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Variational scattering theory using a functional of fractional form. I.General theory

Kazuo Takatsuka and Vincent McKoy
Arthur Amos Noyes Laboratory ofChemical Physics, California Institute of Technology, Pasadena, California 91125

(Received 9 May 1980j

We propose a variational method for scattering in which the functional is of a fractional form as for the Schwinger
variational principle. However, our functional does not involve the Green s function, but the Hamiltonian and the
potential function. This method shows features of both the Schwinger-type variational principles and the Kohn-type
standard variational principles. As a result, our method can derive distinct advantages from both of these
approaches. The resultant K matrix is symmetric and anomaly-free. Some other properties, including a minimum

principle, which is useful in the selection of an optimum basis for the expansion of the scattering functions are also
discussed.

I. INTRODUCTION

The Schwinger variational principle for scat-
tering, which is based on the Lippm ann-Schwinger
equation, has several potential advantages over
other standard methods. Among them are (i)
the variational functional is of fractional form or
homogeneous (multiplication of a wave function
involved in the functional by a constant does not
change the results), (ii) no specific asymptotic
form is required for the wave function (L~ ap-
proaches. are possible), (iii) no anomalous singu-
larities are expected, and (iv) iterative computa-
tions to obtain scattering solutions of higher ac-
curacy is possible.

On the other hand, the relative merits of the
standard variational principles2 such as the Kohn

method, 3 which are based on Schrodinger's equa-
tion, include (a) the computation of the matrix ele-
ments is easy (no double integrations are involved),
(b) the effect of polarization can be incorporated
without the use of the optical potential formalism,
(c) the extension to multichannel scattering is
quite straightforward. However, the resultant K
matrices are very often nonsymmetric, which can
lead to nonunitary S matrices. Some special ap-
proaches4 involving nonlinear iterative calcula-
tions have been proposed for obtaining a sym-
metric and anomaly-free K matrix.

In this paper, we propose a variational func-
tional which has a fractional form but does not
include the Green's function. This new method
takes advantages of features (i)-(iii) of the
Schwinger principle and (a)- (c) of the standard
variational principle. Further, the resultant K
matrix is symmetric. This is a natural conse-
quence of the symmetric form of our variational
functional. The formalism includes only linear
computations as in the Schwinger and Kohn meth-
ods.

A family of variational functionals based on the

Lippmann-Schwinger equation will be discussed in
Sec. II. The simplest variational functional among
the family is our starting point. It will be shown
that under some special conditions our method re-
duces to the Kohn method (Sec. III). However, in
several aspects our method goes beyond the Kohn
and other standard methods. In Sec. IV, proce-
dures for avoiding the singularities are discussed.
Section V deals with the extension of the formula-
tion to multichannel scattering. Finally, some
aspects of the minimum principle for the selection
of basis functions will be discussed in Sec. VI.

II. FRACTIONAL FUNCTIONALS

We mill introduce a family of variational func-
tionals, from which our working functional can be
derived. %e first consider only single-channel
scattering, for which the Lippmann-Schwinger
equation can be written as

4=S+GpV+, (2.I)

(0 i vi s)(s i vi 0)
(ei(v- vG, v)ie)

' (2.2)

[X] (the tangent of the phase shift) is stationary
under variation of 4 about its exact value. With
the expansion

(2.3)

one obtains the stationary value of A.

where 4 is a total wave function for a Hamiltonian
H ='Hp + V Gp is the standing-wave Green's func-
tion associated with the zeroth-order Hamiltonian
Hp, S is the regular solution of Hp with the asymp-
totic form of S„~„(p/k)'~~sin(kr ——,'lw), where p,

is' a reduced mass.
A very important prototype of our approach is

the 'Schwinger variational principle, for which
the functional can be written as
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—l[x1 = (sl VI x». &x I VI s&, (2.4) where P=F.—H. Expansion of C as in Eq. (2.3)
and variation of the functional leads to

where

(D ')„=&x;I(v- «ov) lx~&. (2.5)

It is well known~'5 that if a separable potential

F = &s I
V

I x~»~,&x, I VI s&,

where

(2.16)

with

vlx &.„&x I
V (2.6)

(A ');)=&X;Iff xg&. (2.17)

This result is also obtained by inserting the ap-
proximation for Gp,

(~ ')o=&x~l vlx&& (2.7)

is introduced into the Lippmann-Schwinger equa-
tion for the K operator, with K defined by K4
= VS,

G;, = g Ix»,&x, l,
with

(&-')„=&x;IGo'Ix, ) =&x; IE-Ifolx &

I

(2,18)

(2.19)

K= V+ VGpK, (2.8) into the integral equation for f, Eq. (2.12), i.e.,
then Eq. (2.8) can be solved to give the same re-
sult in Eq. (2.4).

It is instructive to start our discussion by con-
sidering the functional of fractional form

&+ ~ VGDV~ S&(S~ VGAV~+)

(4 i(VGov- VGoVGoV) [4) ' (2.9)

Although this functional itself is complicated, we
can derive some very useful functionals from it.
F, is stationary with respect to variation of the
exact wave function, since 5Fp ——0 gives

VGoV[(1 —GoV) I@)— ls)] =0, (2.10)

f=K V, -
and which satisfies the integral equation

(2.11)

which is true since the term in the square bracket
of Eq. (2.10) is just the Lippmann-Schwinger equa-
tion, Eq. (2.1). It is also convenient to introduce
the operator f defined by

f,=g VIX,» &x Iv. (2.20)

The functional F, of Eq. (2.15) is the basis of our
proposed variational method and also serves as a
starting point for some important theoretical
developments. Some obvious characteristics of E&

should first be stressed: (a) The functional has a
fractional form. This fact will be important in the
avoidance of singularities. (b) F, involves the
Hamiltonian H and not the Green's function.
Therefore, F, should be regarded as one of the
standard variational principles. In fact, 5F, =0
requires

ale& = vis&, (2.21)

which is exactly the Schrodinger equation (M =0).
(c) F& does not require any specific asymptotic
form for C. This feature allows us to develop
various methods for the solution of Eq. (2.15).

f= VGoV+ VGof. (2.12) B. Expansion of 4

As with the Schwinger variational principle, f can
be solved in closed form if a finite rank approxi-
mation is introduced for Gp or V. We can evaluate
the variational functional Fp assuming an expansion
such as Eq. (2.3) for either 0, V4, or Gov@.

Before proceeding with some further develop-
ments from Eq. (2.15), we will obtain two addi-
tional functionals stemming from Eq. (2.9). In-
sertion of the expansion, Eq. (2.3), for 4 in the
functional Fp gives

A. Expansion of GOY+

We first consider the expansion of GpV4. Let us
define

Fo Q(sl vGovlx )——@o&OI VGovls&,

where

«-');, =&x, l(«, v- «,vG, v) lx, &.

(2,22)

(2.23)

C=GpV4.

Then Fp becomes

(C i V[ S)(si Vi C)
(C i Go

i —V[K)

(C i V) S)(si Vi C)
(C [Hi C)

(2.13)

(2.14)

(2.15)

Goo= Govl x~)coo(x~ I VGo
ef

where

( )&y =(X& I VGovlxy) ~

(2.24)

(2.25)

The same result is obtained if Go in Eq. (2.12) is
replaced by the finite rank form
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Equation (2.12) can be solved for f to obtain

f2= Q vGpvlx~&~ y(xg I vGpv
tgf

(2.26)

where 8 is the same as defined in Eq. (2.23).
Since Gp is always associated with V in Eq. (2.9),
it is important that G02 has a property

G; Vlx;& =G, Vlx;) (2.2V)

&x, I «;,=&x, I «„ (2.28)

C. Expansion of V4

Let us define the form factor V4 as g. Fp then
reduces to another functional

((IGpvI s&&sI vGp I tP&

(( l(Gp —Gp VGp) I (&
(2.29)

The stationary value of F3 with respect to the
variation of g, expanded in terms of the X s, be-
comes

Fp =g &sl vGp I x;&&;~&x~ IGpvl s& (2.30)

where

provided X& is used in G02. The I2 should lead to

very accurate results. However, as stated above,
F, should be viewed as having merely formal
significance, since it is quite complicated.

(2.37)

——,'[x] =&sl vis&+&sl vG vl s)

This property is favorable for fp to be very effec-
tive. In fact, Adhikari and Sj.oan have shown nu-

numerically that E, gives very accurate results
with small basis set.

In comparing the operators f„ f2, and fp, one
should note that G«does not have the properties
of Eqs. (2.27), (2.28), or (2.35). This means that

E& may give a morse K matrix than F2 and F3.
However, me will show, in the following paper, ~

that one can apply F& very effectively.
Before closing this section, we would like to

identify another type of variational functional for
In addition to the Schrodinger equation, Eq.

(2.21), C also satisfies a following integral equa-
tion (Lippmann-Schwinger equation f or C),

C =G,VS+G, VC (2.36)

[insert 4= S+C into Eq. (2.1)]. Analogously to
the Schwinger principle for 4, the functional E~,

(C I VG„VI S)(SI VG„VI C)
(C I

V- VGpVIC&

is stationary with respect to variations in C.
Thus, our variational functional E& is closely re-
lated to the Schwinger principle for C, Eq. (2.37),
rather than the original Schwinger principle, Eq.
(2.2). Incidentally, by the expansion technique,
we have

( -');, =&x; l(G, —G,«, ) lx, &. (2.31)
~ VG()V X; D f Xf VG()V S

G03= Go 'X. b" Xf G
ttf

where

(2.32)

The latter form of Fp, Eq. (2.30), was originally
obtained by Sloan and Brady6 through a different
variational approach proposed by Newton. '

From a general study of finite rank approxima-
tions for the T matrix, Sloan and Adhikari showed
that the form of Fp of Eq. (2.30) is also obtained
with a particular separable potential. Equivalent-

ly, this can be restated using a finite rank Green's
function

(2.38)

where D is the same as that of Eq. (2.5). The
variational principle of C, Eq. (2.3V), should give
better results than the original Schwinger princi-
ple, Eq. (2.2), although Eq. (2.37) involves more
work. It should be noted, however, that the nu-

merical evaluation of the Schminger principle,
Eq. (2.2), requires the calculation of the terms
GpVI4& which are just the ones which are needed
in the numerator of Eq. (2.37). The increase in

effort should not be significant in going from the
original Schwinger principle, Eq. (2.2), to the
variational expression for C, Eq. (2.37).

(5 ');g =&x~ IGp lx~& .
Gpp gives a finite rank operator for f, i.e. ,

(2.33)
HI. THE KOHN VARIATIONAL PRINCIPLE

f = 2 «, Ix;&;,&x, IG, v. (2.34)

Gpplx~& =Gplx;& (2.3 5)

The separable Green's function of Eq. (2.32) cor-
responds to the separable potential of the Schwin-
ger principle Eq. (2.6). As for V' in Eq. (2.6),
one finds

Kith the var iational condition 6F, =0 it may
seem that F& coincides with the Kohn method. "
This is not true in general, since E& does not re-
quire the correct asymptotic form. This will be-
come clearer in the multichannel formulation.
However, if we impose the same asymptotic form
on C as that of the Kohn method, E& coincides
exactly with the Kohn method, ~ for single-chan-
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+=8+yC+ a)g;, (3.1)

where X is the tangent of the phase shift 5. C is a
long-range function which has the same asymptotic
form as the irregular solution of 8, and C=O at
r =0. g s are short-range basis functions. The
coefficients X and a s are determined through the
requirement

5[&] =0, (3.2)

nel scattering. This can be shown as foQows: The
total wave function 4 of the Kohn method can be
written as

leadto divergences inE&. Moreover, the true reso-
nances cannot be distingui. shed from those singu-
larities, since both of them contribute to E& in the
same manner. These singularities are known2 to
be inherent in some of the standard variational
principles. In order to avoid the singularities a
number of theories have been proposed. ' ' "'

It is quite easy to avoid these spurious singu-
larities in our scheme. Let us go back to the
Schrodinger equation in the inhomogeneous form,
Eq. (2.21). We recall that the functional F, has a
fractional form and hence I', is invariant if C is
replaced by xC (x: constant, e 0). So we now con-
sider the new functional

where

[x] =x+2&@ jiije&.

Now we can connect [X] with F,. Defining

C=xc+ Q a)q),

(3.3)

(3.4)

&c, i vis&&si vic, &

&Cq i(ii- tX) I C,)

where an operator X is defined as

x= vis&&sj v,

(4.1)

(4.2)

one can write

[x]=2«jiijc& +2&cjfi js&

+2&sliils&+(x+2&sjii jc&).
The use of an identity2

&cjiijs& —&sjiijc& = —,',
leads to

[x]=2&c Iiijc& - 2&c
I VIS&

-2&s vlc&-2&s

We now define

(3.5)

(3.6)

(3.7)

IV. AVOIDANCE OF THE ANOMALOUS
SINGULARITIES

For both cases of the complete set and a trun-
cated set of basis functions for C, one should have
poles in the diagonal representation of the A ma-
trix of Eq. (2.17). Hence, the poles which have
npthj, ng tp dp wjth true respnance s ' ' ' "'2' ' w jl].

F,=&c I vis&+&sl vlc& —&c IH Ic). (3.8)

F, is stationary'3 with respect to BC, since [X]
+2F4 is a constant. We next replace IC) and (C I

with p C) and p &C I, respectively. With the con-
dition BFJBP=0 and BFJBP =0, F4 reduces to
E,. This shows that, for single-channel scat-
tering, the functional I"

&
is identical with the

Kohn method, if C is defined as Eq. (3.4).
One major defect of the Kohn method, as is

well known, 2 is that it is not free from anomalous
singularities which arise from the inverse matrix
of Eq. (2.17). The flexibility of our proposed vari-
ational method overcomes the defect quite easily.

and t is an arbitrary parameter. By variation of
Fi(BE,'=0), we have

(0- tx) jc,&
= vjs& (4.3)

or

H
I C,) = (1 + t& S

I VI C,) )V
I S) .

Gomparing this equation with the Schrodinger
equation we see

jc,& =«, jc&, (4.5)

with

x = (1 —t&SI VI C)) ~ (4.6)

Therefore, the C, determined from E,' should be
proportional to C. However, the constant factor x,
should be canceled out from the Ff, Eq. (4.1).

Using the expansion technique, the stationary
value of I

&
becomes

&c I vI s)&sl vI c)
&C i(li —tX) I C)

s
I vl x )xl &x I vl s&, (4.8)

where

(&' '); =&x;I(ii-tx)lx & (4.9)

yt——' tan5 =&sl vl s) +
l. +~st (4.11)

Since X is a positive semidefinite operator, it can
shift the position of poles which induce the singu-
larities. The resultant value of I", is

&si vie&
1 —t&Si ViC&

'

So,
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&s
I vlc& l

= (4.12)

Thus we have avoided these singularities.
On the other hand, for the true resonances, we

must always have (not depending on t)

functions C 's by a unitary transformation
Ng.

c.=g c„v„.,
m= i

and also

(5.8)

in Eq. (4.10). This means

F'=- 1/t (4.13)

V. EXTENSION TO MULTICHANNEL
SCATTERING

So, the true resonance is characterized by this
expression.

Ng

s.=g s.v..
m= 1

So, the Schrodinger equation for 4 =S +C is

ff fc.&
= vis. &.

(5.9)

(5.10)

Using this, we also have the orthogonality condi-
tion

A. Simple extension &c, f vfs, & =5.,&c„ f vis. &. (5.11)

where

&c„ivis„&(s. i vic„&
(C iH- tX„ ic„&

(5.1)

A straightforward and simple extension of the
single-channel theory to the multichannel case is
to define a functional

x=g vis. &&s. lv. (5.12)

Note that the new wave functions 4 are not the
so-called eigenchannel wave functions, ~' ~ since the
K matrix is not diagonal in the 4, 's.

Now we define X as

x„„=vis„)&s„lv.
From the condition 5I =0, we have

(5.2)
From Eq. (5.9), X can also be written as

X= V S S V. (5.13)

= Q&s lvlx*&(4 )*&x I
vis. & (5.3) From the orthogonality condition of Eq. (5.11) we

have

(5.4)(~.*.');, =&x» l(H- tx..) Ix, &.

Note that all the functions S, C, y s have been
redefined so that they can describe many-particle
systems. Since F is symmetric, the resultant
K matrix

~.'(ff —tx) Ic.&
= vis. &,

where

(5.14)

x
1

1 —t(s )vlc )
' (5.15)

Therefore, in analogy to the single-channel case
one can construct a variational functional

——,'Ic =&s.lvls„)+ (5.5)

will be symmetric. This situation is quite dif-
ferent from the other standard variational princi-
ples. ~'4 The functional I requires the construc-
tion of the matrix A' for the calculation of each
K . This can be a time-consuming procedure.

» &c ives &&s. ivic. &

(C i(H tX)iC )-
If C and C~ are the exact solutions,

C.',=5.s .'&s.
I vlc. &.

As usual, the expansion technique gives

(5.16)

(5.17)

B. General extension

Let us start from the equation for the multi-
channel wave functions,

G.,= g(s. I vlx;»l»&x» I
vis. ),

ipse

where

(5.18)

(5.8)Hlc &=vis & (»»»=1, 2, . . . , v, ).
As mentioned in the single-channel case, H is a
Hermitian operator in a domain of (C;q,. I

m

=1, ... , Nc;t=1, . ..). Hence, we can introduce
new channel functions (denoted by C, ) which di-
agonalize II,

c, & =5.,&c. IIflc ) . (5.7)

These new channel functions C are related to the

(5.19)

&s I vl

.x&&l &x Ivls. &. (5.20)

(~' ');, =&x; l(~- tX) Ix;&.

Now the inverse matrix 4' is common to all
channels.

We have to return to the physical channel func-
tions to get the K matrix. To do so, we define a
matrix g', with elements
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All integrals required in g~ are known, since X
is given by Eq. (5.13). From the discussion of the
above paragraph, it is clear that the eigenvalues
of g' must be identical with G'a's and the unitary
matrix composed of the eigenvectors is just the U
of Eq. (5.8). That is,

~'g 'fJ= diag(Gii (5.21)

On the other hand, by Eqs. (5.15) and (5.17),
&S I VIC ) can be written as

Gt
&s. I vIc.&

=
aa

So, using the inverse transformation of Eqs. (5.8)
and (5.9), we get

(5.22)

&s civic„& =@&s.civic. &c! c'.„,
And finally, the K matrix is

=&s
I vI s„& +&s. I vIc„) .

(5.23)

(5.24)

The K matrix thus obtained is again symmetric
and anomaly-free. The matrix inversion process
is done only once. The price one pays is the di-
agonalization of g ' matrix. However, in general,
g' will not be a large matrix as long as the energy
under study is not too high.

&uI A lu)
&uif &&f lu)

(6.1)

where u= V'~~@, f = V'~ S, and A=1 —V' ~GOV

Kato stated the necessary and sufficient condition
under which K ' will have an extremum value. It
is obvious, however, that the constrai. nt on V
(i.e., V~ 0 everywhere) is too strong for general
purpose. We now observe that the inverse of G'
namely,

&C I (H- tX) IC )
&C I VIS, )&s, IVIC, )

' (6.2)

IV. MINIMUM PRINCIPLE

The role played by the Hayleigh-Ritz variational
principle" in the bound- state quantum theory can-
not be overemphasized. The situation in scattering
theory is much more complicated. There are
many theories which try to obtain simple varia-
tional bounds. '4 However, most of them are quite
complicated. Hence it may be worthwhile to show
a very simple aspect of a minimum principle for a
functional which can help in the selection of an opti-
mum basis for the expansion of the trial scattering
wave function within the fractional functional ap-
proach.

To begin with, we refer to the classical work of
Kato' on the Schwinger variational principle. If
the potential V is non-negative everywhere, the
Schwinger functional can be rewritten in a form

already has the same form as Eq. (6.1), if we
identify u=C, f= VS, and A=H tX—. We can
thus apply Kato's theorem" to our case without
regard to the sign of V. That is, if all eigenvalues
of the Hermitian operator H tX—+cVIS )(S I

V
are negative for some constant c, then G' is the
maximum, and vice versa. So, the problem is one
of finding t sufficiently large which allows some
constant c to satisfy the theorem.

Another simple discussion of the variational
bound can be based on the Schwarz inequality. '6

If the basis set used for G,' is complete, G'
can be written formally as

G.'.=&s. Iv(H-tx)-'vIs. &. (6.3)

(Note again that H- tX is a Hermitian operator in
the domain for C.) Since H has an upper bound,
one can keep H- tX negative semidefinite by a
suitable choice of the parameter t. Owing to the
general form of the Schwarz inequality, '6 we have

(H -t» '= Ix;&l(H- t»-'f ~~&x, I-. 0

if H- tX is negative semidefinite. Moreover, the
finite rank approximation of Eq. (6.4) decreases
monotonically as the basis set size N increases.
Hence a basis giving a smaller G' should be re-
garded as better. Thus we have obtained the vari-
ational upper bound of the true G' . Unfortunately,
the variational bound obtained is not the bound for
the K matrix. It is likely, however, that better
G' 's will lead to improved K matrices.

A striking feature of our minimum principle is,
beside its simplicity, that it does not have to care
about the existence of bound states below E. In the
theories which are based on the spectral structure
of &4 IH I%) in Eq. (3.3), the subtraction~~ of such
bound states is necessary. However, this is not
always possible. In our minimum principle, such
a subtraction procedure is not necessary as long
as the bound states are not orthogonal to Vs (or
equivalently to S), since H tX can alwa—ys be
fixed to be negative semidefinite by selecting t
properly.

VII. CONCLUDING REMARKS

In this paper we have proposed a variational
method with a functional of fractional form as in
the Schwinger's functional. Our variational princi-
ple can be derived from the Lippmann-Schwinger
equation but does not contain the Green's function.
Our theory is related to both the standard varia-
tional principle and also to the Schwinger-type
principle.

We have presented the general properties of the
new functional. The method is anomaly-free and
gives symmetric K matrices. The correct asymp-
totic form of the trial wave function is not neces-
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sary. Its implementation should be relatively
easy. An example of the application will be shown
in a following paper. ~ We have also discussed a
minimum principle for a functional which can lead
to the selection of an optimum basis for the ex-
pansion of the scattering functions.
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