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Variational scattering theory using a functional of fractional form. II.An L' approach
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An L ' approach to our variational method which is based on a functional of fractional form is proposed. As in the

R -matrix theory, configuration space is divided into two parts. However, unlike the R -matrix theory, the associated

wave. function is always smooth. The resulting K matrix is anomaly-free and symmetric (and hence the S matrix is

unitary). Application of this method to an exactly soluble two-channel model problem shows that our new approach

gives much better results than the other standard variational principles.

I. INTRODUCTION

In an earlier paper (referred to as I.},' we
proposed a new variational principle in which the
variational functional is of a fractional form. In
this variational functional the trial scattering wave
function is not required to have the correct asymp-
totic form. In this paper, we will present an L'-
approach' to this new variational principle.

We have recently applied the Schwinger varia-
tional principle' to ao exactly soluble two-channel
model problem in order to compare it with other
standard variational principl. es such as the
anomaly-free4 (AF), minimum-norm' (MN), opti-
mized anomaly-free~ (OAF), and restricted inter-
polated anomaly-free' (RIAF) methods. We found

that the schwinger method gave results which were
superior to those of the other variational methods.
One of the important reasons for this is that since
the trial wave function in the Schwinger principle
is always associated with the potential function it
must be expanded only over the region where the
potential is nonzero. ' On the other hand, in the
standard variational principles the wave functions
are expanded over the entire space. It is obvious
that more basis functions are required if the wave
function must be expanded over a larger region of
configuration space. In fact, application of the
Kohn variational principle by Rountree et al. '"
and Collins et al. ' attemptstoreducetheregionof
space which must be spanned by the square-integr-
able basis functions.

R-matrix theory attempts to partition configura-
tion space as efficiently as possible. ' Configura-
tion space is divided into two parts, one of which
is the strong potential region (interior region) and

the other the zero (or very weak) potential region
(exterior region). The interior and exterior
regions are investigated using different methods
and the wave functions in the two regions are
matched on the boundary. However, in many
approaches to the R-matrix theory, the logarithmic
derivative can be discontinuous across the boun-

II. THEORY

For simplicity, we will discuss only a single-
channel version of the theory. Extension to the
multichannel case is easy and straightforward. '
Let us consider a radial scattering equation (in
units of m =S= e =-1)

8+2 + —VL, Vs + =0(
d (2. 1)

where p~ is a long-range potential such as the
Coulomb potential, and Vs a short-range yotential
such as Yukawa potential or exchange potential.
Beyond some point B, Vs is assumed to be zero or
negligible. We define a zeroth-order Hamiltonian

Ho as

=1~Ho= ——.~+V~,
2 O'F

(2 2)

and assume that we know the two eigenfunctions of
H„mnae ySI(the regular solution) and C (the ir-
regular solution}. " For example, for V~= 0, ,

dary and hence the resultant wave function is not
necessarily smooth at this boundary. " To cope
with this situation, various methods have been
proposed. " However, Shimamura still concludes
that no methods have yet been proposed which
give both a continuous logarithmic derivative (i.e. ,
smoothness) and a completely unitary S matrix. "

In this paper, we wil. l present a method in which
configuration space is divided just as in R-matrix
theory. In our scheme this division of space also
comes about naturally because the trial wave fun-
ction is not required to have the correct asymptotic
form. Owing to the form of the variational func-
tional, ' the resultant K matrix is symmetric (the
S matrix is unitary) and also stationary. Further-
more, the wave function is completely smooth at
the boundary. In Sec. II we will present the theory
of this approach. The method is applied to an
exactly soluble two-channel problem in Sec. III.
The results are extremely encouraging.
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S=Q jesin kr and C=k-'~'cos kr.
Our variational functional' is

(cl v~ I S)(sl v~ I c)
(C I H —tX I 0)

(2.3)

(2. 12)

(2. 13)

C, at the boundary
0, at the origin,

we can replace the condition, Eq. (2.11), with

&v, iH-H'i C*&,=O.

Pic&=v, is).
The function C has the form

(2.4}

where H= B Ha-nd X= V~IS)(Siv, . C is defined
by+ —S, and satisfies It is easy to see that the logarithmic derivative

condition for the one-dimensional radial function
of Eq. (2. 1) is a special case of the general con-
dition, since

XC, for r&B
C=

av, , for r&B,
(2. 5)

&v, i
H -H'i C+& =-v, Ci —-~

(2.14)

where X is the tangent of the phase shift due to V~.
The v&'s are discrete basis functions. If each
basis function has the same logarithmic deriva-
tive as that of Xc, C' should be smooth at the
boundary. The logarithmic derivative (L~) of C
at the boundary is given by

assuming C(B)e 0 and v, (B)4 0 .
The exterior component of C makes no contribu-

tion to the functional Et. Also, since all v s have
a common logarithmic derivative, 8 in this func-
tional remains Hermitian even within the range of
0 & r & B. Therefore, variation of Ft gives

C" XC'

XC

ta~B (for V, =O).

(2. 6)

(2. 7)

F, =Z&SI V. I v,).A„(v, I V. l S&. ,

where

(2.15)

Owing to the cancellation" of X in Eq. (2. 6), L~
turns out to be a known quantity. With this J ~, one
can impose this condition on each v, . This can be
done by writing v& as

(2.6)

(A-')„=(v, i (8 fX) i v,)-, . (2. 16)

In the above equations ()~ means an integration
over the range of 0 to B. With this E„Xis ob-
tained as'

where the e, and 9 are arbitrary functions with

u, (0) =0 and u(0}=0 and
x=-2(si v, i s& -2

t
(2. 17)

I. u, (B) -u, (B)
L,u(B) -u'(B) ' (2.9)

—.'[(H+H') + (H 0')]
i c& = vi s&. - (2. 1o)

It immediately follows from the above discussion
that the matrix element of the anti-Hermitian part
is zero for each v, , namely,

(v, iP —H
i C)~ =0. (2.11)

All the basis functions v s hence have the common
logarithmic derivative L~, and so does the interior
component of C . Thus the wave function S+ C is
smooth.

The boundary conition for the basis functions v&

in Eq. (2. 8) may be stated more generally. As
discussed in the previous paper, ' H should be a
Hermitian with respect to the basis in which C is
expanded. This fact is important, since based on
this Hermiticity the stationary property of the
variational functional E, of Eq. (2.3) is ensured.
Following Bloch, "we rewrite Eq. (2.4) as

As stated in I, the paramenter t can be used to
avoid anomalous singularities or to obtain a mini-
mum principle for Et.

Our variational method developed here does
require imposing a boundary condition on the
basis functions v&'s. However, various techniques
previously developed for the R-matrix theories, """
e.g. , procedures for the evaluation of matrix
elements, can be applied to our formalism.

IH. ' APPLICATION TO HUCK PROBLEM

To illustrate how our procedure works, we apply
it to an exactly soluble two-channel problem pro-
posed by Buck." The total Hamiltonian H =H, + V
ls

H. =lx,) ,x„&x,l+-I-x.)l,-. -, „„.+«)&x. l

1 cP, i' j. cP

(3.1)

and

Furthermore, since the above integral is a surface
one and defining a function C* by

x ~„x„, (3.2)
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where

—,'C (2-B)
12 21 0 (~) B) (3.3)

&X.lg.) =5„„, and B=1.0.
The regular and irregular solutions of H, are

simply

and

s„= ly„)k„'~2sink 2'

C =
l y )k„'~ 2 csok„2 (m = 1, 2) .

(3.4a)

(3.4b)

The logarithmic derivative for each channel is

L~z ——-tank B (m =1,2). (3.5)

I"= ly. )r e '" (2=1,2, ",N) . (3.6)

To obtain basis functions with a specific logarith-
mic derivative 1.» we define

&m Mm pe+e (f 1 2 ... N) (3.7)

In Tables I-III, we compare our K-matrix and
cross sections with those given by the Schwinger
principle as well as by some standard variational
methods. They are again the AF, MN, ' OAF, '
and RIAF' methods. The results in the tables are

On the other hand, the primitive L basis functions
I; are

for the case of E=0.5, ~Z=0. 3V5 (so k, =1.0
and k, =0.5), and C2=10.0 [Eq. (3.3)]. In Table I,
a comparison of the accuracy for the K matrices
is presented. The Schwinger principle still gives
the best results and this is due to the fact that the
Schwinger principle is based on the integral equa-
tion. However, we emphasize that the new method
gives results which are significantly better than
those of the standard variational. methods. For
N=4, it gives a better E matrix than those of the
other standard variational. methods with N = 25.
Furthermore, at N=6 almost the exact results has
already been obtained.

Although the choice of a= 2. 5 for the parameter
of the basis functions [Eq. (3.6)] may be optimum
for the standard variational methods, ' it is pos-.
sible that other a's may be better for this varia-
tional method and the Schwinger variational prin-
ciple. For the Schwinger principle and for the new
variational method, the value of g= 0.9 and g= 0.3,
respectively, are the best. (In general, it is like-
ly that the optimized a's for these two methods
should be similar to each other, since boih @rave

functions are expanded over only the range from
0 to B )The re. sults in Table II show the signifi-
cant improvement in the convergence. Our frac-
tional functional method with gg = 0.3 gave a better
K matrix at N = 3 than the standard variational

TABLE I. The accuracy of computed E matrices. ' The deviations from the exact value"
are shown (4K).

AFc MN OAFe REF& Schwinger ~ This work

AKgg N=1
2
4
6

10
25

N=1
2
4 3.578 88
6 1.91396

10 0.889 09
25 0.230 37

N=1
2.
4 -2,282 98
6 -1.223 97

10 . -0.568 96
25 -0.146 21

11.866 03
37.847 36
3.66193
2.096 20
0.897 39

2.892 39
1.91579
Q.881 15
0.213 63

-7.544 69
-24.525 84
-2.359 53 -1.843 41
-1.337 19 -1.225 25
-0.574 10 -0.563 93

-0.136 19

-18.728 53
-58.41920

-5.61743 -5.697 84 -4.548 47
-2.997 26 —.3.290 61 -2.999 89
-1.39131 -1.40472 -1.378 81
-0.363 30 -0.335 32

-3.004 48
-1.390 40
-0.299 85

1.918 39
0.888 50
0.19117

-1.226 70
-0.568 58
-0.12198

-19.092 77
-0.261 31
-0.010 00

O.Q
0.0
0.0

12.106 30
0.078 61
0.006 00
0.0
0.0
0.0

-7.579 20
0.016 83

-0.003 55
0.0
0.0
0.0

-21.075 31
-15.19325
-0.087 29
-0.000 01

0.0
0.0

13.297 24
9.866 51
0.057 55
0.0
0.0
0.0

-8.518 01
-6.41502
-0.038 03
-0.000 01

0.0
0.0

aa= 2.5.
The exact Kmatrix', K&&=21.76525, K~&=E&~=-14.12742, and E&&=8.73385.
References 4 and 6.
Reference 5.

'Reference 6.
~ Reference 7.
'Reference 3.
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TABLE D. The accuracy of the K matrices with optimized values of the exponents in Eq.
(3.6).

4Xgg
Schwinger This work

~Kg~
Schwizger This work Schwinger This work

a= 0.9

-8.858 57
-1.006 88
-0.002 21
-0.000 18

0.0
-0.142 59
-1.53971
-0.01596
-0.000 04

0.0

-14.847 69
-0.34169
-0.024 06

0.0
0.0

-18.952 90
-1.53049
-0.01534
-0.000 73
0.0

5.562 03
0.635 2G

0.001 39
0.000 11
0.0

-0.09141
0.965 67
0.009 90
0.000 02
0.0

9.47745
0.218 64
0.01530
0.0
0.0

12.089 00
0.996 16
0.01010
0.00046
0.0

-3.485 26
-0.400 53
—0.000 88
-0.000 08

0.0
0.19492

-0.604 78
-0.006 12
-0.000 02
-0.000 01

-6.072 02
-0.140 17
-0.009 73
-0.000 01

0.0
-7.76197
-0.650 41
-0.006 71

0.0
0.0

methods of &= 25. At &= 4, it is almost completely
converged.

In Table III, the deviation of computed cross sec-
tions from the exact values are tabulated. The
cross sections are much less sensitive than the
K matrices are. e In spite of this, our fractional
variational method and the Schwinger variational
principle give far better cross sections than the
standard variational methods. Vfe can conclude
that our new method is quite promising.

IV. DISCUSSION

As shown numerically in Sec. III, the conver-
gence of our method is remarkably better than that

=8 +pep +Qd „",, (4. 1)

. where C coincides with C in the asymptotic
region and is regular at the origin. In the Huck

of the standard variational methods. In thi.s sec-
tion, we wi1.1 discuss some factors which reduce
the rate of convergence of the standard variational
principles, especially in connection with the Huck
problem.

In the standard variational methods, the wave
function of mth channel has the form over the
entire range,

TABLE IQ. The convergence of the approximate cross sections. The deviations from the
exact values are presented.

Abby d Schwinger ' This work~

-0.271 29
-0.01387
-0.049 53
-0.008 07

0.085 84
0.005 17
0.006 65
0.004 75
0.343 34
0.020 68
0.026 59
0.018 99
0.004 54
0.036 00
0.160 17

-0.002 19

-0.264 26
-0.013 86
-0.025 50

0.000 68
0.080 55

-0.012 68
0.01399
0.002 00
0.322 20

-0.050 74
0.055 96
0.008 00

-0.122 61
0.188 66

-0.025 10
0.003 04

-0.041 45
-0.005 16

0.000 49
0.0
G.01342
0.002 15
0.000 03
0.0
0.053 66
0.008 60
0.000 11
0.0

-0.044 18
-0.002 62
-0.000 05
-0.000 01

-0.043 33
-0.000 11
-0.000 03

0.0
0.022 54
0.000 14
0.000 02
0.0
0.090 15
0.000 64
0.000 07
0.0

-0.018 09
0.000 35

-0.000 03
0.0

The exact cross sections QLef 4); +i=2.1.6791, Qp=Q.76746, Q)=2,Q6665,
and Qt= 2.55844.
~Reference 6.
~Reference 5.
a= 2.5.

'a=0.9, Ref. 3.
a=0.3,
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model, C is chosen to be~-'

C =
l xg k ' ' (1—e ")cos k„r. (4.2)

Therefore the matrix elements which are neces-
sary for the standard variational methods are

&~, lu Is;&,
'

&~", lulsg, (s;lul c„&,

(s„lulsg, &s. lulc„),
and

&c„ul c„&.
On the other hand, .Only

&u", lul ac,)„(M",l vl s„)„
and

&s. lI is@,

(4.aa)

(4.aS)Cm =+ygy+g2 g2 0 t' B,
where the functions g, and g, are arbitrary and the
coefficients a, and a, are determined so that C
behaves regularly at the origin and is smooth at
r =B." By this replacement, the standard varia-
tional principles can take some advantage of the
R-matrix method but still retains the smoothness
of the wave function, and, of course, can show
better convergence. " 'The calculations with the
NAF method suggest' that the results depend on
the selection of g, and g„even if the same short-
range functions are used. Again, we will stress
that C„'s do not appear in our formalism explicity,
although the exact C functions are used in the
exterior region" as well as in the NAF method.

Another factor which reduces the convergence of
the standard variational methods comes from the
f.' functions in Eq. (4.1). In the exterior region,
+ must be expressed exclusively by the linear
combination of only S„and C„(m =1,2, " ). So,
one needs extra short-range functions there to

are necessary for our method. We do not need any
integrals involving the C functions. This is con-
venient, since the integrals involving C are
cumbersome in general.

It can be easily seen that the form of C„, Eq.
(4.2), tends to reduce the convergence of the
variational calculations. It is desirable that be-
yond the point B(in the exterior region), V should
coincide with C itself, since 8 is equal to EI, there.
However, C„of Eq. (4.2) cannot meet this condi-
tion. Oberoi and Nesbet" proposed the numerical
asymptotic function (NAP) method, in which V„can
have exactly the same form as C in the exterior
region via numerical integration. They choose

(z-z, )c =o (c =c„) ~&a

cancel out the tail of the functions Q, +P„M;"[see
Eq. (4.1)] which penetrate into the exterior region.
Therefore, unless all zc"; die off within the bound-
ary B, the L,' functions themselves can hurt the
convergence rate. In this sense, even the NAF
method is still unsatisfactory, since L,' functions
are defined throughout the whole space. In con-
trast, in our formalism [see Eq. (2.5)] the J„'
functions are truncated up to the boundary B and
used to expand only the interior component of

Therefore, by this extension of the
definition of the basis functions, which was
naturally introduced by our fractional functional,
we can expect a faster convergence over the NAF
method and, of course, over the standard varia-
tional methods.

V. CONCLUDING REMARKS

We have proposed a new variational principle
which is based on a functional of fr'actional form.
The method is similar to the R-matrix theory in
the sense that the configuration space is divided
into two parts. The resultant wave function is
smooth everywhere. This is important since the
lack of smoothness of the wave function at the
boundary can result in a slow convergence in
some R-matrix methods. " It may be again
emphasized that our resultant K matrix' is sym-
metric (the S matrix is unitary) and variationally
stable. It is also free from singularities.

The results of the application to the model prob-
lem are very encouraging and have shown our new
approach is much superior to the other standard
variational principles. We note that the Schwinger
variational principle gives very accurate results
and seems to be more stable with regard to
changes of basis functions. We must note also
that the Schwinger variational principle does not
require any artificial boundary. However, we
find that with a good basis set our new method can
be as accurate as the Schwinger principle. This
is important since the computational requirements
of our new method are less than those of the
Schwinger principle which requires the double
integration associated with the Green's function.
In addition, one can find good basis sets for our
method using the minimum principle stated
earlie, r. '
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