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Coherence versus incoherence: Collapse and revival in a simple quantum model
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We describe the temporal behavior of the dynamic elements of an exactly soluble quantum model. The model
consists of a single two-level atom or spin interacting with a single mode of the quantized radiation field in the dipole

approximation, the mode being initially in an arbitrary coherent state of excitation. We give new long-time

numerical and closed-form approximate analytic solutions for the expectation values of the atomic dipole moment
and the difference in population of the two atomic levels in the rotating wave approximation. The atomic dipole-

dipole correlation function is calculated. A11 of the results are obtained without semiclassical or decorrelation

approximations. Unusual features found in the temporal behavior of this lossless model problem are "collapse, " i.e.,
episodic nonexponential damping of both the atomic inversion and dipole moment, and two kinds of "revival" or
partial recorrelation, in the dynamic evolution, during which the initial state is nearly recovered. We give analytic
formulas for the collapse function, for both of the revival times, and for the envelope of the revival maxima. Some
remarks are made about the nature of irreversibility in this exactly soluble and loss-free model.

I. INTRODUCTION

The simplest fully quantum-mechanical model
problem involving the interaction of radiation and
matter is almost certainly the interaction of one
mode of a quantized radiation field with a single
charged harmonic oscillator. In the dipole ap-
proximation the coupled Heisenberg equations of
motion for the two degrees of freedom are, how-
ever, completely linear in this case and the prob-
lem is only a trivial exercise.

An extremely simple but still unsolved model
problem is posed if the harmonic oscillator is re-
placed by a two-level atom. In l958 Jaynes' used
the rotating wave approximation' (RWA) to reduce
it to an exactly solvable model. Jaynes and
Cummings' subsequently discussed the properties
of the solutions in relation to the corresponding
solutions obtained if the radiation mode is not
quantized. It is the exactly soluble RWA model
that we call the Jaynes-Cummings model.

We consider various features of the Jaynes-
Cummings model' that arise when the field mode
is prepared initially in a coherent state. For
definiteness we will refer to this as the "coherent-
state Jaynes-Cummings model". In this case the
temporal behavior of the principal dynamic varia-
bles (atomic level populations, dipole moment,
etc.) consists of Rabi oscillations. The envelopes
of these oscillations collapse to zero despite the
exactly loss-free nature of the model. We con-
sider the long- and short-time behavior of the
atomic dynamics and give an expression for the
collapse function. We find that there are regular
revivals, or quasirecorrelations, in the time
records of the dynamical variables, and we give
simple finite analytic expressions for both the
revival period and the amplitude of the revival

envelope. '
In the remainder of this section we will review

the basic properties of the Jaynes-Cummings mod-
el, and mention previous work with it and with
extensions of it. The remaining sections are de-
voted to, first, a review of Ackerhalt's operator
solutions for relevant dynamical variables and a
derivation of the atom's dipole-dipole correlation
function (Sec. II), then a treatment of the long-
time collapse and revival behavior of the inversion
and the atomic dipole moment (Secs. III and IV),
and finally a summary and discussion of results
(Sec. V).

The Hamiltonian of the exactly soluble Jaynes-
Cummings model is

P. = —,'h(u, o, +W(o, a+at(x )+h&u(a~a+ —,') . (l.l)

Here the o's are the usual 2&2 Pauli matrices
satisfying

[o„a,]=~2v, , fo„o]=a, ,

and a and a~ are the Bose operators for the quan-
tized field mode which obey

[a, at] = 1.
The natural transition frequency +, of the atom
need not coincide with the mode frequency a, al-
though the rotating wave approximation is reliable
only if ~&, —&u~ «&u„&u. We denote the field-atom
frequency difference by 6:

and we refer to 6 as the detuning parameter.
The energy-level structure implied by the

Jaynes-Cummings model is shown in Fig. 1 for
X=O, that is, for uncoupled atom and field. When
the coupling is turned on, it connects only the
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exp[- +(A.t)'], (1.7)

Jaynes- Cummings model, interesting features
due to coherent-state excitation of the cavity were
noticed. A paper by Cummings first touched this
subject in 1965. Numerical evaluations of
(a (t)a(t)) and (a (t)}(a(t)) were compared. Cum-
mings also obtained explicitly the Gaussian decay
envelope associated with strong coherent excita-
tion:

(2 n) " ( I,n+I )

FIG. 1. Energy-level structure of the Jaynes-Cum-
mings model. The atomic states are labeled by the
atomic eigenvalue m= —1 (ground state 1) and m=+1
(excited state 2}. Quantum-mechanical field variables
are characterized by the photon-number eigenvalue n.

pairs of nearly degenerate levels separated by A.
The exact eigenfrequencies for the two levels
shown are

(d
' =N cu+~[hk (b, '+4k. 'N )'~']

where N„ is the "excitation number" for the
coupled system

(1.5)

and only the lower sign in (1.5) is to be used when
N„=0. Here n = 0, 1, 2, . .. , and m =+1 are the
eigenvalues of the unperturbed operators a~a and
0 3 as usual . The exact eigenstates are linear
combinations of the free eigenstates ~n, m) and
have been given by Jaynes. ' These exact "dressed"
states can be of great importance in any problem
that has the Jaynes-Cummings' model at its core.
We may mention strong-field resonance fluores-
cence as a recent example.

A number of extensions of the Jaynes-Cummings
model have been carefully studied. i"he coupling
of N two-level atoms to a single quantized radia-
tion mode has been solved. Finite algorithms for
the eigenfrequencies and eigenstates were given
for 6 = 0 by Tavis and Cummings. ' References
to subsequent work may be found in the papers of
Weiss' and of Compagno and Persico. ' The cou-
pling of a single two-level atom to M equal-fre-
quency modes has been used as a simple model
of decay processes, and solved by Quattropani. '
It is apparently still an unsolved problem to find
the eigenstates and eigenfrequencies of the N-
atom+M-mode interaction.

In previous studies of long-time atomic dynamics
and of field statistics in the one-atom one-mode

and he commented on the different dynamical be-
havior arising from coherent and thermal exci-
tation. We give an interpretation and generaliza-
tion of (1.7) in Sec. III.

In a well-known review, ' Stenholm gave explicit
expressions for the time dependence of all ele-
ments of the density matrix of the coherent-state
Jaynes-Cummings atom. All of these expressions
contain infinite sums. Stenholm displayed graphs
of the results of numerical evaluations of these
sums, showing that decay exists in the model,
even though it is lossless. However, both the
graphs and their interpretation require correc-
tion. Later, in 1975, von Foerster" gave equiva-
lent expressions and accurate graphs of the oc-
cupation probabilities for the atomic ground state
for long and short times, but without interpreta-
tion. von Foerster also obtained infinite series
expressing aspects of the cavity-mode statistics.

Meystre, Quattropani et al. , in a series of over-
lapping papers, ""also studied the atomic dy-
namics and field statistics when the field mode
is initially in a coherent state. They observed in
numerical calculations" that decay occurs in
this loss-free model and is independent of the
average 'number of photons in the cavity, and they
rederived Cummings's Gaussian decay envelope
(1.7). However, on the basis of numerical work,
they proposed that some variables (the expectation
of the atomic dipole moment, in particular) ap-
pear to be immune to permanent decay. We will
show below that this proposal must be rejected

. in light of the quasirecurrences that we find. One
conclusion of the work mentioned in Ref. 13 was
that the behavior of real physical systems can be
described by the coherent-state Jaynes-Cummings
model solutions only for times small compared
with their damping times. This conclusion also
seems to require modification.

II. OPERATOR SOLUTIONS AND DIPOLE-DIPOLE
CORRELATION FUNCTION

In 1974 Ackerhalt" took a step. in a new direc-
tion, with respect to the Jaynes-Cummings model,
and presented the complete operator solutions
for the evolution of the basic atomic and field-
mode variables. These Heisenberg-picture solu-
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tions are particularly valuable for a study of the
coherence properties of the model because they
make it a straightforward matter to construct un-
equal-time correlation functions.

Following Ackerhalt, we use two constants of
motion repeatedly. These are the "excitation
number" ¹

a(o) ln& = nln& . (2.6)

The atomic eigenvalue nz = -1 corresponds to the
ground state and m =+1 to the excited state of the
atom:

8 (o)l 1&=o, 8 (o)ll&=l-l&,
(2.S)

N=a a+o,o

and the "exchange constant" C:

(2.1) 8, (o)l-» = ll&, 8, (o)ll& =o.
The operators y and C' are diagonal with respect
to the atomic states while C is not:

C = ~2682+3.(a~8 +8,a) . (2.2) cln, -1& =-~2~In, -»+»ln, 1&. (2.10)

z —A z —{d+2C (2.3)

As Ackerhalt shows, "the Heisenberg equations
for a(t) and o (t) are the sa,me:

Taking into account relations (2.8)—(2.10) and
commutation relation (2.6), we can rewrite both
correlation functions (2.7) in the following way:

and the solutions can be written

a(t)e' '=e'c' —cosyt+iC '"
a(0)

y
sinyt

(n, ml8, (t)8 (t')ln, m&

= e o., -l cosC&+ —
2 iAk&S slllCS

C

'y y
(2.11)

sc, I' - . - sinyt
o (t)e' '=e' '

l
cosyt+iC 8 (0)

sinyt
y

where y is a constant operator

y
—[1g2 + y2(~+ I)]1/2

which commutes with the operator C

(2.4)

(2.5)

where s = t —t' and

~n, nz=-1
~(t)= . d

z
—+ —a, m= l.
dt 2

(2.12)

If we now represent the states l n, m& as a super-
position of states with definite numbers of pho-
tons

[c,y]=o. (2.6)

We will now use the solutions (2.4) to construct
the dipole-dipole correlation function

nm = nm nn
n=o

with

(2.13)

(n, m l8, (t)o (t')
l n, m), m = ~ 1 (2.7) (nln& =exp(-~lnl')n"/~n!, (2.14)

where the states
l n, m) are the direct product of

free (A. =O) atomic states lm& and coherent states
of the radiation field ln& with complex amplitudes

and take into account the diagonality of the op-
erator on the right side of equation (2.11) with

respect to both atomic and photon states, we
easily get

2n

(n, min, (t)o (t')ln, m) = exp(- lnl'+i+s), [cosv„'s+i(a/2v„')sinv„'s]A*(t)& (t')v„'sin(v„t)sin(v„t'),
gg p n ~

(2.15)
where

(+~2+ g2+) 1j2

v„=pr. '+)P(n+1)]' '. (2.16)

Finally after trivial transformations we can write
28

(n, min, (t)o (t —s)ln, m& = exp(- lnl'+its) g, [b, '+4A. '(n+ 1)] '~'[cosv„'s+i(b/2v') sinv„'s]
n=o nf

x [A (v„)e'""'+A, (- v„)e '"~' —28 (n) cosv„(s—2t)], (2.17)
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where

Z'(o. ~', m = -1
A (v)=

(v„+~zb.)', m = 1

B (n)=
-~'(n+I), m=1.

(2.18)

~(t)=, P(n) [~'+4~'n cosn(n)t],
dn

n'(n) (3.4)

weighting factor P(n) = e "n"/n! will peak at a val-
ue n =n with relatively narrow dispersion:
((n') -n')' z=Wn. This means that the sum in (3.2)
can be changed to an integral which after trivial
transformations can be written as

The dependence of the correlation function on t
as well as on s leads to interesting effects. In
the first place, the inversion (o,(t)) is not constant
in time. Its time dependence is examined in the
next section. In the second place, the Wiener-
Khintchine relation cannot be used to calculate
the spectrum from the correlation function. The
consequences of this will be discussed in a subse-
quent paper.

III. ATOMIC INVERSION

The degree of atomic inversion is perhaps the
simplest nontrivial physical quantity in the Jaynes-
Cummings problem. Its dynamical behavior in a
photon-number state was found by Jaynes' to be
purely sinusoidal. For short times its behavior
in a coherent initial state is also known analytical-
ly." We now extend these latter results. The
inversion may be written

ii' (t) = (u, m ~c,(t) ~
o., m)

with

P(n) = (2zzn) '~' exp [-n+ n —n ln(n/n)]

and

n'(n) = a'+ 4Z'n .

(3.5)

(3 6)

g(z!) = z!(1—Inz!)

+ i2xn ' 't (z! + b, '/4x'n) ' z (3 8)

with z! =n/n. Here z!, is a solution of the equation

Note that in the limit n» 1 the inversion ~ de-
pends on the initial atomic state only through
(m ~v, (0)~m) and the index m may be omitted from
ZU,

Using the saddle-point method for evaluating
the integral (3.4) one can get

(,)
', ' „,[-+f(.))~ ( )fl'(n) a' v'g" (z!,)

where

= 1 —2(n, m ~a, (t)o (t)
~
o.', m) (3.1)

ol
and with the help of formula (2.17) one can easily
get the result W (t) =(m~o, (0)~m)~„(t), where
zz' (t) is obviously the ratio of inversion to initial
inversion:

-

(,) , ! !2g I ~ I'"

0 n I

1~1 —8
X [n++(m+1H

g~
y)

nm

(z! +b, '/4A~n)' 'lnz!, =ihn ' 't (3.9)

and thus z!0 depends on time. Since (n)'~' as well
as n are considered to be very large, the time-
dependent term in (3.7) will be exponentially small
if g, fails to satisfy the condition

[ I —Req(q, ) (
«n-'". (3.10)

Now we can see that for very short times
t«to, where

(3.2) t = z-'(1+a'/4x~n)"', (3.11)

This is seen to be simply a sum, with Poisson
weights, of the known off-resonant results for
different n states; and the oscillation frequency

0„'=a'+ 4A. '[n+ ~z(m + 1)] (3.3)
/

may be called the quantum-electrodynamic (QED)
Babi frequency. ' The sum appears to have no
known analytic expression, for any values of the
parameters n, 6, andm, so long as A. w0.

In the case
~
n~' =—n» 1 the summation over n in

(3.2) can be performed approximately, using
saddle-point techniques, with the help of the
Euler-Maclaurin formula" if one notices that the

Eq. (3.9) has a trivial solution z4 = 1 and Re/(1) = l.
The dominant dynamical behavior of (3.7) is then
governed by zn Imp(l), and this behavior is simple
sinusoidal oscillation at the Rabi frequency (3.6).
But when t- t„z!,as well as Re/(z!, ) differ from 1
by terms of order (n) '~' and the second term in
the large parentheses in (3.7) becomes exponen-
tially small. The envelope of the sinusoidal oscil-
lations then "collapses" rapidly to zero. There-
fore t, can be considered to be the natural "col-
lapse time" for fbi-type oscillations in a two-
level atom interacting with a single-mode radiation
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field initially in a pure coherent state.
This collapse has a simple physical meaning.

The inversion is the sum (3.2) of terms which
represent Habi oscillations of the inversion due
to emission and absorption of definite numbers
of photons n. At the moment t = 0 the system is
prepared in a definite state and therefore all these
processes are then correlated. But since all
terms in (3.2) oscillate with different frequencies
(3.4) they will become decorrelated in a time t,
associated with the range of frequencies that make
significant contributions to the sum. This de-
correlation time t, is easily seen to be estimated
by

[ ( + ")- ( — ")].- 1,
if n» 1. Considering n' ' «n we get

t - z-'(1+ a2/4z~n)'"

(3.12)

in agreement with (3.11). Under conditions of ex-
act resonance 6 = 0, this collapse time has been
found by Cummings' and Meystre et al." We may
point out also that our approach replaces Cum-
mings's expression (1.7) with a more general
"collapse function", and at the same time suggests
that the factor —,' in Cummings's exponent has a
physical interpretation. The collapse function
replacement mandated by (3.11) is

of time t = kT„,Eq. (3.9) has exact solutions

The time behavior of q, can be illustrated if
we introduce a complex plane for g with a cut
along the negative real axis. At t 0 pp: & Then
it travels along the plane, goes to the second-
sheet and crosses the real axis on the second
sheet at the moment of time t = T and so on. Though
the function qo(t) is not periodic, the zeroes of
the function [g,(t) —1] are periodic in t with the
period T given by formula (3.16).

The above analysis shows that it would be
enoughtofindthe "local" solutions ofEq. (3.9) near
the revivalpoints q, (kTz) =e"", k=0, 1, 2, . . .
One can look for these solutions in the form

q„(t)= p, e'~', p, =1+p',", 6p, =amk+6p', ",
under the condition that the "local time" v is
small. That is, we assume

+y p~" «&; y&'&«&

Xn 't'V(1+66, '/4Z'n) 't'«l.
These solutions are

2 -1-X/2-
(X) ——i/2 +

mk

Xn 1+g Xn

(3.17)

exp [-—,' (Xt)'] - exp [-p, (at)'],
where

(3.13)
-3/ 2

p&„"&= Xn-'/27. mk 1+

p, = 2~%/(~'+ 4~'n) .
One recognizes P, as the steady-state probability
that the atom is in its upper state. [Compare
with the steady-state value (first term) of w = 2P,
—1 in (3.7) or the time average of ~ in Eq. (3.18)
of Ref. 15.]

In addition to the collapse of its Habi oscilla-
tions, the time behavior of the inversion has
another even more interesting feature. As time
increases we actually encounter a revival of the
collapsed ~(t), in fact an infinite sequence of col-
lapses and revivals. They take place when the
phases of oscillation of neighboring terms in (3.2)
differ by the factor 2m for n-n. That is, the in-
terval T~ between revivals can be found from the
relation

(3.16)

n'( ) n'( ) n'( )

x exp[-116(t)] cos4 (t),

6 (1) = 66 sis'( ) (1+16, )

(3.19)

(3.20)

l (t) =Q(n)t+n sin[ah. 't/Q(n)]

—2A. nt/Q (rc) ——,' arctan[4X'Ht/Q'(8)],

(3.21)

With the help of these last formulas we can now
write formula (3.7) for the inversion in the form

(3.15)

or

r =- am~-'n" (1+~'/4~'n)'" (3.16)

One can easily check that this qualitative result
is in agreement with Eq (3.9), sinc.e at moments

where Q(n) is represented by formula (3.6). To
obtain formula (3.20) we have substituted
sin[A. 't/n(8)] for A.'r/n(n). Such a substitution is
useful in our approximation to indicate the period-
icity of the revivals. This substitution is not
unique, of course, and the figures included below
show that (3.20) does not represent the wings of
the revival regions with great accuracy, but the

1
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positions and central portions of these regions
are modeled well.

The nature of the revivals, and many of the
features of to(t) and the approximate formula
(3.19), are apparent in Figs. 2-4. The short-
time behavior of ts(t) for very small n is pre-
sented in Fig. 2. The upper pictures correspond
to a numerical computation of formula (3.2), and
the analytical expression (3.19) for ts(t) is plotted
in the lower pictures. The collapse function
(3.13) is shown explicitly in both upper and lower
pictures. One can see from the figure that the
approximate formula for ts(t) begins to work when
n ~ 4, and even for n so small the Habi oscillations
and the Gaussian collapse formula are well con-
firmed by the numerical evaluation.

Figure 3 presents the behavior of ts(t) for
stronger initial coherent states. In Figure 3(b),
for n= 900, one can see the long-time behavior
of zU(t) with many revivals inside the long-time
bounding envelope B (t):

w{t) 0 ~

w{t) 0

w{t) 0

I.O

B (t) = [1+16K'n't'/Q'(n) j (3.22)

The period of the revivals coincides with (3.13).
Figure 3(a) shows the short-time behavior of w(t),
with many Rabi oscillations within the collapse
envelope, for the same set of parameters. From
comparison of this picture with the ones in Fig. 2

one can see that for small n the collapse envelope
does depend on n, even for 4=0, in contrast to
(3.13), which is valid for n»1. Figures 3(c) and
3 (d), for n = 25, show the structure of the first and

se cond revivals, respectively. As one can see, by
comparing upper and lower pictures in each of these
figures, the approximateformula (3.19) correctlyde-
termines the position of the revivals and their struc-
ture near the center, but fails to represent cor-
rectly the width of the revivals.

Figure 4 is a three-dimensional picture of the
short-time behavior of the inversion for n =25.
The x axis is the time axis and the time range
(in units of X ') is 0 to v. The y axis is the de-
tuning axis with the range 0 to lb. The initial
state of the atom is the ground state. One can
readily see the decrease in the amplitude of the

w{t) 0

-I
0 I.O

Rabi oscillations as 6 increases. This is consis-
tent with semiclassical results for the two-level
problem. " A new feature shown in Fig. 4 is the
lessening importance of the collapse function as
b. increases, as predicted in (3.13) and (3.14).

FIG. 2. Behavior of the atomic inversion ze(t) in the
case of weak excitation. (a) Very small n: n =1, X= 1,
and 6=0. In this case the agreement between the ana-
lytical approximate solution (lower curve), and the nu-
merical solution (upper curve) is poor. . (b) Small n: n
=4, A, =1, 6=0. The agreement between the numerical
solution (upper curve) and the approximate analytical so-
lution gower curve) is good. The envelopes in all the
curves in (a) and (b) are given by formula (3.19). Time
is measured in units of s/X and m =—l.

IV. ATOMIC DIPOLE MOMENT

The dipole moment of the coherent-state Jaynes-Cummings atom may be treated in the same way as the
inversion. We consider the quantity

D„(t)=(n, m((r (t)e' '(n, m),
which could be called the complex envelope of the dipole moment. The computation of D„(t)gives

(„)sr /n/'" 2m'D (t)= e ~ &, [cos~(Q„' -Q„„)t-cos~(Q„'+Q„„}t]
n= 0 ~,' „~nm nm

. (m+1 m —1& . ~, . m+1 m -1'I
+t~ +,

~

sin~a(Q„' +„Q)t t —-,
~

sin~a(Q„' -Q„„)t

(4.1)

(4.2}
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FIG. 3. Time evolution of the atomic inversion so(t) in the case of strong excitation. (a) m=900, A, =l, 6=0, short
times: A, t& x. In this case the basic oscillation occurs at the Rabi frequency, and is subject to Gaussian collapse inde-
pendent of z. (b) Long times: The range of time is 500 times larger than in (a), and qualitatively new features appear.
The long-time behavior is characterized by periodic revivals or quasirecorrelations with period T=2vn't2/X and a
non-Gaussian bounding envelope given by Eq. (3.22). The views in (c) and (d) are closeups of the first and second
reviva]s for @=25, A.=1, and 6=0. The basic oscillation in the revival zone occurs at the Rabi frequency, and is
subject to an envelope of increasing width as a function of time and to overall long-time damping. Notice the excellent
agreement between the numerical solution (upper curve) and the analytical approximate solution (lower curve) in (a).
The agreement between the numeric and approximate analytic solutions shown in (b), (c), and (d) for the period of the

Rabi oscillation and the period of the revivals is good, but our approximation is less accurate when determining the

width of the revivals. Time is measured in units of 7I//X and m= —l.

where the notation is the same as in the previous
sections and

f'„"=g„'„-=b, '+4k.'[/+1+~(m+ 1)j. (4.3)

The function D (t) can be divided into two parts

D.(t) =D'."(t)+D". (t). (4.4)

FIG. 4. Behavior of the atomic inversion zo(t) as a
function of both time and the detuning. The slower col-
lapse of off-resonance Rabi oscillations predicted by Eq.
(3.12) is illustrated with g =25, X=1, and yn= —l.

Here &~' andD"' denote, respectively, the fast and
slow terms in (4.2) that have a sum or adifference of
frequencies in the arguments of the trigonometric
functions. For large 8 we find the following analy-
tic expression in exactly the same way as for the
function ~ (t):



COHERENCE VERSUS INGOHKRKNCK: COLLAPSE AND REVIVAL IN. . .

-xe ~~'~ ~sinC(t}+i cos4(t)~ . (4.5}

Expression (4.5) has of course some of the same
features as the inversion; the same Gaussian col-
lapse function, the same interval between re-
vivals, and so on.

The behavior of the D"' part of the complex
dipole moment envelope differs from the behavior
of the D part because the frequency of its oscil-
lating terms is significantly smaller. In this case
we find
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where we used the assumption n» 1 and therefore
replaced Q„' -Q„„byX'/Q(n).

Applying the same method of calculation we have
used in the previous section to (4.6), we get

Dt„'~ (t) = Ao. exp .—,1+328' 4a'8 )

The function D~'~ (t) also has a Gaussian collapse
function, but its decay time to now depends on 8
and is much larger than the decay time of D~~ (t)
(or of the inversion):

4n ( (4.8)

FIG. 5. Short-time behavior of the envelope D (t) of
the on-resonance complex dipole moment. In this case
the real part is zero. The three curves, from top to
bottom are D~ (t) the inversionlike component, D (t)
the slowly. varying component, and the total D~(t)
=D~ (t)+ D~ (t). The time is given in units of ir/A and

@=9, X=1, 6=0, m=-l.

show the case previously presented both by
Stenholm' and by Meystre et al. ,"'"i-.e., +=3
and at exact resonance. Both D~„~'(t) and D~'~ (t)
are complex, and their real (dispersive) parts
vanish at resonance. Figure 5 shows the imagi-
nary (absorptive) parts of Di~~ (t) and D~'~(t)

separately and also the sum. The nonzero value
of the sum for times longer than t, is due first
to the slow collapse of the initial coherence in
D'~, and then to the first revival of the rapidly
osclllat ng D(f)

For the case o. = 3 and A = 0, formula (4.8) pre-
dicts that D"' will decay by e ' = 0.14 after the
relatively long time t,'- V2/A. = 25m. This is shown

to be the case in Fig. 6. One also sees in Fig. 6

and its period of oscillation is given by

'
)=~r4m

4xn (4.9)

+04 [ x y ~

—0.5/+0. 5-
i.e., double the period of revival found for both
the inversion and Dit~(t). The function D "(t)
has its own time of revival T~ which can be found

from the condition

2p

Q(n) Q(n+ 1) T„' '

[compare with (3.16)f and is equal to

8vr, i, ("=—." ~p'4"-. )

(4.10)

(4.11)
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In order to illustrate the analytic features de-
rived above we have chosen some representative
cases to present graphically. The graphs were
obtained by numerical summation. In Fig. 5 we

FIG. 6. Long-time dependence of the envelope of the
on-resonance complex dipole moment. From top to
bottom D (t), D ' (t), D (t). Notice the n-dependent
Gaussian collapse of D (g). Time is measured in units
of w/1 and n = g, A. = 1, 6= 0, m = —1.
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the highly random apparently irreversible inco-
herent behavior of D (t) for times longer than

t,'. However, our approximate analysis of the
exact sum (4.2) predicts that D" will also ex-
perience quasirecorrelation of its oscillations.
Such quasirecorrelation does occur, and the
first revival in the case e = 10, a =0, is shown
in Fig. 7.

The effect of off-resonant excitation is also
easily illustrated. We have chosen the same pa-
rameters as Stenholm, i.e. , n = 3 and 6 = 2A. .
In Fig. 8 the time dependence of both the dis-
persive and absorptive parts of the dipole mo-
ment are shown. %e find them to be very similar
in behavior for this value of detuning 6, in con-
trast to the behavior shown in Stenholm's Fig.
3.5.

Finally, the value of the revival period of the
slowly collapsing slow oscillations of D ' is pre-
dicted in (4.11). This is more of a challenge to
illustrate because a comparison of (4.11) and
(4.8) shows that the separation between revivals
Ts is only (n)' ' times as great as the revival
half-width. Thus, in order to distinguish suc-
cessive revivals from each other we require an
example with (n)'~'» 1, for example, i = 25. This
implies times of the order of t/v-T~/v 1000A '-.

These values of n and t are considerably larger
than those used in any previous computation, by
an order of magnitude or more, and offer an op-
portunity to test our numerical procedures. Thus
we have chosen a value somewhat larger still,
n =400, to make the test more significant. In this
case more than 1000 terms of the sum given in
(4.2) are computed. The first revival point is
predicted to be at t/m =84000k. '. Figure 9 shows
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FIG. 8. Off-resonance complex dipole envelopes (a)
real part of D (t) and (b) imaginary part of P (t). From
top to bottom D ~ (t), D (f, ), D (t). Time is measured
in units of x/X and m=9, X=1, .5=2, m= —1.
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FIG. 7. Revivals of the on-resonance D' (t) for a
strong initial field. From top to bottom: D~ (t), D~' (t),
and D (t). A new type of revival is shown for D ~(t)
with revival time Tz= (Sx/X)(n) ~ . Time is measured
in units of 7t/A, and g = 100, A, = 1, 4= 0, m = —1.

FIG. 9. Very long-time behavior of the dipole en-
velopes D ~ (t), D (t), and D~(t). The revivals of
D~~ (t) show variable width and long-time damping.
Time is measured in units of ~/X and y7=400, %,=1,
6=0, m=-l.
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the first two revivals of the slow oscillations of
D ' . They occur at the 'predicted points. Their
amplitude is not great enough for the revivals to
be readily visible in the sum D +D '.

A last word concerning Figs. 7 and 9 is neces-
sary. The extremely large range of times shown
in each of these implies a fairly low graphic reso-
lution, as only 301 plotting points were used to
make the curves. Some amusing Moirai inter-
ferences can be arranged between the regular grid
of plot points and the equally regular oscillations
in D (t) if desired. In the revival packets shown
in Figs. 7 and 9, the apparent bunching of the
packet oscillations to the right in Fig. 7 and to the
left in Fig. 9 is an unintentional example of this.
When examined much more closely, the internal
structure of the revival packets of the dipole mo-
ment is equally as uniform as those shown for the
inversion in Fig. 2(a).

V. SUMMARY AND DISCUSSION

Exactly soluble and fully quantum-mechanical
models are rare. The Jaynes-Cummings model
has been studied many times because of the rela-
tively realistic way that it represents the actual
dipole coupling of an atom to a quantized radiation
field. From this model one hopes to learn, for
example, about the coherence properties of the
quantized interacting radiation field, and its in-
fluence on the atom with which it interacts.

In this paper we have exhibited new features of
the coherent-state Jaynes-Cummings model.
Principal among these new features is the occur-
rence of revivals, i.e., partial recorrelations of
the collapsed initial state. We have shown that
these revivals occur periodically to a first ap-
proximation, with period T~ equal to 2mn' 't„
where t, is the Gaussian local collapse time. We
have found an expression for to that is valid on or
off resonance. Collapse occurs, even though the
interacting model Hamiltonian is Hermitian, be-
cause the initially coherent-field state is a super-
position of eigenstates of the free Hamiltonian
with quasirandom amplitudes and phases.

It is the incompletely random character of this
superposition that permits revivals to occur. In
our study of the dipole moment we showed that
two widely different revival periods can be ob-
served. The second period is longer than the first
by the factor 4n. We expect that even longer re-
correlation periods can be identified.

The question arises whether or not the coherent-
state Jaynes-Cummings model is suitable for a
discussion of irreversibility. Even if n is only as
large as 10, it is clear from Sec. III that the short-
time behavior is far from monotonic, and thus not

described by the simplest Pauli-type master equa-
tion. However, the short-term coherent Rabi
oscillations do decay in the time to, and do not
recur until the much longer time Ts = 2wn'~'/A. .

Van Hove" has pointed out that an irreversible
Pauli-type master equation can be taken as valid
for a wide class of systems assuming only initial-
ly (and not repeatedly) randomized phases. While
the coherent-state Jaynes-Cummings model does
not have all of the features required by Van Hove,
being characterized by discrete rather than con-
tinuous quantum numbers, and by not-quite-ran-
dom initial phases and amplitudes, we may still
ask how close does the model's behavior come to
being approximately irreversible in the Van Hove
limit: ~-0, t-~, ~'t= const.

Actually, at least two types of quasi-irreversible
behavior appear to be contained in the Jaynes-
Cummings model. The first is evident in the
collapse between t = 0 and t = t,. If the first revival
is pushed into the indefinite future, so that
t«T~-~, while

A. -O and X'T~=const, (5.1)

it follows that the constant in (5.1) can be inter-
preted physically. From (5.1) and (2.16) we find

(4X'Fr+6')'~' = const, (5 2)

which is equivalent to a constant Rabi frequency
for the interaction. That is, one can say that the
first type of quasi-irreversibility is automatically
encountered in the "thermodynamic" limit (V-~,
so that A. —0) if the Rabi frequency is fixed. It is,
however, also automatically true as A, —0 that the
"irreversible" decay, characterized by the time
t,- A, ', requires a longer time to be accomplished.
In the limit X-O, collapse does not occur at all
and the temporal behavior of both inversion and
dipole moment consists entirely of perfectly
periodic Rabi oscillations.

The existence of a second type of quasi-irre-
versible behavior is suggested by the observation
that the revivals shown, for example, in Fig. 3(b)
get broader and broader. Eventually neighboring
recorrelations overlap. The overlap occurs sooner
if n is smaller. An example of this kind of over-
lap is shown in Fig. 10. We do not have an ac-
curate expression for the width of a recorrelation
envelope, and so cannot compute for a general
value of n the time when sufficient overlap occurs
to produce enough scrambling of the neighboring
recorrelations to permit one to say that "real" ir-
reversibibty has set in. The times appropriate
to this second type of irreversibility might corres-
pond to the times when a Pauli-type master equa-
tion is valid in some average sense.
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FIG. 10. Overall and close-up views of the earliest
three revivals of zo(t) form=16, m= —1, and 6=0. The
sequence, from top to bottom, shows an overall view of
the first three revivals 4 &Xfjr ~ 20, and closeups of the
intermediate regions between the maxima of each two
consecutive revivals for 9 &Xt/vr &15, 17 &Xt/x &23,
and 25 &Xtjv +21. In addition to features explained in

Fig. 3, the growing spread and the resultant overlapping
of the revivals of zo(t) as it evolves in time are clearly
shown in the first picture. The changing character of
the overlap region is shown in the three lower pictures.
The uniformly oscillating almost nonoverlapping first
and second revivals are shown in the second picture. In

the third picture, partial overlapping of the second and

third revivals is accompanied by some irregularity of
the oscillations in the overlapping region, and in the
fourth picture one sees the almost complete overlapping
of the third and fourth revivals where quasirandom os-
cillations are now the dominant feature.

Despite the more or less complete zero-order
description of collapse and revival that we have
given for the coherent-state Jaynes-Cummings
model, it is apparent that much more needs to be
done. We have begun a study" of two-time ex-
pectation values in the model, and of the atomic
emission spectrum. It will also be necessary to
examine the question of Poincare recurrences
carefully: How closely can one bound the time
T (a) at which dynamical variables return to within
c of an earlier value? Is there an infinite hierarchy
of revival times? Under what circumstances, if
any, does the model's behavior coincide with the

behavior predicted by a master equation?
Finally we point out a comparison of the re-

sults obtained from the Jaynes-Cummings model
in what are naturally denoted "classical" and
"quantum" initial states. The classical state
corresponds to initial preparation of the field in a
coherent state with amplitude a, whereas the cor-
responding quantum state arises from initial
preparation in an n-photon state, with n =

~
n~'.

The dynamic behavior of the atomic inversion sub-
sequent to these different preparations is almost
exactly opposite the behavior that their names
suggest. That is, the classical coherent state,
with well-defined electric-field phase, produces
collapsing Rabi oscillations, as we have shown
in Sec. III. The quantum n-photon state, with
completely undefined electric-field phase, on the
other hand, is well known"" to produce periodic
and nondecaying Rabi oscillations. The latter, not
the former, is exactly the response of the atom
to excitation by an external and completely clas-
sical electric field. "

This comparison of responses to classical and
quantum preparations of the initial quantum state,
in contrast with the response to the corresponding
fully classical electric field, is significant. It
shows, of course, that the quantum-classical cor-
respondence is not straightforward. But it also
shows what major differences can occur in the
kind of coherence effects to be found in inter-
acting and free systems. The coherence proper-
ties of both classical and quantum-mechanical
free-fields are well studied, and well known to
have strong similarities. The coherent-state
Jaynes-Cummings model appears ideal for studies
of the long-time coherence properties of interact-
ing fields. We will return to this subject in later
papers.
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