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A study is made of the range of applicability of various versions of the low-frequency approximation for electron-
atom scattering in a laser field. A key physical parameter—the ratio of the electron-field interaction energy to the
photon energy—is identified and a distinction is drawn between two regimes, correspondin g to values of this ratio of
order unity (intermediate coupling) and values large compared to unity (strong coupling). Separate derivations are
given which are appropriate to one or the other of these regimes, with proper account taken of the possibility of
resonances or composite bound-state poles in the field-free scattering amplitude. The strong-coupling case is
characterized by the emission. or absorption of large numbers of virtual soft photons in initial and final states. The
analogy with the problem of spontaneous infrared radiation which this physical picture suggests is put into more
precise form here through the derivation of sum rules for the total cross section and for the average energy
transferred to the field. The strong-coupling approximation is closely related to the approximate treatment, due to
Keldysh and others, of multiphoton ionization as a tunneling process. This relation is demonstrated explicitly here
by recognizing that ionization may be thought of as the second half of an induced resonance reaction and applying,
to the amplitude obtained in this way, some of the approximation techniques developed for the scattering problem.
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1. INTRODUCTION

While the problem of electron-atom scattering
in a laser field is greatly simplified in the low-
frequency limit the remaining dynamical complex-
ity is still considerable and a specification of the
domains of validity of various versions of the low-
frequency approximation requires some care.

For the sake of numerical orientation let us con-
sider a scattering experiment in which the power
density is I=10® W/cm?, the initial kinetic energy
of the electron is K=p?/2u =10 eV, and the energy
of the laser photon is Zw=0.1 eV. (These param-
eters correspond closely with those in the experi-
ment of Weingartshofer ef al.!) A dimensionless
parameter providing a measure of the field
strength may be taken to be 0, =eA /cp, where
A= 2ncl/w?) 2 is the magnitude of the classical
vector potential (in the Coulomb gauge) corres-
ponding to power density I and frequency w. With
the above choice of parameters we have 6,= 102,
8,= Tw/K)= 1072, and 06,= (p/pc)=6 X103, With
each of the §; small compared with unity, and
with 6,/8, of order unity, one is well within the
domain of validity of the low-frequency approxi-
mation discussed, in various versions, by sev-
eral authors.**

A derivation of the low-frequency approxima-
tion, in a form appropriate to the above-men-
tioned experimental regime, can be carried out
in a number of ways. The essential element,
however, is the use of exact solutions of the
Schrddinger equation for the electron in the field
to represent the initial and final states. Pertur-
bative solutions are inappropriate for this pur-
pose even when, as in the example just con-
sidered, the electron-field interaction energy is
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two orders of magnitude smaller than the kinetic
energy of the projectile. Actually, it is the ratio
of the interaction energy to the photon energy (or,
equivalently, 6,/6,) which gives a proper measure
of the effective coupling strength in asymptotic
states. This is just a consequence of the near-
degeneracy of the electron-field states—for fixed
electron energy the levels are separated by 7Zw.
Of course the field also acts in intermediate
states, and affects the target atom in initial and
final states, but in the absence of near degen-
eracies the relevant coupling strength is of order
5, and ordinary perturbation theory suffices.>®
The low-frequency approximation corresponds to
dropping terms of second and higher order in this
modified expansion. The derivation of the first
order correction term is very much simplified
by the introduction of a gauge transformation
which enables one to express the perturbation in
terms of the electric-dipole interaction.’® The
merit of this transformation lies in the fact that
the interaction in the electric-dipole form is ef-"
fectively weaker than that in the Coulomb gauge
by a factor of order Zw/AE, where AE repre-
sents an average excitation energy of the atomic
system.” Indeed one is able to reproduce the low-
frequency approximation in the new gauge by
treating the electric-dipole interaction in lowest
order (see Sec. IIIB).

Versions of the low-frequency approximation
which remain valid in the presence of resonances
in the field-free scattering amplitude have been
introduced by Kriiger and Jung* and by Mittle-
man® for potential scattering. The resonant case

- is reconsidered in Sec. IIIB, in the context of

electron scattering from an atom. The result ob-
tained includes a first-order correction term and
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involves only the on-shell scattering amplitude.
the on-shell scattering amplitude.

Suppose now, in the example discussed above,
we allow the power density to increase from
108 to 10'2 W/cm?, with the other parameters held
fixed. Since in this case 9, is of order unity the
validity of the low-frequency approximation dis-
cussed above is called into question and the deri-
vation must be reexamined.’ Putting the problem
in somewhat more general terms we may consi-
der an approach to the static limit in which the
frequency is decreased, with the electric field
strength held fixed; 8, will then increase like w™.
If the electric field is sufficiently weak the elec-
tric-dipole interaction may be treated in per-
turbation theory. (In this case the gauge trans-
formation mentioned above will play a crucial
role since an expansion in powers of 6, will be
inappropriate.) The low-frequency approxima-
tion corresponds once again to treating the elec-
tric-dipole interaction in lowest order but rather
than taking 0, to be a small parameter in the
analysis of the resultant expression we assume
that 6,/6, is a lavge parameter and apply sta-
tionary phase arguments. We are distinguishing,
then, between an intermediate-coupling regime,
in which 6,/6, is of order unity, and a strong-
coupling regime where 6,/0, is large compared
to unity. The latter case was first analyzed by
Kroll and Watson for potential scattering.’® In
the more general electron-atom scattering prob-
lem studied here we find that, in the absence of
resonances, the low-frequency approximation for
the transition amplitude may be expressed in the
same form in the intermediate- and strong-coup-
ling regimes [see Eq. (3.29) below], although the
derivation differs in detail for the two cases. It
is then a simple matter to verify that the sum rule
for the total cross section, derived earlier for the
intermediate-coupling case, is valid in the
strong-coupling regime as well. A sum rule of
this type was first derived for the relativistic
scattering problem by Brown and Goble!? who
based their argument on general field-theoretic
considerations. These authors have provided a
clear discussion of the connection between soft-
photon approximations and the classical limit;
this connection has also been pointed out by Kroll
and Watson. The physical picture which emerges
from these studies is very similar to that devel-
oped by Bloch and Nordsieck'® in their analysis of
spontaneous infrared radiation in the scattering of
charged particles. To emphasize this similarity
we have summarized results obtained here, in
Sec. IIIC, by formulating what might be called a
strong-field version of the Bloch-Nordsieck
theorem.

In approaching the static limit one takes into
account the effect of a large number of soft pho-
tons acting coherently. This effect can lead to a
transfer of energy of the order NZiw, with N> 1,
as it does in ionization through the tunneling
mechanism. The relationship between scattering
and multiphoton ionization in the low-frequency
limit is developed in Sec. IIID. The basis of the
discussion is the recognition that ionization may
be viewed as the second half of a resonance tran-
sition induced by the field. In this way a repre-
sentation of the ionization amplitude is obtained
which can serve as the basis for a modified per-
turbation theory of the type discussed above for
scattering. The leading term in the expansion

. gives rise to the tunneling approximation studied

earlier.'**® It might be noted that the problem
of developing a consistent and practical theore-
tical description of final-state electron-field in-
teraction effects in multiphoton ionization has
taken on added interest now that these effects are
being studied experimentally.!”

II. PRELIMINARIES: SCATTERING IN A LASER
FIELD

A formulation of the problem of electron-atom
scattering in the presence of a laser field, de-
veloped previously,®® is now briefly reviewed to
provide the background for the discussion to fol-
low. In the initial and final states of the scat-
tering process the projectile electron and target
atom interact with the laser field but not with
each other. These asymptotic states satisfy

(H=-Ey)| 05 =V,|2p, (2.1)

where B is a channel index representing the set

of observables which defines the state'® and V,

is the net projectile-target interaction in channel
B. In the occupation-number representation of the
field the Hamiltonian is expressed as

H:; (ﬁ,-i—K(F,)) /20 +Hg + V. (2.2

Here V is the sum of the interparticle Coulomb
potentials. For a plane-wave laser field of pro-
pagation vector E, frequency w, and complex
polarization X the field Hamiltonian is Hp =fiwa'a
and

- 2\vV2 _ - 2
A(?)=(2£ZC3> (aXeiE T £atX*g ik T) (2.3)

is the vector potential appropriate to a quantiza-
tion volume L3, The transition amplitude may
then be put in the form

Typ={ @ | [V + Voo (E = H)' V] | 85), (2.4)
where E differs from the total energy E4z=Eg,
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by the addition of an infinitesimal positive imag-
inary part.

In treatments of the interaction of atomic sys-
tems with a classical radiation field one commonly
makes use of a particular gauge transformation
to facilitate the introduction of the electric-di-
pole approximation for the atom-field interaction.®
In the intense-field limit the classical and quan-
tum treatments of the field are equivalent and the
role of the gauge transformation is played, in
the quantum treatment, by the unitary transfor-
mation e®, with

g=lie/ic) 3 AR, 7. ' 2.5)
i

The effect of the transformation is reédily deter-
mined using the relations

B -E-Z(F,) =e"<§, +§ kT, -E(F,)> e (2.6)
and (ignoring photon depletion effects®)
HF=e‘(HF-—e ZE({,).fj) e @)
7
here
= _ O\ (207cP\ V2 - e il i
E(F):z(c—><wL3 ) (axet™ T —a™\*g ik'T) (2.8)

represents the electric field. One finds that the
Hamiltonian can be written as

H= eeHe.£ N (2-9)

with the transformed Hamiltonian given by
L - € A T 2
H=Z(Pj +E‘k1’j . E(I‘,)) /2
7 .

+Hp+V—e 3 E@F) F,. (2.10)
i

We may anticipate that the electric-dipole approxi-
mation is appropriate not only for the description
of the interaction with the field in intermediate
states of the scattering but for the target-field
interaction in initial and final states as well.
This suggests that we introduce the transformed
state |®g)=er|®,), where
(T)
gr=lie/lic) Y AR, -F,, 2.11)
J
the sum running over coordinates of the target
electrons only. One easily verifies that | ®p)
satisfies an equation of the form (2.1) but with the
target-field interaction
(T)

- - 2 ->
Hp=D, (__e;ﬁj-A(r,)+ ° Az(rj))
7 ke

T (2.12)

replaced by

(T) 2
- e L r> T e > T2
&.: Ej (ZL? B; .kr,-E(r,)+§,_—L—52— (r, -E(r,))

-ef, -E(F,)) . (2.13)
In the nonrelativistic limit considered here the
first two terms in this expression will be small
compared with the dipole interaction represented
by the third term. Furthermore, the dipole inter-
action will itself be small compared with H; in
the low-frequency limit. The matrix elements of
Hy and H% are, in order of magnitude, in the
ratio Zw/ A€, where Ae represents some average
excitation energy of the target. A similar analy-
sis can be made of the interaction of the field
with the electron-atom system in intermediate
states.

To apply the transformation to the transition
amplitude itself we write (E — H) '=¢f(E — H) e~
in Eq. (2.4). Then, with g=g, +g for the initial
state and g =g, +g7 for the final state (the primes
account for the possibility of electron exchange)
we have the alternative form

Tpp=(e%dy |[Vo+ Vo C(E) V]| e%eBy,  (2.14)
where
G(E)=(E~-H)". (2.15)

IIIl. GENERALIZED LOW-FREQUENCY
APPROXIMATION

A. Lowest order in modified perturbation theory

We begin by examining the expression (2.14) for
the transition amplitude in the approximation in
which the interaction with the laser field, as it
appears in the transformed Hamiltonian H, is
neglected. This interaction appears not only in
the intermediate-state propagator G(E) but also
in the Schrodinger equation for the transformed
asymptotic states ]53) As a first step we outline
the procedure for constructing these states in this
approximation.

In the time interval before the field is switched
on the initial state is of the form |p)|n)|x,). Here
p and  specify the electron momentum and photon
number, respectively, and lxi> is the isolated
target state of energy ¢;. As the projectile-field
interaction is switched on adiabatically the unper-
turbed state |p)|n) evolves into the state |4,3)
satisfying ’

(m__;‘fAl(’_‘)i-pﬁwa?a) ]¢"3)=E"B|¢o"3>. 3.1)

Since the transformed target-field interaction Hj
is ignored in this approximation we have

| 8= [h,30] X, 3.2)
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The construction of the state |zp,,;,) has been des-
cribed previously®® and for ease of reference we
summarize the result here. We have the repre-
sentation

l6,9= 2 %D |+ D5 -0,

[ ey

(3.3)

where the expansion coefficients are of the form

7,(B)= r’i’;%e”oeisiw. (3.4)
(o}
Here we have defined »
S;(¢) =p; sin(¢p +6) +a sin2¢ . (3.5a)
p; and 6 are real parameters satisfying

27
evolyy-3 [ 4

[] 0

where
A0)=(

may be interpreted as the classical vector poten-
tial corresponding to a phase ¢ and a flux

I= (phiw)c/L3. In calculating the higher-order
terms in the expansion (they must be retained in
an analysis of the strong-coupling regime) we ig-
nore the commutator [a,a']. This allows us to
recombine terms in exponential form. Recogniz-
ing Fe as the generator of momentum translations
we obtain

21
e"e]zpﬁ):Z ‘!: %%’.eime:s;(o)
1
X|n+0)| -S4, 6) -1mk), (3.9)

2ncl
w2

1z .
) (Ret® 4 Tke-i9) (3.8)

in obvious correspondence to the result one would
obtain in a semiclassical treatment.?!
The approximation (3.2) along with the result

> M

fz:r d¢>
A=

with

-

d=p- % K (¢) - Uik (3.132)

and

- .e - = - k
%e”?e'svw’(l-l %Ac(¢)'re+..'> |n+0)|p - 1nk),

expi=i[l+n—n')¢' +S;(9")]} iS5 O WE - n+1)hiw; 7', D ,
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We also have
a=2(ﬁwA—(hﬂ. A-)io’ Wy 8.50)
with '
a=(3) (3’15;”—52—) . (3.50)

The energy eigenvalue in Eq. (3.1) is determined
to be E,;=p%/2u +nliw + A,

To calculate e™e ]zp";) we expand the exponential
as

(3.6)

eve=1-i(E)AE) Faeee,

where T, is the position operator for the incident

electron. With the aid of the representation (3.3)
we find

(3.7)

I
shown in Eq. (3.9) provides us with a represen-
tation of the state vectors e™%|%,) and e~%|3,)
which appear in Eq. (2.14). To proceed we apply
the basic approximation to the resolvent G(E) in
Eq. (2.14). Suppose we express the transformed
Hamiltonian H as

H=B,+H,+H', (3.10)

where H,=23,p%/2u+V is the Hamiltonian of the
isolated electron-atom system. In the approxima-
tion in which A’ is neglected G(E) may be replaced
by (E—-H,—H.)™". This allows us to express the
scattering amplitude in the presence of the field

in terms of the field-free electron-atom scattering
amplitude

te; ', @) = (@' [{xy | [Vs+ Vi (€ = H) 2 V] | xQ)-
(3.11)

(Channel labels on ¢ are omitted for simplicity.)
We readily find

(3.12)

1

q=p- % B (") = (1+n -k (3.13b)

The ¢ amplitude in Eq. (3.12) is off the energy
shell since the scalar variables



E=E- (m+)hw-q*/2p-¢,; (3.14a)

and

¢=E-m+)hw-q'%/2u—¢, (3.14b)

are nonzero. The energy conservation relations
E-niw=p*/2u+¢;+ A and E-n'fiw=p'2/2u+€, + A
can be used along with Eqgs. (3.13) to reexpress the
off-shell parameters in the form

£== (hw - B+ Bk/p)I+55(9)), (3.152)

g == (i =B Ik/ul(n+1-n') +55 (6",
(3.15b)
where
’ d > _ ’
Ss(e)= d%" =p3 cos(¢ +6) + 20 cos2¢. (3.16)

This last relation is equivalent to

e

A, +e"’A§/2uc2 -A
ue 1-

B/pec T 1=-pek/uc ?
(3.17)

a version which is helpful in verifying Egs. (3.15).
To continue with the analysis it is convenient at
this point to distinguish between the intermediate-
coupling and strong-coupling regimes discussed
in Sec. L

ﬁwsg(qﬁ) =

LTk

B. Intermediate coupling

The function Sj(¢) in Eq. (3.16) is of the order
of the ratio of the electron-field interaction
energy to the photon energy (5,/8, in the notation
of Sec. I). Let us suppose that this ratio is of
order unity. We may then argue that contributions
to the sum in Eq. (3.12) corresponding to values
of |I| which are large compared to unity will be
negligible due to rapid oscillations of the inte-
grand as ¢ ranges between 0 and 27. The argu-
ment would fail if the phase were stationary for
some large ! value but this possibility is excluded
by the assumption that S is at most of order
unity. Then £ and &’ in Egs. (3.15) may be treated
as first-order parameters and ¢ in Eq. (3.12) may
be expanded in a Taylor series about £ =£"=0.
The leading term is the on-shell amplitude
HE - (n+1)Aw,7(p,¢’)), which is expressed as a
function of the energy and the momentum-trans-
fer-squared variable

‘T(qb,d)') = <§’ +n'HK = P = niik

€ 2
'Z(A°(¢ )—Ac(¢))) . (3.18)

The first-order correction terms vanish. To see
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this note that in the term proportional to
( +S})(at/8¢) we may write

- (d .
leataecsp(o):__z(d 2i19) iS3(®)

and integrate by parts. Since the surface term
vanishes, and since the contribution

coming from the derivative of ¢ with respect to ¢
is of higher order and may be dropped, we have
effectively replaced ! by —Sj to first order. Thus
the coefficient of 87/8¢ vanishes, and in a similar
way one sees that the first-order correction term
proportional to 8¢/8£’ makes no contribution. We
are assuming that ¢ is a smooth function of the
scalar variables £, £/, and 7 but no assumption
has been made concerning the dependence of ¢ on
the energy variable. In particular, resonances
may be present in the field-free scattering ampli-
tude.

The low-frequency approximation is of the form
(3.12) with ¢ replaced by the on-shell amplitude
HE = (n+1)lw,7(p,0’)). To simplify the double
integral in Eq. (3.12) we expand the T variable
(to first order in the small parameter 9,) as

(6,00 =To-2(5" =5)-Z&,(6") - A,
with 7,= (P’ +n'Tk - 5—n§ﬁ)_2’. (We have used the
transversality property k+A_ =0.) The ¢ ampli-

tude may be expanded in a Taylor series about
T=T,. Keeping only the first two terms we have

Tog=TSA+ T} (3.192)
with
TER=) Ve (B (BRE = (n +1)iw, 7). (3.19b)
1

The first-order correction term is

(21rcl /2
c \ w?

T¢)=2 %

X(B' = B) 2o [ s (B 71 (B
1
+ 47k, B0, Bl 7]. (3.19¢)
Here we have used Eq. (3.8) and the abbreviation

A® =2 [1E - (n + D10, 7)

—t(E - (n +l:l:1)7iw,7)]l.,-=.,-o. (3.20)

Note that the correction term T§}} need be retained,
to the order considered here, only if the ¢ ampli-
tude contains resonances. In the nonresonant

case A{* will be of first order so that T} will
actually be of second order. It should also be
pointed out that for the particular case of linear
polarization of the field (X is real in this case),
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the general result, resonances included, simpli-
fies considerably. We find that the two terms
(3.19b) and (3.19c) can be combined and the re-
sult expressed in the form

Tpp= Zy‘ﬁml (ﬁ’)’y,(ﬁ)t(pf/Zy. +€; (9} _51)2) .
1
(3.21)

The ¢ amplitude appearing here corresponds to an
on-shell scattering process in which the initial
electron momentum is

- - - l - - -
,=p - nk —ﬁ— (rw = T2/ )X (3.222)
and the final momentum is
B =P = (n+1-n")Hk
Il-n' . o A
- Ll on) o iR/wR. (3.220)

The on-shell property is expressed by the rela-
tions (correct to first order)

~(n+Diw=p%2u+¢;
=p¥/2u+¢€,. (3.23)

The derivation of Eq. (3.21) is based on the re-
cursion relation satisfied by the ¥ coefficients.
That relation follows directly from the representa-
tion (3.4).2° To the accuracy required in the
analysis of the first-order correction term we
may neglect the term proportional to @ in Eq.
(3.5a); we then have ¥ (P)=J_,(p;) (having set 6

=0 since X is real) and the recursion relation re-
duces to

51712 (D) +7 1, (B)] = =207, (D). (3.24)
After making use of this relation in Eq. (3.19¢)
we find that the correction term may be put in the
form

TS = va (B (DB, =5 =74)

xsa;r—t(E—(n +l)ﬁw,7)]7=,0, (3.25)

The result of combining this with the leading term
(3.19b) is to introduce a shift in the momenta as
indicated by Egs. (3.21) and (3.22). Equation
(3.21) extends the result of Kriiger and Jung*
through the inclusion of these first-order mo-
mentum shifts, as well as the first-order correc-
tion obtained by replacing J_, by y,. There still
remains the problem of estimating higher-order
corrections.® As a result of the near singularity
associated with the resonance the term which is
nominally of second order may be comparable in
magnitude to the first-order correction calculated
here.

In the absence of resonances the low-frequency
approximation takes the form shown in Eq. (3.19b).
Since by assumption ¢(e, 7,) is a slowly varying
function of energy for e in the neighborhood of

-nfiw we may expand to first order and write

HE = (n + 1w, TYE ¢ = 1w % (3.26)

with ¢ and its derivative evaluated at the energy
E -niiw. We observe that

27
_.l'y'(ﬁ)= f dzi;r eil(&eiS‘p(o)sg((p)’ 3.27)
0

as may be verified by an integration by parts.
The sum in Eq. (3.19b) may now be performed
using the relation

%T_Zeix(o—w)=5(¢_¢:). : (3.28)

1

After combining the two terms in the Taylor series
we obtain the result

T dp . . -
Tyop ™ f 2:? et ' 0IlSHO-SH (e (5), T ).
(3.29)

Here e;(¢) = E = nfiw +wS}, which may be expres-
sed, using Eq. (3.17), as

() —p2 _£€ §~-Ac
e3(0) =p*/2 + At € = =5/ e
e’A%/2uc®- A
1-7 B/ (3.30)

A more suggestive version is e;(¢)=P%(¢p)/2u +¢,,
with i

P(p)=p-=A.(p)

°|'-‘ a[m

AL (¢)+A>

(3.31)

(ﬁ-:c R@) -5

Here -13(¢) is the momentum (expressed as a func-
tion of the phase of the field rather than the time,
and corresponding to an average momentum p) ob-
tained from a solution of the classical nonrela-
tivistic equation of motion for the charged particle
within a radiation field which is represented by
the vector potential A -(¢$).22 This result is one of
a number of indications of the close connection
which exists between soft-photon approximations
and the classical limit. A systematic investiga-
tion of this connection, within the context of rela-
tivistic field theory, was given some time ago by
Brown and Goble.'? These authors did not express
their soft-photon approximation in a form analo-
gous to that shown in Egs. (3.19b) and (3.29).
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However, as observed subsequently,? their re-
sults could readily be rewritten in those forms.
A nonrelativistic version of the Brown-Goble sum
rule for the total cross section was derived
earlier for the case of intermediate coupling.!!
This result will be rederived below in a manner
which makes it clear that it holds in both the
intermediate- and strong-coupling regimes. The
sum rule provides another expression of the con-
nection with the classical limit.

It is a simple matter to establish the equiva-
lence, to first order, between the expression
shown in Eq. (3.29) and the approximation pre-
viously derived for the nonresonant case in inter-
mediate coupling.?

C. Strong coupling

We return to the analysis of the off-shell con-
tributions to the ¢+ amplitude in Eq. (3.12). With
S§(¢>) now taken to be large compared with unity
it will no longer be appropriate to treat the
parameters £ and &, given by Egs. (3.15), as
first-order quantities. One may, however, argue
that the dominant contribution to the integrals in
Eq. (3.12) will come from values of ¢ and ¢’ for
which the phase factors are stationary. It is as-
sumed here that ¢ varies much more slowly than
the exponential factors as ¢ and ¢’ are varied.
Now the stationary phase conditions I +S%(¢)=0
andz+1—n'+S%(¢p’)=0 correspond precisely to
the conditions £ =£/=0. According to Eqgs. (3.14)
these conditions place ¢ on the energy shell; the
on-shell amplitude which now appears in Eq. (3.12)
is expressed as H(E - (n +1)iw, T(p,¢ '), with
T(p,¢’) given by Eq. (3.18).

Recall that the strong-coupling limit is charac-
terized by the conditions 6,< 6,. There will still
be a range of experimental conditions for which
6,< 1, If b, treated as a small parameter the an-
alysis given above, which led to Egs. (3.19) for
the transition amplitude; may be taken over di-
rectly. With this case accounted for we suppose
in the following that 5, is not small; we include,
in particular, the limit in which the frequency is
decreased with the electric field strength held
fixed. With 8, of order unity or greater the ap-
proach based on a Taylor-series expansion in the
7 variable is no longer useful. To make progress
in simplifying Eq. (3.12) we shall assume, in the
remainder of this subsection, that ¢ is a smooth
function of the energy. (Resonance effects may be
treated along the lines described in Sec. IIID.)
We now observe that with / replaced by HS%((P),
valid at the point of stationary phase, the energy
variable E ~(n + I)%iw becomes

E —niw+RSY($)=P*(d)/ 21 +€, .

Then ¢ in Eq. (3.12) may be replaced by {(P%(¢)/2u
+¢€,;,7(¢,¢’). Having removed the ! dependence
from ¢ we may now perform the sum over [ in Eq.
(3.12). This leads immediately to the form (3.29)
for the transition amplitude. We have shown,
then, that in the absence of resonances Eq. (3.29)
provides a low-frequency approximation valid in
both the intermediate- and strong-coupling re-
gimes.

If the number of photons emitted or absorbed in
the scattering process is not observed the relevant
cross section is given by

d0=(211)4(%>h’2dQ , (3.32)
where
2 2
dQ = z"; fd"p'é(%-ﬁ+ € —-gz -€;+(n’ —n)h‘w)

X | Tyug 2. (3.33)

We adopt the low-frequency approximation (3.29)
for the amplitude Ty;. The dominant contribution
to the integral in Eq. (3.29) will come from values
of ¢ which satisfy the stationary phase condition

n' =n=S4(6) -S§(9) , (3.34)

and if, for a given n’, this condition cannot be sa-
tisfied for 0< ¢ < 27 the contribution to the sum in
Eq. (3.33) will be negligible.?* This permits us to
replace the momentum-transfer variable 7,

-

=[p’ =P+ (' —n)k]? by
T(¢)=(B'(¢) =B(o))?,

where -15’(¢) is the classical final-state momentum
determined by replacing p in Eq. (3.31) with §’.

[In checking this recall that terms of order (p/uc)?
are to be ignored.] The approximation for Ty to
be inserted in Eq. (3.33) is now taken to be

(3.35)

2fd . .
Tos™ f _E?iez(n' “n)® ,ilS3(0)=S34(0)]

x Heg(d),T(#) . (3.36)
Using the representation
- ” fd__‘?_ ixs
S(x)= B o7 ¢ (3.37)

in Eq. (3.33) we find all of the »’ dependence to be
in the exponential. The sum over »’ may then be
carried out using Eq. (3.28), with the result?®

aq= [ b oteq.(0) - e5() | teg(@), (@D

(3.38)

The average energy transferred to the field, call
it {((n’ =n)rw), can be defined by the relation
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dR = {(n' =n)iw)dQ (3.39)
with
2 2
dR = zn': dePI(nl _n)ﬁWG(EI+ €i' —'zp_“
-€;+ (n’' —n)h‘w>
X | T (3.40)

\

The sum in Eq. (3.40) is readily evaluated using
the approximation (3.29) (along with an integration
by parts) to give

2r 2 2
dR:J; %fd3p'<§—#+<i—§?-ei.)
x o(ez(d) — 33'(¢))|t(63(¢),7'(¢))| z.
(3.41)

The average energy transferred to the field is
then seen to be precisely that which would be ob-
tained by calculating the average energy lost by
the electron-atom system assuming the electron
to follow classical trajectories before and after
the collision, with the collision taking place in-
stantaneously, and without influence from the
field. The result depends on the phase of the field
at the instant of collision and the energy loss is
averaged over the phase in addition to being
weighted by the collision probability.?® [The
phase-space integral can be taken over p’ rather
than the momentum .15'(¢) which the electron has
immediately after the collision since the Jacobian
of the transformation from P’(¢) to p’ is unity.]

A similar classical interpretation can be given for
the cross-section sum rule (3.38). It is worth re-
marking on the similarity between these sum rules
and the Bloch-Nordsieck theorem for scattering in
a spontaneously generated infrared radiation
field.® The present results may be summarized
by stating a strong-field version of the Bloch-
Nordsieck theorem of the following form.

(i) The probability for scattering accompanied
by a finite change in the photon number of the field
vanishes in the static limit. This follows from
the fact that the amplitude given in Eq. (3.29) de-
creases in magnitude as the frequency is lowered
due to the increasingly rapid oscillations of the
integrand.?”

(ii) The total probability for scattering, summed
over final states of the field, is determined by
the field-free cross section as shown in Eq.
(3.38).

(iii) While the average number of photons emitted
or absorbed grows without bound as the static
limit is approached, the average energy trans-
ferred to the field approaches a finite value which
is determined, according to Eq. (3.41), from a

classical treatment of the motion of the electron
in the field.

To see the relation between Eq. (3.29) and the
Kroll-Watson version of the low-frequency ap-
proximation'® we specialize to the case of linear
polarization and ignore electron recoil effects of
order p/uc. The stationary phase condition (3.34)
then becomes

’ - _?_ = =N R
n=-n )ﬁw—-“c ®-p)-4,.
With €;=0 (appropriate to potential scattering) and
with A (¢)=2cos¢ the energy variable becomes, at
the point of stationary phase,
PA)_ 1 [ pln —n)iwd)?
24 'Zu( R )) ) ’ (3.42)
Neglect of electron recoil allows us to replace
7(¢) by (5’ =p)?. With ¢ now independent of ¢ it
may be removed from under the integral sign in
Eq. (3.29); the result is identical to Eq. (5.18) of
Ref. 10.

D. Induced resonance and ionization

Suppose that in the absence of the field the elec-
tron-atom system has a single composite bound
state satisfying

H,|B)=8|B). (3.43)

The condition for a field-induced resonance is
(ignoring level shifts)

S+nphiw=p?/2u+ €+ niiw. (3.44)

For simplicity let us assume that the width of

the composite state in the presence of the field is
small enough compared with Zw that the resonance
condition is not satisfied for ng—-ng+%Zw. The un-
perturbed state |a)=|B)|ng) may be subtracted
out in the standard way with the aid of the projec-
tion operators P = |a){a| and Q =1~P. (More gen-
erally, if the composite state is degenerate, P
should be taken to be the projection operator onto
the subspace of degenerate particle-field states.)
To exhibit the resonance contribution to the scat-

_ tering amplitude defined in Eq. (2.14) we intro-

duce the resolvent identity

G=G(1+ G°H')| a)(E - E,)™ (@] (1+H;GQ) .

(3.45)
Here we have defined
Go=[QE-HR]? (3.46)
and
E,=8 +nghw+ @|[H'+H'GH']|a), (3.47)

and have made use of the relation QHP=QH'P.



The decomposition (3.45) leads to a representation

of the transition amplitude as the sum
Tag=Thg+ T (3.48)

The nonresonant component, from which the state
| @) has been subtracted out, is

T3g= (€¥e®y |[Vy+ VeGOV,]| e @) . (3.49)
The resonant component is

Ths=TaolE = E)T,, (3.50)
with ,

Tyo= (€ *¢8y| (Vg + Vo GOH') | a) , (3.51)
and

Toe=@|(Vg+HGWy)| e*ed;). (3.52)

The residue at the pole in the resonant term
(3.50) may be related to the ionization amplitude,
as shown in Ref. 28. If for simplicity we neglect
the energy-dependence of the level shift in Eq.
(3.47), thereby ignoring a (second-order) correc-
tion to the residue, we may identify the ionization
amplitude as T,,, defined in Eq. (3.51). The res-
solvent which appears in the second term in Eq.
(3.51) may be expanded in powers of the interac-
tion H’. The resultant perturbation series pro-
vides what may be called the multiphoton ioniza-
tion contribution, in which the electron gains suf-
ficient energy to ionize by successive absorption
of photons in intermediate states; in the form
given here it is modified to allow for final-state
interactions as well. As the frequency is lowered
the relative strength of the final-state interactions
is increased. With the effectiveness of the inter-
mediate-state absorption mechanism diminished
the first term

(3.53)

which is of zeroth order in H’ and represents the
pure tunneling effect, may be expected to domi-
nate. The representation (3.51) provides a con-
venient starting point for a study of the relative
importance of the tunneling and multiphoton ioniza-
tion mechanisms.

For the sake of completeness we now examine
the ionization amplitude (3.53) in order to esta-
blish explicitly that this corresponds to the tunnel-

T8 = (€*e%,|Vg|a),
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ing approximation formulated and studied in some
detail in Refs. 14-16. Thus, we adopt the approxi-
mation (3.2) for the final state, with |§ ) given

by Eq. (3.3). Defining the vertex function

Fg(®)=(B| (x| Ver | B) (3.54)
we arrive at the approximation

T(l)z 2'd_¢

Bla =
o 2T

e R0 iS5 Op (J(¢)), (3.55)
with

§(0)=5' ~ZR.(9) = (g —n' Wik . (3.56)
Now ny ~n’ represents the number of photons ab-
sorbed by the electron in the ionization process.
This number becomes very large compared to
unity in the low-frequency limit since the energy
absorbed must at least be equal to the electron
affinity €, — 8. With ny —n’> 1 in Eq. (3.55) the
integral may be evaluated using the method of
steepest descent. The stationary phase condition
is

dSyz
Ng~— n'+ E§'= 0.
With the (complex) value of ¢ determined by this
condition we readily verify that

q%($)/2u=8 —¢,. (3.58)

As is well known,? the function Fg(q), with q sa-
tisfying Eq. (3.58), is determined from a know-
ledge of the asymptotic normalization of the coor-
dinate-space representation of the composite
bound state |B). This normalization factor can

be related to the residue of the bound-state pole

in the physical field-free scattering amplitude.
Further analysis of the amplitude (3.55), leading
to a low-frequency approximation for the total ion-
ization probability, can be found in Refs. 14~16.

(3.57)
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