depopulation rate, both for severa s a1 states of

N 20X

high-n
oPP

I I I I I I I I

10—40

(h 0.0—
CP

~~
E
U

10

The depopulation rates for helium and the alkalis
dis layed in Figs. 17-23 and listed in Tablesare esp ay

IX-XIV. The depopulation rates all have e
general s ape: a sh harp threshold at n = 7, rising
to a peak near n =r = 12 followed by a gradual decljne.
The maximum value is typically =10' sec '. The
high-n approximation zs an overestima~ ~ te but its
accuracy increases with n.

O 10—
V)

Ea 0.0—
a

I

50
I I I I I I I I

2 4 6 8 , IO 12 14 16 18 20

FIG. 11. Dynamic Stark shifts (kHz) of energy levels
of potassium in uce y

' d d by 300 K blackbody radiation.

I

25

hydrogen over a wiide range of temperatures.
As discussed above, and shown in F'g. , hi . 24 the
dynamic Stark shift scales as T4 at low n, and as

t h' h n. Figure 25 demonstrates that the de-
hn. Forpopulation rate scales roughly as T for high n. or

1 the rate increases much more rapidly be-
29 .cause of the exponential factor in Eq.

V. DISCUSSION

A. Comparison with other work

5.0 — .
hig

oppr
N

2.0—V

EO

I I I I I

g 1.0—
CO

E
0.0—C

'a

1. Dynamic Stark shift

Qallag er anh d Cooke' first presented an asymp-
totic formu a or1 f the dynamic Stark shift for suf-
ficzen y if' ' tl high Rydberg states. Their Eq. (7) cor-

toticresponds to Eq. (21) of this work. The asymp o
'

1 the same result for all Rydberg
s of all atomic species. In this early wor,

no attempt was made to perform accura e
tions of the Stark shift for individual states in any
atomic species, as is is done in the present work.
Our work also corrects minor numerical factors
in the earlier work. In Ref. 1, Eq. 6 omits a
f tor f —' and Eq. (7) omits a factor of m. Refer-
ences 1 and 3 contain a minor numerical error in
evaluating eth 300 K dynamic Stark shift in the

I I I I I I I I I I

4 . 6 8 10 12 14 16 18 20
0

I

25 I I I I I I I I I I

2 4 6 8 10 12 14 16 18 20
0

I

25

FIG. 10. Dynamic Stark shifts (kHz) of energy levels
of sodium induced by 300 K blackbody radiation.

FIG. 12. Dynamic Stark shifts (kHz) of energy levels
of'rubidium induced by 300 K blackbody radiation.
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FIG. 13. Dynamic Stark shifts (kHz) of energy levels
of cesium induce d b 300 K blackbody radiation.

0---
I I I I ~I I I I I

IO ' 20.
n

I I I I & I I

30

5 x IO
I I I

red to thehigh-n limit, obtaining 2.2 kHz, compared
correct result of 2.417 kHz.

There is ano erth disagreement between the pre-
actsent work and e s.nd Refs. 1 and 3 in explaining the fac

h t 8 dberg states experience a larger dynamic
Stark shift than do low-lying states. TThi s effect
is attributed in Re s. anR f . 1 and 3 to the relative mag-
nitudes of the relevant atomic energy intervals.
For Rydberg s a es,t t the atomic intervals making
contributions o e at th St rk shift are less than AT,
whereas for ow- ying1 -1 g states relevant intervals
are comparable to or larger than kT. We can re-
write Eq. (7) to obtain

FIG. 15. Depopulation rates of Rydbe gdber states of
sed b 300 K blackbody radiation. Also

hich a lies forshown is an approximation, Eq. (34), w xc app
'

high (»3).

(44)

The influence of the relative siz' e of the atomic
t d

' the last factor in the inte-interval is containe in
is much lessgrand. When the atomic interval v~ is m

than the typical BBR frequency (d, the factor is
Since this factor de-

creases with the atomic interval cu,» this factor,
tself would tend to produce smaller

hifts in the high-lying states (where cu„
than in low-lying states (where @&a„-
real explana ion or1 t' for the larger shifts in high-lying

atrix ele-states is eirth
' larger electric-dipole matrix e e-

mal. l-ments, whic more'
h than compensate for the sma-

er off-resonance factor.
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FIG. 14. Major contribution to blackbody-induced
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TABLE VIII. Blackbody-radiation-induced depopulation rates (sec ) of states of hydrogen
at 300 K. Fine structure and the Lamb shift were neglected in performing the calculation.

1
2
3

6

8
9

10
11

' 12
13
14
15

0.00
1.42 x 10"~

7,97 x 10
16.02

1 199
7 038

16520
25 360
31370
34680
35 970
35930
35 060
33 700
32 150

4.73 x 10-'
4.33 x10 4

19.49
1 380
7 878

18 160
27 420
33 470
36 630
37 710
37 440
36 360
34 820
33 050

3.5 x 10
27.02

1762
9 618

21 500
31580
37 690
40 526
41 150
40 430
38 920
37 010
34920

39.86
2 385

12 370
26 700
37 930
44 030
46 320
46 240
44 810
42 670
40 210
37 650

At present, there are no experimental data with
which to compare the results of our calculations.
However, the predicted size of the effect is within
the reach of present laser technology. An experi-
mental verification of the predictions would be
most welcome.

2. Depopulation rates

Gallagher and Cooke' ~ ' and Cooke and Gallagher'
presented theoretical and experimental results on
the depopulation rates from Bydberg states of
sodium. In Bef. 1, theoretical calculated BBB-
induced depopulation rates for the 17P and 18P
states of sodium successfully accounted for the
discrepancy in lifetimes between the experimental-
ly measured lifetimes and the calculated natural
radiative lifetimes. ' In Table XV we compare our
results with theirs. Agreement is satisfactory.
Inconsistencies arise between this work and
earlier work. Equations (2)-(4) of Ref. 1

appear to confuse the Einstein A coefficient with
the Einstein B coefficient. The corresponding
equations are Eqs. (25)—(21) in the present work.

Also, Ref. 1 states that by far the most dramatic
lifetime effect occurs for the high Nan+ states.
In fact, thehigh-L states will demonstrate an even
larger effect, because the BBB-induced depopula-
tion rate generally increases with L for fixed n,
while the competing mechanism of radiative decay
falls off with L (see Fig. 16).

B. Implications for high-precision spectroscopy

In a previous paper, we reported an extensive .

series of measurements of the fine structure of
highly excited states of helium. The experiment-
al apparatus was described in a separate publica-
tion." We considered the possibility of systematic
effects from blackbody radiation, but neglected
it after performing a prel. iminary calcul. ation.
Table XVI shows the calculated magnitude of the
expected shift in the relevant helium Bydberg
energy levels caused by a 300 K module and a
1400 K cathode, weighted by their respective solid
angles. The cathode subtends an effective solid
angle of 0.25 sr averaged over the interaction vol-
ume. The largest energy-level shift in Table XVI
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FIG. 17. Depopulation rates (sec ) of Rydberg S
and P states of helium induced by 300 K blackbody
radiation.

FIG. 18. Depopulation rates (sec ) of Rydberg D,
J', and Q states of helium induced by 300 K blackbody
radiation.
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FIG. 23. Depopulation rates (sec ) of Rydberg states
of cesium induced by 300 K blackbody radiation.

equal~ at n =12. When the transitions are sa-
turated, the Hydberg states are strongly coupled
into a degenerate "reservoir state, " and the popu-
lation of a given state exhibits nonexponential
decay. In hydrogen at 2.84 K, the background
radiation temperature of the universe, "equality
of rates occurs at n =39, L=38. This result may
have significant implications for analyses of con-
ditions in interstellar media which are based on

intensities of radio recombination lines, since
those lines originate from levels having n & 100.
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TABLE IX. Blackbody-radiation-induced depopulation rates (sec ) of states of helium at 300 K. For values of n*,
see Table II.

3p

1 0.00
2 1 x10
3 1271
4 13260

20 040
6 22 440
7 28 930
8 36 060
9 40580

10 42 580
11 42 770
12 41 820
13 40210
14 38 250
15 36 150
20 26 340
25 19390
30 14700

6x10"
60.43

8 626
26 860
36 670
46 250
53 670
56 840
56 910
55 170
52 500
49 410
46 220
43 110
30 000
21 570
16 120

4x10 4

687.7
4 702
8 953

17 150
27 290
35 280
39 950
41 900
42 000
40 950
39 240
37 190
35 020
25 110
18300
13800

2 x 10-"
1 897
6 493

14 030
22 670
31840
38 900
42 860
44 280
43 980.
42 640
40 720
38 520
36 250
25 800
18770
14140

158.4
174.1

1831
9 618

21 610
31800
37 960
40800
41420
40 670
39 150
37 220
3.5 120
25 330
18 660
14190

1 126
2 185
3 893

ll 450
22 470
31780
37 460
40 110
40 680
39 950
38 480
36 610
34 590
24 950
18 420
14 030

40.9
2 378

12 340
26 640
37 840
43 950
46 250
46 180
44 760
42 630
40 180
37. 640
26 520
19 110
14 320

42.0
2 380

12 330
26 620
37 820
43 930
46 220
46 150
44 740
42 610
40 160
37 630
26 510
19 110
14 320

3 307
16 300
33 920
46 550
52 460
53 910
52 830
50 440
47 460
44 290
41 130
28 180
20 010
14 850

Fine structure neglected in calculating depopulation rate for this state.
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e o ulationdi t on-induced dep p
lrates {sec i) of sta es ' ' a

see Table III.g

I
I

I I I IiII ) I I I III

2
3
4
5
6
7
8
9

10
11
12
13
]4

. 15
16
17
18
19
20
25
30

1 x]0 23

0.20
2 137

23 720
53 080
76 510
87 380
88 640
85 050
79 420
73 180
67 010
61 230
55 970
51 118
46 820
42 990
39 560
36 490
25 270
18 430

2.7 x 10-is
1442
2810

12970
29 580
42710
50 270
53 290
53 370
51730
49 190
46 260
43 200
40 210
37 290
34610
32130
29 860
27790
19830
14820

864.9
1 215
2 848

10 500
21 800
31400
37 260
40 010
40 630
39 940
38 480
36 620
34 590
32 480
30 450
28 510
26 690
24 990
18 210
13790

Ol

C
O

D
~ IO4-
CL
O
CL
4l
D

5xlo~

II I I II
lo~ 3xlO~

temperature (K)

) of selected statespop rates (sec o
of h drogen as a

the hig -gis h- approximation, Eq.

D3)2+3/2

c i of states of sodium ato ulation rates (sec ) o sackbody-radia xon-ackb y- di t on-induced depopu a c o s
K For values of I*, see Ta e

D5)2

300 K. o

9 x 10-28

7x]0 3

619.7
18 420
64 060
99 540

112600
112100
105 600
97 010
88 060
79 580
71 840
64 890
58 760
53 360
48 600
44 400
29 540
20 950

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
25

4x10
811.3

7 689
27 110
55 490
74 080
80950
80800
77 100
71900
66 250
60 700
55 480
50 595
46 226
42 302
38 791
35 653 ~

24252 ~

17496

484.9
3 954
7 743

16940
30 870
41 630
47 180
49 040
48 600
46 880
44 530
41 910
39 190
36 450
33 940
31590
29 420
27 420
19 710
14 780

4 xl0
800.9

7 704
27 200
55 630
74 240
81 100
80930
77 210
71990
66 330
60 770
55 540
50 595
46 226
42 302,
38 791
35 653 ~

24252 ~

17 49630

ca c ' e o ulation rates for this state.calculation of depopula ion'Pine structure gne lected in ca c

479.7
3958
7 771

16990
30 940
41 700
41 250
49 090
48 640
46 920
44 560
41 940
39 210
36 450
33 940
31590
29 420
27 420
19710
14780
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TABLE XII. Blackbody-radiation-induced depopulation rates (sec ) of states of potassium
at 300 K. For values of n*, see Table V.

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
25
30

9 x10-'0
0.282

1 815
25 690
70 150

100700
110700
109 000
102 300
93 800
85 160
77 020
69 500
62890 '

57 040
51 870
47 310
31220
21 990

Ps/2

2x10
19.69

6 677
44 180
83 210

101000
103300
98 680
91520
84050
77 190
71 280
63 890 ~

57 920
52 640
47 980
43 870
29270 ~

20810 ~

Psi2

3 x10-«
21.18

6 803
44 280
83 100

100 800
103100
98 440
91 310
83 870
77 040
71 140
63 890
57 920
52640'
47980 ~

43 870
29270'
20810'

0.33
5 034

19 120
43 370
61 690
69 920
71 060
69 000
65 690
62 340
59 500
56 920
53 580
45 250
41 620
38 350
35 400
32 750
22 930
16 890

Ds(2

0.31
5 023

19 140
43 400
61 640
69 820
70 940
68 890
65 590
62 250
59 420
56 860
53 520
45 250
41 620
38 350
35 400
32750
22 930
16 890 ~

Fine structure neglected in calculation of depopulation rate for this state.

programs, and to Thomas F. Gallagher for a copy
of his Bates-Damgaard program.

APPENDIX A: DYNAMIC STARK SHIFT FROM
TIME-DEPENDENT PERTURBATION THEORY

In this appendix, we outline the development of
Eq. (2), the basic equation for the dynamic Stark
shift, starting from the time-dependent Schrodin-

ger equation. In Sec. I, we treat the case of a
near-resonant perturbation, using the rotating-
wave approximation. Hence we deal rn this section
only with the resonant term of Eq. (2); the anti-
resonant term in Eq. (2) is omitted. Because the
resonant term has a pole on resonance, its validity
is a matter of concern. Section I answers those
concerns. We demonstrate that, when the reson-
ant term in Eq. (2) is integrated over an interval

TABLE XIII. Blackbody-radiation-induced depopulation rates (sec ) of states of rubidium
at 300 K. For values of ~*, see Table VI.

4
5 4x10 ~

6 0.3717
7 1917
8 27 100
9 73 250

10 103 500
11 112700
12 110500
13 103400
14 94 660
15 85 820
16 77 520
17 70 000
18 63 300
19 57 370
20 52 140
25 33 830
30 23 510

Pg)2

2x10 7

216.0
12920
45 030
72 440
85 350
87 490
84260
78 790
72 630
66 520
60730 .

55 430
50 640
46 360
42 520
28 670
20 480

P3i2

5x10 7

280.6
13690
44 740
70 990
83 490
85 660
82 620
77 370
71420

. 65 480
59 850
54 670
50 000
45 800
42 040
28 410
20 330

1.4 x 10
2 746

22 470
48 700
65 320
72 410
72 900
70 300
66 190
61610
57 080
52 830
48 230
44 380
40 880
37 710
34 860
24250
17 740

Dsi2

1.0 x 10
2 790

22 720
48 260
64280
71200
71730
69 260
65 290
60850
56 430
52 270
47 750
43960
40520
37 400
34580
24 100
17 650
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TABLE XIV. Blackbody-radiation-induced depopulation rates (sec ) of states of cesium
at 300 K. For values of n*, see Table VG.

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
25
30

2 &&10-"
1.34

2 790
30790
76 380

104 500
112400
109600
102 300
93560
84760
76 590
69 180
62580
56 740
36 350
24990

+i/2

1.410
3 929

12 300
27 620
44 580
55 370
59 920
60 370
58 510
55 490
51 990
48 370
44 830
41 490
38 390
26 470
19 090

2.420
4402

10910
25 580
43 140
54450
59 300
59 920
58 160
55 200
51750
48 160
44650
41 330
38 240
26 360
19010

D3] 2

1.778
2 627
1520
3782

57 270
67 280
69 850
68 420
65 040
60 960
56 920
52 670
48 570
44 780
41 300
38 150
26 340
19090

0.8985
2 931

15 070
36 510
55 110
65 040
67 810
66 680
63 570
59 730
55 910
51790
47 820
44 140
40 760
37 680
26 100
18 960

1. The near-resonant perturbation

We follow the approach of Sargent et al. ,
'~ treat-

ing a two-level atom in the rotating-wave approx-
imation. The two relevant levels, a and b, have
a separation

5+O=SQ) SQpb =E —E + Q, (Al)

In the presence of the harmonic perturbation
V(t) = V, cosupt, the time-dependent Schrodinger
equation for the amplitudes a and 5 is

containing the resonance, it gives the same answer
as the exact treatment. The Cauchy principal
value of the integral is understood.

In Sec. II, we treat the case of a nonresonant
perturbation. We obtain Eq. (2) as the result, in-
cluding both the resonant and antiresonant terms.

ia=(&o —i'y )a+ '(e'"~+e '"')V, (A2a)

ib=(to~ —ipy~)b+ —,'(e '"'+e'"')V . (A2b)

The decay terms y, and y, treat spontaneous decay.
We make the substitutions

—aug 40gt
7

g&) cobt
b

and seek a solution of the form

C, (f) =e»"

(Asa)

(Aab)

(A4)

Since p. is complex, we have not made any as-
sumptions about the magnitude of C~(t). The solu-
tions of Eq. (A2) for C, (t) and p. , in the rotating
wave approximation, are

C (f)=~ 2u y+i &
(A5)

V )e

and

State
This work

Other work Exact calc. High-~ approx.

TABLE XV. Calculated blackbody-radiation-induced
depopulation rates of states of sodium at 300 K. (Units

are 103 sec .)
TABLE XVI. Blackbody-radiation-induced dynamic

Stark shifts (Hz) in Rydberg states of helium. High-pre-
cision measurements of intervals among these states
were reported in Ref. 29. Listed heie is the sum of
shifts caused by a 300 K apparatus and a 1400 K cathode,
weighted by their respective solid angles.

17I'
18P
118
21S
15 (L =14)
20 (I =19)

'Reference l.
Reference 3.

44 1
39 1
97.8 ~

35.3b
75 7
47.7 ~

46.2
42.3

105.6
40.7
76.2
47.4

70
63
21.8
52.6
90.2
50.8

6
7
8
9

10
11

465
580

1492
1897
2210
2453

-318
138
706

1208
1632
1975

365
944

1488
1908
2226
2469

470
1143
1712
2115
2406
2620
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(((( s = r((d —(do+i'Y.
»,
)

+g((d —(d, +i6,,)2+ V ]'/'.
Here y,~ and 5,~ are defined by

v.,= g (~. + r,),

(A6)

(A7)

(A8)

(A 1oa)c (f) —» v»( -(e»~2» e»~1»)

(f) le»(Q) (d 0)»
a

where p, is defined as

(Alob)

p,

x [(-vi~ + ((»,)c'"' —( vi-r +»/. )e»"']

The general solution is a linear combination of the
two solutions in Eq. (A6). The appropriate linear
combination is determined by the initial conditions.
We. choose

»( =-
»», —»», = [((d —~, + i6„)'+V']'/' . (A11)

At this point, we neglect damping. We now let
y, , y, —0 and use Eq. (A3b) to obtain for the
Schrodinger amplitude a

c.(o)=1, c,(o)=o. (A 9) ~(t)=(»,/» )e »'"-'"" (u—./» )~»'" ""
These initial conditions mean that the initial wave
function is entirely state a; hence, a is the Per-
turbed state and b is the perturbing state. One
then obtains

(A12)

The two frequency components of Eq. (A12) have
relative amplitudes whose ratio is

(A18)

(»(f) = (»(,/»-»)e """'"'
and for ~ —~p& V,

I

a(t) = (»»,/»»)e-»'" '""'

(A14a)

(A14b)

Instead of an energy (d„Eq. (14) reveals an "ef-
fective energy" &, +5+„where the dynamic Stark
shift 6~~, is»», (»», ) for (d below (above) resonance.
Both frequency components of Eq. (A12) are al-
ways present, but, except near resonance, the
magnitudes of the two components are grossly un-
equal. As we tune through resonance, the relative
magnitudes of the two components reverse. The
"shift" executes a finite jump of magnitude V at
(d =(d, from one branch to the other. For

I
V/

((d —(do) I
«1 we can expand»(, and»», to obtain

&(d, = -gV'/((d —~,) . (A15)

This expression differs from Eq. (2) in the omis-
sion of the antiresonant term. This is a conse-
quence of the rotating-wave approximation.

We now consider the total shift caused by a per-
turbation having a distribution of frequencies in a
symmetrical frequency interval centered on res-
onance ((d =(d,). We calculate the total shift by in-
tegrating over the interval -~p
There are two ways to calculate the total shift.
We can integrate the exact expressions for the

For ~ =~p the ratio is unity. For ~ —~p & -V, the
ratio is much greater than one, while for /& —&p
& V the ratio is much less than one. Hence, when
(d is below (above) resonance, the second (first)
term in Eq. (A12) is dominant. Dropping the
smaller term, we obtain for ~ —~p + V,

shift p,» over the frequency interval, or we can
use the approximation (A15), which is just the
resonant term of Eq. (2) of the main text. In the
rest of this section, we demonstrate that these two
approaches yield identical results. Hence the
resonant term of Eq. (2) does not cause any trou-
ble when integrated over a frequency interval con-
taining the resonance.

Vfe want to calculate

COp 4)p+h p

6(d, = A.,d(d+ A d(d .
cop- hp (dp

Let us assume that the perturbation V' varies
slowly with frequency in the region of the reson-
ance, and we can use a truncated Taylor series
expansion

(A16)

V = Co + C» ((d —(do) + '
~ (A17)

[((d —(d,)'+ V']' "d((d - (d, ) .
p

(A18)

The first two terms cancel. We evaluate the last
-two terms to lowest order in c, . Substituting Eq.
(A17) in Eq. (A18), we expand to obtain

f/' —(do) + Co + C» ((d —(do)]

«[( (d )2+C ]&/2 / &C ((d (d )(/2+C2)&/2

(A19)

Using the definitions (A6) for»», and»»~, we obtain

0 hp
6(d = p((d —(do)d((d —(do) + y((d —(do)d((d —(do)

-h,
p p

p

+ v [((d —(d,)'+ V']'"d((d —(d, )
-hp
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hp
——,'c, (&'+c,) '"&d&

p (A20)

where &=a —&p.
'The first two terms cancel, while the last two

terms yield

Fquation (A18) then becomes

f P hp
5v = ~ J~

(h2+ c,)'&'d& —~ (62+ c,)»md'
0

+ 'e, &2+v '"&d&
-hp

when integrated over the resonance region, using
the Cauchy principal value.

2. The nonresonant perturbation

Wing and MacAdam ' have treated the case of a
multilevel atom subjected to a weak monochro-
matic nonresonant perturbation at frequency cd.
They found an rf power shift in the transition (dp

= (d —(d
b

+ 1

4. „'" Va, —~„—td ~. —~„+~i

M~ = peg[co —( o+ co) ] . (A21)

Geo =--'c &2 1 p ' (A22)

If, instead of the exact (in the rotating-wave ap-
proximation) expression for the shift, p», one
uses the approximate expression (A15), the total
shift due to the perturbation is

/Pe g (JO (dP CP + Cl (d (OP d (0 (dP

{A23)

= —gco g 'r Cgd((d —COO) .
4

hp hp

The first term, evaluated in the Cauchy principal
value sense, yields zero, while the second term
yields

(A24)

1
Cl P (A25)

Note that Eq. (A25) is identical to Eq. (A22). We
conclude that, although Eq. (A15) is, strictly
speaking, only valid off resonance, it yields the
correct result in the rotating-wave approximation

If the spectrum of the radiation is flat (c, =0) and
symmetrically distributed around the resonance,
Eq. (21) demonstrates that the shift vanishes. If
the interval over which we integrate is several
times the resonance width, we have 4p2» c, and the
shift becomes

We can identify the terms involving state A as a
shift in the energy of state k (k = a, 5), thereby ob-
taining Eq. (2) of the main text. We note in pas-
sing that in the field 'of Raman spectroscopy simi-
lar expressions occur for the dynamic polariza-
bility tensor.

APPENDIX B: EVALUATION OF F(y )

The integral in Eq. (9) was evaluat& as a sum
of many integrals over segments of the range
0 ~ x ~ 30. Each segment integral was calculated
using a 32-point Gaussian quadrature subroutine. "
The evaluation of the contribution from the rela-
tively slowly varying regions [0, y —0.1] and
[y+0.1, 30] was a straightforward task. How-
ever, a difficulty arises from the singularity at
x=y. The contribution from the interval [y —0.1,
y+0. 1] was evaluated in the following manner'.

The nonresonant term (y+x} ' was separated out
and its contribution evaluated. The contribution of
the resonant term (y —x} ' was evaluated using the
Cauchy principal value. This approach is physic-
ally reasonable because the energy levels have a
nonzero width when relaxation processes are taken
into account. We obtain

4y-p el

p y+p ol y-5 y+p 1
xs(e" —1) '(y —x) 'dx =lim

~

x'(e" —1) '(y —x) 'dx + x (e" —1) '(y —x) 'dx+corr(y, e) ~
.

(»)

The first and second terms on the right of Eq.
(Bl) were each evaluated as a sum of contributions
in which the singularity was approached logarith-
mically; i.e., the intervals contributing to the
first term were [y —0.1, y —0.01], [y —0.01,
y —0.001], . . . , [y —10', y —e].

Corr(y, e) represents a correction term which
gives the contribution from the region [y -e, y +a]
to lowest order in e. Corr(y, e) is defined by

y+(
c»r(y, e) = x'(e" —1) '(y -x) 'dx. (B2)

The factor (y —x) in the integrand varies rapidly
and changes sign at the singularity. In contrast,
the factor x'(e* —1) ' is well behaved. Expanding
this latter factor in a Taylor series around x =y
and retaining the first two terms, we obtain
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x'(e" —1) ' =y'(e' —1) '

+ (x —y)[y'(e" —1) '[3 —ye'(e" —1) ']3.
(B3)

This expression is inserted into Eq. (B2). The
result is

v+e

corr(y, e) =y'(e" —1) '
(y -x) 'dx

—y'(e —)) [3 —)e"(e" —1) '] f dx.

(B4)

The first term in Eq. (B4) is zero by symmetry.
The second term yields

corr(y, e) =-2ey'(e' —1) '[3-ye'(e' —1) '].

When all the contributions to F(y) were added up,
the result was quite insensitive to the value of e.
E(y) varied by about one part in 10' when e varied
by three orders of magnitude (10 ' ~ e & 10 ').

The integral F(y) was evaluated with resolution
by =0.1 in the region [0,10], with hy = 1 in the
region [10,100], and with by = 10 in the region
[100,1000]. The resulting array was stored in a
computer disk file for future use. The running
time for the Fortran program on our Nova-2 mini-
computer, which utilizes a software floating-point
package, was several hours. To obtain the value
of F(y) in a subsequent program, we interpolated
in the array of points by fitting a parabola to the
local curve. For asymptotic values of y(ly~ &0.1

or
~ y ~

& 1000), we did not interpolate but instead
used the relevant asymptotic closed-form expres-
sions Eqs. (11) and (12). The approximation, Eq.
(12), is extremely good for large y. For smally, the
error introduced by Eq. (11) increases with y, ri-
sing to 1% at the y=0. 1 endpoint. Since E(y) is
small in -this regime, this level of precision is
satisfactory; moreover, it is probably comparable
to the errors introduced by the interpolation pro-
cedure. A final source of error is the cutoff of
the integration at the upper limit g =30. It can
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