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What is left from stimulated electromagnetic shock radiation. A quantum approach
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Transition rates, angular distributions, and power spectra of stimulated-electromagnetic-shock radiation are
calculated by means of relativistic quantum mechanics for a circularly polarized monochromatic plane-wave
incident at an arbitrary angle to the direction of the electron beam. Usually the process can be divided into a high-
frequency branch which is similar to ordinary Cerenkov radiation and a low-fretiuency branch which corresponds to
high-intensity Compton scattering (HICS). No significant enhancement of Cerenkov radiation is found. The
transition rates for the HICS branch, however, can be considerably larger than in vacuum.

I. INTRODUCTION

The nomenclature "stimulated-electromagnetic-
shock radiation (SESR)"has been introduced by
Schneider and Spitzer' to refer to the radiation
emitted by a relativistic electron moving in a dis-
persive nonabsorptive medium under the influence
of a monochromatic electromagnetic plane wave.
Schneid'er and Spitzer claimed a large enhance-
ment of this type of radiation over ordinary Cer-
enkov radiation and a large frequency upshift com-
pared to the incident radiation. Subsequent theo-
retical work on this effect by Soln, ' Zachary, ",
and Kroll' did not support all of the conclusions
of Schneider and Spitzer and exhibited contradic-
tory results: Whereas Zachary' still obtained a
large enhancement due to SESR at low (microwave)
frequencies, Kroll' denies any enhancement at all.
The authors of Refs. 2-5 proceed by calculating
the radiation from the classical current of the
electron moving in the incident plane-wave field.
II
Soln' and Zachary' expand the current to first
order in the intensity of the incident fields. Con-
sequently they have no control over the occurence
of higher harmonics. More seriously, this ap-
proximation turns out to be insufficient for high
frequencies of the emitted radiation and to yield
the above mentioned overestimate of the total pow-
er radiated by SESR. Kroll' starts from the exact
current but this is only available in the case where
the electron and the incident plane wave collide
head on. Only Zachary4 allows for an arbitrary
geometry of all participating fields.

In the present investigation we employ relativ-
istic quantum mechanics to recalculate SESR. Al-
though quantum effects can be considered as small
from the beginning, this approach gives a unified
treatment of the process which is not at all more
complicated than the classical procedure, in par-
ticular when an arbitrary geometry is allowed for.
We calculate to lowest order the matrix element
for emission of a photon by an electron under the

conditions mentioned above. For the incident field
we employ a circularly polarized monochromatic
plane wave impinging at an arbitrary angle. The
field is treated as a classical external field which
is an excellent approximation for not too low in-
tensities. The electron is described by the exact
solutions of the Klein-Gordon equation in the pres-
ence of the external field. Hence we include all
intensity-dependent frequency shifts.

The process called SESR has two well known
limiting cases: Cerenkov radiation if there is no
incident field and so called high-intensity Compton
scattering (HICS) (Ref. 6) if there is no medium.
The presence of both an incident field and a me-
dium does more than simply to add the effects due
to either external configuration. In principle a
combined process occurs in complete analogy to
the interplay between Cerenkov and synchroton
radiation which has been referred to as synergic
synchroton Cerenkov radiation by Schwinger, Tsa, i,
and Erber. ' In the present case we find that the
effects depend crucially on the behavior of the re-
fractive index as a function of frequency. We will
assume the dielectric function to be approximately
given by a sum of one or more damped Lorentzi-
ans. If the frequency of the incident field is far be-
low the absorption frequencies of the medium we
find that the frequencies of the emitted radiation
can, in general, be split up into a HICS branch
and one or more Cerenkov branches which are
closely related to ordinary HICS and Cerenkov ra-
diation, respectively. The corresponding transi-
tion rate for the Cerenkov branch does not deviate
significantly from ordinary Cerenkov radiation,
whereas the rate for the HICS branch can exceed
ordinary HICS considerably under appropriate
conditions. Since the total power radiated by the
electron is dominated by the (comparatively high
frequency) Cerenkov branch, it is not modified
significantly by the SESR mechanism.

The explicit results agree apart from minormod-
ifications with previous work' ' if the respective
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a. wAvE FUNCTioNS

To describe the electron in the presence of a
plane wave in a nonmagnetic transparent isotropic
medium characterized by a real refractive index
n(a&), we employ the solutions of the Klein-Gordon
equation (we use natural units, il= c= 1, and four-
vector notation a'= (a', K} with scalar product ab
= aobo —a,b)

[(ia" —eA')' —m']y(x) = 0,
where

(2.1)

approximations are introduced. They are more
general in as much as they exhibit (i) all intensity
dependent effects; (ii) the incident field coming in
at an arbitrary angle, except that it must not be
too close to the Cerenkov angle; and (iii) quantum
corrections. For low incident frequencies the
latter are very small as expected. In this case
the only vestige of quantum theory which might
have some significance is the quantum recoil
which accounts for a slight difference between the
frequencies of emission and absorption.

In Sec. II the required solutions of the Klein-
Gordon equation are presented. Since these are
essentially given by Mathieu's functions we are
forced to use appropriate approximations. In this
process we have to exclude the immediate vicinity
of the Cerenkov cone of the incident electron. The
latter regime is highly nonlinear and would re.-
quire different approximations for Mathieu's func-
tions. This is not attempted jn the present paper.
In Sec. III we exploit kinematics in terms of con-
servation of effective momenta in order to obtain
the relation between angle and frequency of the
emitted radiation.

To solve for the frequency the dependence of the
refractive index on the frequency must be known.
Assuming an approximately I orentzian shape the
solutions are qualitatively discussed and the above-
mentioned HICS and Cerenkov branches are found
to evolve for low incident frequencies. In Sec. IV
the general expression for the transition rate
summed over polarizations is derived. In Sec. V
angular distributions and power spectra of the
emitted radiation are calculated for the HICS and
the Cerenkov branch, separately. HICS type radi-
ation can be considerably enhanced over HICS in
vacuum. This effect can also be realized at large
angles & v/2 where the two branches do not inter-
fere. On the other hand, Cerenkov-type SESR
does not display any spectacular differences to
ordinary Cerenkov radiation.

vector

k'=((d, k)

e,e = -5. , 0e.=0, k'=n'oP,

n = n((o), &
= kx. (2.3)

In using the Klein-Gordon instead of the Dirac
equation we ignore the spin of the electron. This
can be expected to be justified since in the two
limiting cases of the present problem, Cerenkov
radiation and high-intensity Compton scattering,
spin is known to induce terms of relative order
(d/E with E the energy of the electron. This ratio
is a small quantity under all reasonable conditions.

For a monochromatic plane wave, Eq. (2.1) re-
duces to a periodic differential equation. To be
specific we choose circular polarization with the
wave vector k in the z direction and

A, (f) = cosf, A2(f) = -sin). (2.4)

The solutions of Eq. (2.1) can then be expressed in
terms of Mathieu's functions'

p,(x) = (pp, )'a)-~' exp -ipx+ -p.—,- ()ipse

xme. -', $+arctan ', h—2P21
Plj J

(2.5)

where p'=m' and

h2 PT
p (p2+P2)l/24eap

(2.5)

The characteristic index v is a function of

+(ea)'
~

4 &(pk)'
i

(2.7)

and 5', and is given by the characteristic curves
X= X„(h2) (Ref. 9). The solutions (2.5) are normal-
ized to one particle in the volume V in the absence
of the plane wave, if 4=1 for @=0. In general,
4 is fixed by the condition that the average current
parallel to the four-dimensional direction of the
incident field, i.e. , k'j„= &o( j' —nj'}, be continuous.

Since Mathieu's functions are inconvenient to
work with, we are depending on suitable approxi-
mations. For

v» 1, h2/v2 «1, (2.8)
a useful approximation can be deduced from Ref. -

10

me„(e, h2)= g expi(v+2r)zC, "„(h2)
OO

A~= QaeuA, ($) (2.2)
f h' ) . &1 h'

=e~iv~e ——sin2e) 1+O] —,—,
2& p, iv'v' (2.9)

is the vector potential of the plane wave with wave or



%HAT IS LEFT FROM STIMULATED ELECTROMAGNETIC. . .

t'I k2c"(k')=(-)"z
l
— I+ol -,—"(2v (v'v' (2.10)

Within this approximation we derive [the current
is given by (4.4)]

For reasonable field strengths of the plane-wave
field the right-hand sides of (2.13}and (2.14) are
rather small: The dimensionless parameter ea/m
is related to the field strength of the plane-wave

rea 'u'
'I,my (pk)' ' (2.11)

—=0.75x 10-"E(V/cm)ea mt. 2

1n COB
(2.15)

Because this approximation is still valid for
k'/v &1 as long as k'/v' «1, it is by far superior
to a power series expansion of C,"„(k') [cf. Eq.
(2.16)]. If the second of conditions (2.8) applies
we also have

X„(k')=v' 1+0 —,

i.e.,

pk= my~(1 —Pn cosg) .
In view of (2.7) for pk = 0 we have X& 0 since k '(0.
Hence C,. is deeply inside the region with complex
v.

We can, however, approach C,. quite closely and
remain still consistent with the conditions (2.8}as
we are now going to show. In addition to (2.8) .we
assume

(ea)' lk' I/(pk)'"1 (2.12)

so that we may expand vY in powers of (ea)'.
We then have

A(2 fP gap~$2
v' X (pk)'

With cosmic=(Pn) ', cosg= cos(pc+5) this is equiv-
alent to (nP & 1),

ea (n' —1)
my n(n'P'-1)'" ' (2.13}

The characteristic index v can attain real or com-
plex values. ' In the latter case, me, (z, k') is ex-
ponentially decreasing for either positive or negative
g. This indicates that the electron cannot penetrate
into the plane-wave field but is trapped or totally
reflected. "" The regions in the (A., k') plane with
complex v are indicated in the so-called stability
chart of Mathieu's functions. ' They gather mainly
in the region where X& 2 lk' l. We exclude these
configurations from our considerations. This
means that we have to exclude the immediate vi-
cinity of the Cerenkov cone C, of the incident
electron, which is given (apart from quantum con-
tributions) by pk = 0:

p=my(1, p), pk= pn&ecosp,

Since the present theory makes sense only below
the breakthrough field strength which may be of
order 10'V/cm in typical materials, (2.15) is a
small quantity even for microwave frequencies.

In what follows we shall take the conditions (2.8)
for granted so that we can rely on the approxima-
tions (2.9)-(2.11). Restrictions corresponding to
(2.8), (2.12), and pko0 apply, of course, also to
the final momentum p' of the electron after the
emission of a SESR photon. Practically, however,
they coincide with what we have already discussed,
due to the relative smallness of the momentum of
the emitted photon.

We note, finally, that the parameter

k' k' 4eaPr ea m P sing
v ~X pk m e 1 —pncosp (2.18)

is, in virtue of (2.15), not necessarily small in the
context of our approximations.

III. KINEMATICS

2pkp=p —-'Nk N= +v. —
k

-(3.1)

Effective momenta are conserved up to the emis-
sion or absorption of an arbitrary number of quan-
ta of the incident field, hence

(3.2)p'=p —k' —sk )

where p' is the momentum of the electron after
the emission of a SESR photon with momentum k'
=(&o', k'}, k' =n(&o') ur' =n' &o' Calcula. ting the
frequency &o' of the emitted photon from (3.2) is
made difficult by the dependence of N on p. We
are, however, consistent with the assumptions
(2.8) and (2.12) if we let

Before calculating in detail the cross section for
the emission of radiation due to the incident plane-
wave field we want to extract as much as possible
from purely kinematical considerations. In fact,
the frequencies of the emitted SESR radiation are
determined by conservation of the effective four
momenta. " The effective momentum p of the elec-
tron in the presence of the stimulating plane wave
can be read off from Eqs. (2.5) and (2.9)

whereas (2.12) is equivalent to

2p2 (2.14)

2pk (ea)'
v= vY=- ~ ~ 0

Pk

hence,

(3.3)
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(ea)' (ea)2
p=p+ k, N=- (3.4)

P' = m'+ (ea)'. (3.5)

and In view of (3.5) squaring Eq. (3.2) yields

n' (( —n' ) +s n (( —n ) —2n'l cny((. —n () cos'rp) + —sn(1 —nn' cosa))c2 c2 2 2 2 (ea)'(1 —nn' cosa)
2my 1-nP cosg

-2su&m y(l —Pn cosg) — = 0, (3.6)
s(ea)'(d(l —n')

my 1- Pn cos)t))

where the angles cp and 3 between k' and p, and be-
tween k and k', respectively, have been introduced

pk' = myPn'~' cosy, kk' = nun'co' cos3.

For s = 0, we have from (3.6)

= 2my (ea)'(1 —nn' cosa)
1 —,2 1-n'p cosy +2( )2(1 — p

or

(n" —1)(()' (ea}'(1—nn' coss)
n'P 2my 2( my)'(I - Pncosg) &

(3.6}
These are the quantum-mechanical formulae for
Cerenkov radiation modified by an intensity-de-
pendent term which according to (2.12) is re-
stricted to small values. In the dispersionless
case n(u&') = const, the emitted frequency is inde-
terminate in the classical limit (d'/m -0 and
emission occurs at a fixed angle.

Generally, dispersion cannot be neglected and
the emitted frequency is only implicitly given by
(3.7}. The dielectric function may be considered
to be a sum of one or more damped I orentzians
centered at frequencies co, in the UV or below. It
is then clear that in the classica1. limit (d' cannot
exceed the largest frequency ~, since n'& 1 for
~'& co,. One can easily convince oneself that this
is also true if the quantum term is taken care of
since n' -1 for (()'» &o,. For s o 0, (3.6) is apart
from the implicit dependence quadratic in co'. As
we do not expect either the incident or the emitted
frequencies to be comparable wi.th E=my, we will
neglect the first two terms in (3.6) which give
rise to quantum corrections. We retain, however,
the last term within the large parentheses of (3.6).
This is also a very small quantum contribution but
will turn out to yield the quantum recoil. We then
have

( (ea)'(1 —n')tc'= —sn(1 —Pn con(1+2(
) (( & () )

(ea)2(1 —nn' cos9}

s(o (1-nn'cos8)
~ . (my

This is the usual result'-' modified by quantum-
mechanical and intensity-dependent corrections
which again according to (2.12) must be small.
Note that even in the absence of dispersion Eq.
(3.9) relates the frequency &o' and the angle y of
the emitted radiation in contrast to classical Cer-
enkov radiation where a corresponding relation
does not exist. For n=n' =1, (3.9) yields the exact
frequency of HICS (Ref. 6), in spite of our approx-
imations. The reason is that in this limit (3.4)
and (3.5) are no longer approximations but exact.

Although we consider usually only the case of
emission, Eq. (3.9) contains also the opposite
case of absorption. If a solution or' turns out to
be negative, a photon with frequency -ur' can be
absorbed [note that n(-ar') =n(&o')]. Letting s- —s
we realize that the frequencies for emission and
absorption differ only by the last term in the de-
nominator of (3.9) which hence determines the
quantum mechanical recoil.

For small dispersion, (3.9) can be considered
as an explicit solution or can be solved by itera-
tion.' For ~« ~, this is even possible for quite
large values of &o'. Equation (3.9) then predicts a
large frequency upshift near to the classical Cer-
enkov cone which is given by the zero of the right-
hand side of (3.7), as well as higher harmonics
with co,'= st,'. This procedure is no longer possible
when or' approaches (d, . We will now discuss this
behavior graphically in the simplest case of just
one resonance frequency co, and find out that in-
evitably there are more solutions of (3.9) beyond
those just discussed.

In Fig. 1 the refractive index n'=n(&u') as a func-
tion of co' is depicted for a model with just one
damped resonance at v, . Figures 2(a)-2(c) exhibit
the function f(&o'} = (1 —Pn' cosip) ' for cosy
& [max(n')] ', coscp&[max(n'] ' but pn(0)cosy& 1,
Pn(0) cos((p&1, respectively. The solutions of (3.9)
with the intensity dependent and quantum correc-
tions for the time being neglected are given by the
common points of f(&u') with the straight lines
g(ar') = v'/[-s&o(1 —Pn cos(j))] which are very steep
for &o/~, «1. In the case of Fig. 2(a), there is
just one solution provided that s(1- pn cos(j)) &0.
It is of HICS type and exhibits a sequence of har-
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n= n(d
(1- n Bcosp) ~

FIG. 1. Typical behavior of the refractive index n(~')
as a function of ~' for one resonance frequency cu, .

monies with m,'=s~,'. With cosy increasing we
approach the situation depicted in Fig. 2(b) (pro-
vided that P is large enough). Now there exist
two Cerenkov frequencies ~„and ~~ given by 1
—Pn(&0„) cosy =0. For s(1 —Pncosg) &0, there
are two solutions of (3.9), which due to the steep-
ness of the straight lines g(tc'} are very close to
&c„(i=1,2). We shall refer to these solutions as
Cerenkov-type. For s(1 —Pn cosg) & 0, there is
one further solution ~'«v„. which is obviously
of HICS-type. It displays reasonable harmonics
with ~,'= s~,', whereas the Cerenkov-type solutions
for different values of s are closely grouped to-
gether and have nothing in common with what one
usually expects from harmonics. This smearing
of the Cerenkov radiation over a narrow range of
frequencies or angles has been emphasized by
Kroll. ' If cosy continues to increase, the HICS-
type solution approaches larger values. Finally
[for Pn(0) large enough, otherwise this situation
does not occur] we will have co„=0. At this stage
what we up to now have referred to as the HICS-
type solution has disappeared. An approximation
to the solution with the lowest frequency can be
obtained by expanding

(1-n Boost)
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where damping has been neglected. We then have

t'2s rotc', (1 —Pn cosP}n'(0) &
'~'

n'(0) —1
(3.10)

for s &0 which is quite large. Obviously, labelling
this solution as either HICS- or Cerenkov-type has
become meaningless. With cosy further increasing
we end up with Fig. 2(c) where just one Cerenkov-
type solution has been left and for s(1 —Pn cos|I)
& 0 yet another one which again can be denoted as
HICS-type. The HICS-type frequency as a function
of cosy becomes minimal at cosy=+ 1 with values
greater than zero. The corresponding discontin-
uities in the power spectrm have been estimated
by Kroll' to be experimentally detectable.

FIG. 2. The function [1 -g(co')Pcosy] with e(m') from
Fig. 1 for (a) P cosy=-0. 5; (b) Pcoscp=0. 33; (c) Pcoscp
=0.8. The common points with the straight lines g (cu')
=~'I[- see(1 —Pn cosg)] yield the frequencies ~', of SESR.
~, are the respective frequencies of Cerenkov radiation.

The quantitative impact of the'intensity-dependent
and quantum recoil corrections in (3.9) on the
emitted frequencies ~' is small. The main effect
comes from the intensity-dependent shift of the
classical Cerenkov frequencies co, given by t.he
zeroes of the right-hand side of (3.V) versus the
zero-field values sP, given by 1 —Pn(tc', ) cosy = 0.
The shift of the Cerenkov-type frequencies ~'
versus tc, is for tc/tc, «1,
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5&v= u&' —~,=(Pn,'cos(&))-'l (1 —Pncos[t))

—1 QP

&d,(qu. mech. ) —(o,=
Pn, cosy 2my

' (3.12)

The above classification of the SESR radiation as
either Cerenkov- or HICS-type is only feasible for
co « ~„and, even in this case, not in the vicinity
of the angle where ~„=0 or only sufficiently far
away from the corresponding frequency (3.10).
Moreover, it relies on observing the doubly dif-
ferential transition rate &fI'/due&fg-„, , where the
emitted frequencies at a particular angle are of
interest. If just the power spectrum or the angu-
lar distribution are observed contributions of both
HICS-type and Cerenkov-type SESR add in general.
There are, however, two "pure" cases: For
angles such that cosy ( [P max(r&')] ' there is only
HICS-type and for high frequencies +'~ +, there
is only Cerenkov-type radiation. Hence the total
energy loss of an electron due to SKSR is com-
pletely dominated by Cerenkov-type radiation.

For incident frequencies such that co= ~, we en-
counter a completely different behavior. The
straight lines g(~'} are then more or less flat.
E.g. , Fig. 2(a) exhibits that there may exist three

SCO () —ss, ocse)),my
(3.11)

where n, = n(&d,), n,'= dn(ro')/d&d'
l

&d' = ~,. Here the
quantum term represents a very small correction
which is even smaller than the quantum correction
to the Cerenkov frequency ~, which obtains from
(3.'I)

HICS-type frequenc. ies at large angles or from
Fig. 2(b) one infers that there may be no Cerenkov-
type frequency at all. Since, however, the para-
meter ea/m which governs all SESR phenomena
(sw0) is very small for high frequencies,

'

ordinary
Cerenkov radiation (s= 0) will be largely dominant
in this case.

IV. CROSS SECTIONS

The matrix element for an electron with initial
(final) momentum p(p') to emit a photon with mo-
mentum k'=(ur', k'), k"=n(ere)'~" =n"&d", is to
first order given by

where

(4.1)

(4 2)

is the vector potential of the emitted photon with
polarization e'. We use the radiation gange, hence

e,'= 0, e'k' = 0. (4.3)

j,(x) is the conserved Klein-Gordon current of the
electron in the presence of the stimulating plane-
wave field (2.2)—(2.4)

(4.4)
+2' „(x)y*, (x)y,(x),

with the wave functions given by (2.5). Inserting
the Fourier expansion (2.9) of Mathieu's functions
in order to perform the x integration we obtain

M =-, —, , l Q exp-f(v+ 2r)n —[v'+2(r —s)]n'] 5(p'-p+k'+ sk)fe(2)T)4 2 v Z

yg'6 v'V2p V2p'V ) „, 2

x [C,",(k') C,"&, ,)(k")e'(2P —k' —2rk) + eae'(e, + ie, )C,",(k')C,"&„„»(k")e-'

+ eae'(e, —ie,)C2„(k')C2(„,)(k")e' ]. (4.5)

Here p(p ) is the initial (final) effective momentum of the electron defined in (3.1). The 5 function indicates
conservation of effective momenta which has already been exploited in Sec. IV. Primed quantities v', h',
0. ' refer to the final momentum of the electron and

n = arctanQ, /p, ) [n' = arctan(p, '/p, ')]

is the azimutal angle of p(p } relative to the g axis given by the direction of k.
Using the approximation (2.10) of the C,"„ in terms of Bessel functions the sum over r in (4.5) can be done

by means of the addition theorem for Bessel functions. The result is

ie(2)&)4 2 v p pf
M =—, —. . . 5(p'-p+k'+sk) expi -n ——n' —s xs+'nln'& 4m'p poV 2 2 i

x e' 2P'-O' J,R +eae' e, +ie, e"" 'J
y R +eae' e, -ie2 e "" 'J

h
e2—e')[e»"'"-"&Z ()))ee-«""-~'&Z...(R))), (4.6)
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where

(y' I2 (/f2 2 g2gp2
R'=~ —(+), —,cos(n-n')

l, 2v i i, 2v' 2vv'

and

(4.7)

) „()') = f ax~'" )P*li'.().) I)))

obeys due to current conservation

k;q, (k )=k;q, (k )

2

g=l
(4.9)

k' ...& &k" k'
r. r

l
rrrr - 'rl

I
— rrrr . 'r)

i2v' 2v i ( 2v' 2v
(4.8)

Next we sum ~M ~' over the polarizations of the
emitted photon. A system of two mutually ortho-
gonal polarization vectors e,' "(i= 1,2), satisfies
due to (4.3)

we are allowed to employ instead of (4.9)
2 1

A t Ol Al 2 ~OO~lo
r(i) r(i)

i.=l
n' (4.10)

Since we had in mind to use (4.10) we have de-
liberately done without using e'k' = 0 in (4.6): If
terms proportional to k' are dropped, the current
j„(k'}is no longer conserved and (4.10}may not
be used. The advantage of (4.10) over (4.9) is that

k«E«, (e, —ie,),= (e, —ie,)«E„(e,—ie,),= 0,

Since

M j.(k )e",
where

and that it provides for a convenient decomposition
into classical and quantum-mechanical terms, as
we shall see below.

We then obtain

Q ~M ~'= „, Q —,', 6(p' —p+k'+sk),
poi n"~'&

s= - 4'POPo (4.11)

)U,
= 8 (R)' A+ (Be ""' '+B*e "x- ')+ C cos(y+ n —n')+ n' — cos2(x+ n —n')2s eg 2h2s &'s2(o'

S S vR v2R2 n ~2

h'(o2
+ [Z„,(R}'+J, ,(R}'] 2(ea)'+, , n« ——„~sin'(y+ n —n') (4.12)

where

A = (2p —k'), E„(2p —k'),

cosy = cos6 cos)I)+ sine sing cos(n —P}. (4.1V)

The angles y and n' are eliminated from (4.12) by

= 4p«E„,p, + 4 pk' — 1 —,I po~'

1
,'N kk' — 1 ——„~k,&o'") '

h2
sing = sin(n —n'),

2vR

k'
sin(n —n') =—r sin(p —n) .

Pr

(4.18)

(4.19)

+ n' 11
(4.13)n"

&

p E,p, =- [m'+(ea)']+ 1 — „p,(p, N(u), (4.14)-n"

B=(2p —k')«E«, (e, —ie,),=2pre "—kre ««, (4.15)

C = (2p —k')«E«)k,

Equation (4.18) follows from the definition (4.8) of
X, (4.19) is verified in the triangle formed by the
two-dimensional vectors pr = (p„p,}, p' and

kr(pr- pr+kr = 0) in the plane perpendicular to k.
We then have

h2 1 1. k~cos(y+ n —n') =——,———,— cos(n —P)2R v' v v'p~
(4.20)

=2 -pk+ 1 — „p,~ —&N&a'~ n' —— „--n" n"

1+kk'- 1-n'2 (4.16)

(4.21)
k'kr'«sin'(P n)—

cos2(X+ n —n ) = 1—

(1 1 kg~
cos(y+P —n')=

i
—,-- cos(n —P)—

2R I v' v v p~„
In obtaining (4.14) we have used (3.5). P in (4.15)

is the azimuthal angle of k' relative to the z axis
defined by the direction of k, it is related to g, S,
y by

(4.22)

Inserting A, B, and C into (4.12) and counting
powers of h it turns out that the terms proportion-
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al to A' in A, B, and C just constitute the quantum
corrections within the first square bracket of
(4.12). Since these are of relative order &o'/p,
which is small up to very high frequencies, we
shall neglect all these terms [which if needed can
be inferred from (4.13), (4.15) and (4.16}]. More-
over, we let

(ea)' 2pk, 2p'k 2pk

pk

except

v ' —v = 2(kk'+ sk') /k' .
This comes up to neglecting intensity-dependent
corrections within the square brackets in (4.12)
which are small in the framework of our approxi-
mations. Note, however, that for p~=0 the square
brackets still contain the complete first-order in-
tensity-dependent corrections. We are then left
with

—,5(p -p+k'+sk),

V, ", =4J,(R)' -[m'+(ea)']+ 1 — „p, p, + —,p'p' 1 — „~ k,'cos(a —P)- *

(4.23)

Rpk j n"
& ~ Rpk j

+ 2(ea)'[Z„,(R)'+ Z, ,(R)2] 1+
)
n'— (4.24)

where

4(ea)', 1 1
i

kr' 2prkT' cos(n —p) 1 1
k' . r v v'j v" v'

(ea&o&o'm y )t2

(pk)'

s(or ' = P2 sfnaIt
~
1 —nn' cosa+ (1 —n') I + n" sin'6(1 —Pn cosP)'

&d

-2n' singsin3~1 —nn'cosh+, ~(1-nP cosg)cos(c. —P)
s(o(I —n') &

l (d )

(4.25)

(4.26)

can be considered of order unity so that the order
of magnitude of 82 is given by the first factor in

(4.25). Now p, ,"[Eq. (4.24}] consists exclusively
of classical terms inasmuch as R is a classical
quantity. This is the case if the recoil corrections
to co' are neglected. The fact that R is practically
classical is surprising in view of its definition
(4.&), since k'/v [eq. (2.16)] is not. Moreover,
k'/v is generally very large whereas R' is not,
except in some cases to be discussed below. The
total transition rate per unit time from a spec-
ified initial state is given by

Vd'p' Vd k' 1
(2w)' (2w)'

P f d'p'5(p" —m')e(p.')

x 6(p -p+k'+sk)g, , (4.2V)

with p,, (or its classical approximation p,,")de-
fined in (4.12) [(4.24)]. We change from the inte-
gration variables p, to p„, having in mind (3.4).

I

With the functional determinant

d p (ea)'k'
d'p 2(pk)'

we have

(4.28}

g2 d3k'
I = p d4p 6(p" - [m'+(ea)']) e(p, )—

s

x p,,6(p' -p+k'+ sk} (4.29)

2
n'ur'd~'dA-„. 6[(p —k' —sk)'

4mPO

—m' —(ea)']p,

The sum over s is in principle restricted by the
condition p,'& 0, but since p,'» co', ~ this does not
have much practical signif icance. The argument
of the 6 function in (4.28) is the left-hand side of
Eq. (3.6) and has been evaluated in different ap-
proximations in (3.7)-(3.9). If we denote this
argument by Q the transition rate can be written
as
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er= Jt n (0 d(17 dA„-4r~y,
X -----, 5 (d Q7 ~s~

1

with v,'the solutions of (()) = 0 which have been dis-
cussed in Sec. III. We can also exhibit the angular
dependence by solving for cosy,

2 aa1'=,, g d(d'dQ-„, 5 (cosy -cosP)i(, ,

(4.31}
I

where cosP is the unique solution of (()) = 0.

V. POVfER SPECTRA AND ANGULAR
DISTRIBUTIONS OF SESR

In this section we shall consider the contribu-
tions from HICS-type and Cerenkov-type SESR
separately although as we remarked in Sec. III, a
clear distinction is not always possible. For the
angular distributions we will need

(ea)'(1 —nn' cos3) su&
8 $/e(a)' = 2my (1 -n'R -n'(u'n') — 1 -n'p cos(I()+

my 2(my)R(1 —nP cos g) my
(1-ss' cosa))

(ea)'n cos' s(d
+ + Q cosp+2 2 1

gcos3 (5.1)

from (3.6) with k' =dn/d~'. To estimate the rela-
tive importance of the terms in (5.1) we assume

n'(0) —1
n'(&u') = 1+

so that

R'=(, ) (a=a),

and then introduce invariants by means of pk
=m&u, pk'=m~', kk'=(R)a'(1-cosa) to obtain a
manifestly invariant form of R . Noting in addi-
tion that pk' = —sp'k we have

1 n'(0) -1
[1 —((I)'/(a)R) ] (dR

(5.2) R'= „,~

kk'(2(Pk)(Pk') -m'kk']. (5.6)

hence for low frequencies &' the terms propor-
tional to ~'n' are negligible.

The differential cross section per incoming laser
photon, a=i'/(j, .„N), j,.„=1/V, N=a'(dV/4m, is
then (here we let s- -s)

A. HICS-type SESR

l. Angular distribution

For low frequencies we drop the first parenthe-
ses and the last large parentheses in (5.1) such
that in view of (3.9) and (2.11)

dc e' 1 (u,'

d&„-. (my)', , s(1I - p cos g) &u

xIZ, ,(R)'+ J,.,(R)*

m ()R1-1 I+ —
)

J,(R)*I.
ea&

(5.7)

8$/s&u' =—,(1-pn cos(t) )&,

and (4.30) yields

8s(my}RE 0 ~ "
[ s ((1d- Pn cops) [

(5.3)

(5.4}

With the emitted frequencies given by

s(o(1-p cosg)
S eal' 1 2s(d l . 23 '

1 -p cosy+
~

. + sin'—
my) 1- cos my

~

(5.8)

p
V&C
8 (5.5 }

from (4.24). With some algebra one can convince
oneself that the same expression follows also

. from the exact quantum-mechanical formulae
(4.12)-(4.16). Since p,, is a Lorentz invariant,
R must be also. Hence we can evaluate R from
(4.25) in the rest frame of the electron

with &u,
' from (3.9).

In vacuum n = n' = 1, k' = k' = 0, and

. i(,,= —4[mR+ (ea)']Z, (R)'+ 2(ea)'[J, ,(R)'+ J„,(R)']

which is the exact cross section for HICS off spin-
less particles. ' Note that the only quantum contri-
bution enters via the recoil term in the denomina-
tor of (5.8}.

In the medium we restrict ourselves for sim-
plicity to the case p~= 0 so that

ls

p, ' = 4J,(R )' —[m'+ (ea)']
I 1, (ea)'
+ 1 ——,2 my 1+

+ 2(ea)'[ZR, (R)'+ J~,(R)'] (5.9)
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eau&n' sin@R=
my co(1+ nP)

(5.10)

n'&' sing ' 1 1 lu" = (ea)' ——+ 1 ——I+ 2
(d(L+ nP) y2

for (= 0 and (I)= w, respectively. A comparison of
(5.9) with (5.5) indicates a considerable enhance-
ment of HICS-type SESR over ordinary HICS if
(i) y» 1, n' sufficiently large and p, , is dominated
by the first term in (5.9); or (ii) ~,' exceeds the
corresponding vacuum value to some amount.
Expanding the Bessel functions for R «1 we have
for s=+1,

All P,(co'} contribute in a. certain range of fre-
quencies. Note that in (5.14) and (5.15) we treated
n' as almost constant which is only justified for
low frequencies. Equations (5.14) and (5.15) give
rise to discontinuities in the power spectrum
which have been emphasized and estimated in some
cases by Kroll. '

V'

B. Cerenkov-type SESR

We are first going to extract the power spectrum
of ordinary quantum Cerenkov radiation from Eqs.
(4.12)-(4.16). In the absence of an incident field
ea = 0 and hence R =0 so that only the term with
s = 0 survives.

+ O(ea)'. (5.11) &0= ~=-m +II-—.a Po(PO-&)n'
E.g. for n' = 2, p = w/2 we have ~' = (I+ np)~, and

for y»1, (((,",/p", '=5/2. Note that at y=))/2
there are no additional contributions from Ceren-
kov-type SESR. The additional terms in (4.24)
which contribute for p~4 0 can be shown to be at
least of relative order ~/v'.

2. Power spectrum

+PA +(d n
1 I

n']
c~~

~I~ 2 0
~I 2

~~ ~
I

~I 2(d )
p — — )2 po —

I
=p sin p.

2 n 2/ . *

(5.16)

in the last line (t) = (2p —g')g' =0 has been used.
From (4.31) and (5.12) we obtain the power spec-
trum

The power spectrum is related to the transition
rate by

P(s') = c'dtc fd cosS sio'S

fP(tc), '

hence from (4.31)

(5.12)
1 ( (n"-1)(d'

x5 cos(p —,
I
1+n' ( 2my

(5.17)

e2~1 1P (&')=
8 ~ )2. de)", 4, 5 cosi-

gn'

(i -dc cosd))Pnf (d()'

This is the usual result derived from the Klein-
Gordon equation. It differs from the Dirac equa-
tion result" by the absence of spin-induced second-
order quantum corrections. The argument of the
& function in (5.17) given by pure kinematics is the
same in both cases.

P.(~').
d)It0

(5.13)
1. Po~er spectrum

In the presence of the incident field we have

The 5 function restricts the range of frequencies
for which P,(v') is different from zero. In the
subluminal region (1 —Pn'& 0)

2~ I
P(())=d, ,z d Ql g L(, 5(cosrp —cosp) s

8m (my)'

(5.18)
s~(l —pn cos(()), s&u(l —pn cosg)

I+P n' 1 -Pn'
(5.14)

1 ( (ea) (1 nn'cos3)-
Pn' ( 2(my) (1 —Pn cosg)

so depending upon the sign of 1 Pncosg —only posi-
tive or negative values of s contribute to the sum
in (5.13}. In the superluminal region 1 Pn' & 0—
the frequencies are only restricted from below

see(1 Pconsg) -su(1 -Pn cosg)
&I

1+Pn' ' pn' -1 )
'I0 m~ ~ I n I ~ t

~

~~

n I ~ ~

(5.15)

SRc, (i ()s eood ) c), —(5.19)

up to quantum corrections. Equation (5.18) is of
interest mainly for large frequencies such that
&u's &o„hence &u/(d'- 10 ~. But then 8' [Eq. (4.25)]
is not necessarily small and an expansion in pow-
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ers of R' is impossible.
Because &u/v' «1 it is tempting to drop the s-

dependent term in (5.19). By means of the summa-
tion formulae'~

g J,(R) =], , g sJ, (R)'=0, g s2J, (R)2=~R2,

we then have

2 "= P (Pn ) +(l(my Pl( n' 1 Pn ene&)
+

2 n &I I(1 Pence()

+ (1 -n') 1 -—„, f 1 sin'g
n" (1 Pn cos(—IP)'

(5.20)

which reproduces the power spectrum (5.17) of
ordinary Cerenkov radiation apart from small in-
tensity-dependent corrections. The latter, how-
ever, are not reliable: expanding the & function in
(5.18) in powers of s and including these terms in
the summation contributes further terms of the
same order of magnitude as the corrections ex-
hibited in (5.20).

Hence we shall now improve the summation pro-
cedure. %e treat only the caseP&=0, where R'
is given by (5.10) and depends in a simple way on
the angle (((). Note that for (=0, 7) we have 8=y, m

%e then have to calculate.
r 1

I=5 ' g
~

d cos+5 (cos((&) —t' -sg) J,(R)', (5.21)

I

hence the actual limits of the integration in (5.23)
are min (1,x,) and x & —1. We then have

1 (x,&1),
(1- [+~')myP

+—ar csl n

(x, &1) .
(5.25)

2

Ic g-) (1 + ~')-'~ '= 1
2 (myP 1 +Pn

(5.28)

Because the argument of the arcsin is smaller than
one, we have

n(ea)'
2P(my)'(1~Pn) '

1 (ea)'
Pn'2 2(my)*(1+Pn)) '

)7= P, ,~
(1+Pn)&,Pn'(O'L

(5.22 a)

(5.22b)

(5.22c)

In order to evaluate (5.18) completely we need in
addition the integrals I, which are obtained from I
replacing s)7 by (s +1)p. Obviously this comes up
to replacing t' by $ a'Pl in (5.25).

The power spectrum for Cerenkov-type SESR is
then

2 I.
P((d')=, 4 -m'- (ea)'

4 my'P

where

&&e(R)7 —
i
cosy —g i) 2 (5.28)

ea 4 ea
Bg=o sing,

myP K myP
'

The zeros of the argument of the square root are

cosy = (1+v ) '[t a(r(1 —t'+(r')'I'] =x, , (5.24)

where we carefully retain all first-order intensity-
dependent corrections.

Introducing the Fourier representation of the &

function the summation can be done by means of
the addition theorem of Bessel functions, '~ hence

qt
d cosy e-it(cosy-g)g 2R sin

J „2w 2

Replacing due to (5.22c) the sine by its argument
the integral over t can be done'~ with the result

1
I=(mk) ' d cosy[R'q' —(cosy —$)'] ' '

-I

—,2 Po Po+ I

+2(ee) (&,+& )I,
or letting ~, +& =2I,

or, for Pn' not too close to one and sufficiently
small intensity such that x, &1,

P(te )=e te PI(1
—

y )) 1+2(1 2 )( 2)
ea

1~Ps my2P~' (5.28)

which for (t) =m exceeds insignificantly ordinary
Cerenkov radiation. For x,&1 the reverse may
happen. Equation (5.27) deviates qualitatively
from Kroll's results: If 1 —(Pn') ' and (ea/myP)'

P((d')=e'(O'P 1—,, + 1 — „~ ~

I1 1 ( e&'(' 1

yP& 1+

(5.27)
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are fixed there is no dependence on co/(u' left.
Since the decisive conclusion, that the Cerenkov-
type SESR power spectrum does not significantly
deviate from ordinary Cerenkov radiation, agrees
in both cases me mill not pursue the discrepancy
further.

2. Angular distribution

The angular distribution of ordinary Cerenkov
radiation can be obtained from (4.30) and (5.1) or
from (5.17) and reads

dI' e
tan y,d cosy, ~n';I

V'

where the sum extends over the Cerenkov fre-
quencies &uq = &a, (y) which occur at the angle y and

n,'=dn/d+'~+'=(o, . Note that (5.29) is contrary to
appearance a rather implicit representation.

The corresponding angular distribution in the
presence of the incident field is

gn,',~,',y,"~(SP/»')„„,
~

', (5 3o)
t ~ S

V'

with (o„(p) denoting the frequencies of Cerenkov-
type SESB. In Sec. III we had found that the fre-
quencies ~,', deviate only very slightly from the
Cerenkov frequencies &o,

' given by (3.7) [cf. (3.11)],
so that we may let &,', =&,'. . Now all the Bessel-
functions occurring in p, , have the common argu-
ment B(ar,',) =B(&o,'). Hence we can perform the
sum over s in (5.30) by means of (5.20). In view
of (3.7) we have neglected quantum contributions
(y=o, v)

sp/S~' = 2myp C&o'n' cosy .
The angular distribution is then to first order in
(ea/my)'

dr
d cosp e', f (ea)'(3p +2n) l

~n fl g 28(my)'(I +pn))

/ca)' 1 ( n 1
y) 1+ 8 ~g 8 y'8' o 'p)

(5.31)

C. Comparison with earlier work

The work of Soln2 and Zachary'4 is restricted
to a linear approximation with respect to the in-
tensity of the incident field. Whereas this is suffi-
cient for HICS-type it is not for Cerenkov-type
SESH. Consequently the origin of the strong en-
hancement of SESBover ordinary Cerenkov radia-
tion claimed by Zachary' is that his linear approx-

imation comes up to replacing J,(A)' by 8'/4 for
B» 1. Within the framework of the classical lin-
ear approximation our results agree with Refs. 2
and 3 if the linear polarization which has been as-
sumed there is averaged over. In Ref. 4 an es-
sentially arbitrary geometry of the partici'pating
fields is allowed for as in the present paper. Of
course, also in that paper the immediate vicinity
of the Cerenkov cone must be excluded. We recog-
nize a minor difference to Ref. 4 because there the
terms proportional to sk'= s~'(1-n') which are
present in (4.24) and (4.26), are missing.

Relating our results to Kroll's' we have to take
into account that the velocities 8, P~, and P, in
Kroll's work (henceforth referred to by P*, P,",
and P,*) denote the velocity in Presence of the in-
cident field whereas our P is the velocity of the
free electron. The connection is established by
noting that the zero component Po of the effective
momentum (3.1) is the energy of the elect'ron in-
side the incident field, hence (for tj =m)

1 ea1r =r&+ 2(1+pn)(mr&
(5.32)
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and, because
2

pK2 pK2 pK2 8K2 i(

(5 33)

2 I+np, my)

to first order in (ea/my)'. With this in mind we
notice that our Eq. (4.24) for g =v and n =n' agrees
with Kroll's Eq. (3.11) up to one difference: in-
stead of the term (1-n' )(ea) poe/pk in (4.24) he
has (ea)'/(1+Pn)y'. For n'P = 1 both expressions
are identical. We do not have an explanation for
the discrepancy between Kroll's Table I and our
Eq. (5.27).

We conclude with an argument in favor of our
quantum approach: Kroll's procedure relies on the
exact solution of the Lor entz force equation in the
incident field which yields a simple helical motion
only if the electron moves initially parallel or anti-
parallel to k. On the other hand, the Klein-Gordon
equation provides for a compact solution also for
arbitrary angles g. Our calculational efforts would
have been considerably reduced if we had re-
stricted ourselves from the beginning to the case
(=O, v.
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