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Total excitation cross sections for electrons scattering from atomic hydrogen are calculated by using a complex
optical potential. Distorted-wave propagators as well as free-particle propagators are used in computing the optical
potential. It is found that using an attractive potential to generate the propagator results in poorer agreement with
experiment than using a free-particle propagator. The effect of neglecting coupling between excited target states in
computing the optical potential is also studied. It is concluded that it necessary to include coupling between excited

target states if the calculation is to be reliable.

I. INTRODUCTION

In a recent paper® we used the complex optical-
potential method of Feshbach? to study electron
scattering by atomic hydrogen in the energy re-
gion below which the Born approximation provides
an adequate description of scattering phenomena.
Differential cross sections below the first excita-
tion threshold were computed and found to be in
reasonable agreement with experimental data.
Total excitation and ionization cross sections
were calculated for electrons with energies up to
5 Ry (68 eV). Our calculated ionization cross sec-
tions were not in good agreement with experi-
ment,3* but they compared favorably with ioniza-
tion cross sections obtained by Geltman, Rudge,
and Seaton® using the Born, Born-Oppenheimer,
and Born-exchange approximations. Only the
Born-exchange results were in better agreement
with experiment than our results. More recently,
McCarthy and McDowell® obtained a good fit to the
experimental ionization cross sections by using
an optical model with an adjustable parameter.
There was no adjustable parameter in the calcula-
tions of Ref. 1.

Electron impact excitation of ground-state hy-
drogen atoms to the 2s and 2p states is of funda-
mental interest. There have been many attempts
to obtain these excitation cross sections theore-
tically.™°® These results have been reviewed by
Moiseiwitsch and Smith!! and Williams and Willis.'?
Kingston, Fon, and Burke!® used a 1s-2s-2p close-
coupling approximation for low partial waves and
a unitarized Born approximation for higher par-
tial waves to calculate 1s— 2s and 1s— 2p excita-
tion cross sections. They believe their results to
be accurate above 100 eV; however, their cal-
culated excitation cross sections do not agree
well with experiment below 54.4 eV.

In this paper we have extended our previous

calculations to include 1s—2s and 1s—~ 2p excita-
tion cross sections. We made three approxima-
tions in computing the optical-model potential.
The distorted-wave (diagonal) approximation, in
which direct couplings between excited states are
neglected, was used. Exchange effects in excited
states were neglected, and a free-particle propa-
gator was used for electrons interacting with ex-
cited target states. In the present study we have
computed the excitation cross sections using these
same approximations. We have also investigated
the effects of using distorted-wave propagators
and including interchannel coupling in a pheno-
menological manner.

Using the approximations in Ref. 1 we found that
the 1s —~ 2s excitation cross sections were too large
for incident electron energies from 2 Ry up to 5
Ry. Our 1s-—2p excitation cross sections are too
large below about 4 Ry and smaller than the ex-
perimental data above 4 Ry. In order to test the
sensitivity of these results to the form of the
propagator, we repeated the calculations using a
Coulomb propagator for the excited states. In
this case the electron is propagated in the field of
the nucleus. The true description of the multi-
channel scattering should lie somewhere between
these two extremes. This modification increased
the disagreement with experiniental data. The
1s— 2s excitation cross section got larger at all
energies while the 1s —~ 2p excitation cross section
got larger at low energies and smaller at high
energies. Other more realistic interactions (non-
Coulomb) were also used with similar results.
Thus it seems unlikely that the accuracy of the
calculation can be significantly improved by sim-
ply introducing a distorted-wave propagator gen-
erated by an attractive potential.

Interchannel coupling can be accounted for
phenomenologically by using a complex potential
to describe the propagation of an electron inter-
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acting with an excited target state.'* The theory
for this method is worked out in detail in two
appendices. We were able to obtain significant
improvement in the calculated cross sections by
using this approach to include interchannel coup-
ling, but more work needs to be done before this
technique can be used with any confidence. These
calculations indicate that neglecting interchannel
coupling in computing the optical potential is not
a good approximation.

We have not made any attempt to examine the ef-
fect of neglecting antisyminetrization in excited
states. McCarthy and McDowell® suggest that an
accurate optical potential must include second-
order exchange contributions at least at energies
below 50 eV. In a practical calculation of the
type undertaken here it is almost impossible to
include second-order exchange effects without
using a local approximation for the exchange inter-
action. Exchange effects could then be included
by using a suitably modified effective interaction
for electrons interacting with excited target
states.

The formalism will be presented in the next
section. The results of the calculations will be
presented in Sec. III and compared with other
theoretical calculations and experimental data
where possible. Our conclusions are discussed
in Sec. IV. ’

II. FORMALISM

Since we neglect exchange effects except in the
elastic channel we will ignore exchange in pre-
senting the formalism and introduce the direct-
channel exchange contribution at the end. Then
we have

H(Flr 1'72)\1/(;1’ F2) =E‘P(F1) f2) ) 1)
where
HE, 5 =H,F)+H,(F,) + VT, T,) . 2)

H, and H, describe the target and projectile, res-
pectively, and V describes the target-projectile
interaction. For electron-hydrogen scattering
with a fixed nucleus

2

HE)=-v?=—
1\ 1 1 "’1 ’

Hz(rz) =‘V§, N ®3)

- - 2 2
V(I‘l, 1'2) == 7’_—2—+W.
We use units where 7 and a, (the Bohr radius) are
1 and the unit of energy is the rydberg. ’
We expand the total wave function in terms of
target eigenstates as

\I’(Fp F2)=S ¢n(F1)xn(F2) ’

where

H, ()¢, () =¢,9,F). @)
S indicates a sum over the discrete target eigen-
states plus a sum over the continuum target eigen-
states. By taking the integral

fds"xd’:(;l)H(Fn ¥, T,

we obtain a set of coupled equations:

S [Ey0y, - Hy @)X, () =0, 5)
Ijrk" () = Hy(F,)0,, + Vi, (F) (6)
Vo= [0, GV G, Fs, E)ar,, 0
E,=E~-¢,. (®)

Since H, is the kinetic-energy operator we can
also write H,, as

H,, () = T (F,)0, + V,, (F) -

We define the frée-particle Green’s function or
propagator by

[E,- T@®IGQ(F, i-”):ék,,é('x" -7). ©)
We will denote the ground-state target eigen-
state by ¢, so that '

(o= Hoo )Xo F) =S Hop b, (7 (10)

whereS,’2 =S,#0. The excited-state wave function
can be found from (¢ #0)

S’ [Eabw, = Hy G, @) = HyF)XoF) . (1)

n

We now define an exact Green’s function for the
system with the elastic channel omitted (k,m,n
#0):
S' [Ekﬁk" -H, (Fz)]cnm(Fz, r;)= Opmd (;2 - Fé) .
(12)
G,,. can be found from
Gnm (;23 Fé) = G;s?n) (i?21 F;
’ 3 0) - - - - el
"’S fd 7GR (F,, 1))V, ()G, (7, F)
R 1 .
(13)
Thus for £# 0,

X@=S' [a16, @ HLEGE  14)
n
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and the elastic channel wave function satisfies the
nonlocal equation

[Eo~ HooEMoE) = [ a¥riVo@, D1, (15)
where
- > ’ - - - -, .
Vo(rz, r;)=S Hok(rz)Gm(rzyré)Hzo(r; . (16)
P

Here V, is the exact optical potential for this
unsymmetrized system. In the diagonal approxi-
mation we set G,,=0 if 2# so that

> >,

Vo (Tors) = S He,(F)G (5, T H,o(F) - amn
3

In Ref. 1 we also replaced G,, by the free-parti-
cle propagator G2 in evaluating V..

We must still make a partial wave expansion of
Xo- The details of this are presented by Alton
et al.'® and the modification needed to include ex-
change effects in the direct channel is given in
Ref. 1. Also, we describe in the following section
(and in Appendix A) a method of estimating the
effect of including nondiagonal terms in the above
formalism.

III. RESULTS AND DISCUSSION

The excitation cross section to any particular
excited state can be calculated (in the diagonal
approximation) from*®

2 - .y
Oop= —ﬁ% J.dsrdsr'xo(r)V,gA’(r, )X,&"), (18)

where Vi®(r,7’) is the absorptive (imaginary) part
of the optical potential which results from the ex-
cited-state 2 alone

VR = Abs[H,, (F)G,0r, 7" ) Hyo ()] (19)

We first computed the 1s—2s and 1s ~ 2p excita-
tion cross sections using the same approximations
as in Ref. 1. The results of this calculation are
shown in Figs. 1 and 2.

In Fig. 1 we plot the 1s—~ 2s excitation cross
section as a function of incident electron energy
from threshold up to 5 Ry. For comparison we
also plot the excitation cross section found from
the 1s-2s-2p close-coupling approximation.!®* The
experimental data,'” uncorrected for cascade ef-
fects, are also shown. Since the data are uncor-
rected for cascade effects, the true 1s—2s excita-
tion cross section will be less than the data. The
experimental cross section can be approximated
by o(1s = 2s) +0.230(1s - 3p).* The 1s— 3p ex-
citation cross section has been calculated by
Syms et al.!® I their results are used, the ex-
perimental data of Kauppila, Ott, and Fite'’

- 0.36 T T T T

E (Ry)

FIG. 1. 1s—2s excitation cross section as a function
of incident electron energy. The solid line describes
the cross section obtained by using a free-particle prop-
agator to compute the optical potential. The dashed
curve is found by using the 1s-25-2p close-coupling
method (Ref. 13). The dash-dot curve shows the experi-
mental results (Ref. 17), which are uncorrected for
cascading into the 2s level (see text). The ® indicates
the cross sections found by using an imaginary potential
to generate the propagator (see text).

should be reduced by approximately 0.3ma” in the
energy range from 2 to 5 Ry in order to obtain

the 1s — 2s excitation cross section. We also show
the 1s — 2s excitation cross section which is found

oLl | | |
1 2 3 4
E (Ry)

FIG. 2. 1s_.2p excitation cross section as a function
of incident electron energy. The notation is the same as
in Fig. 1. The experimental curve is from Refs. 20 and
21.
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by using a Coulomb propagator instead of a free-
particle propagator. The agreement with experi-
ment is much worse for this case.

In Fig. 2 we plot the 1s— 2p excitation cross
section as a function of incident electron energy.
Again we show the results of the 1s-2s-2p close-
coupling calculation'® as well as the experimental
data.?>2' In our calculation we include only 12
partial waves. With reference to the calculation
of Burke, Schey, and Smith?* we estimate that
about 0.17aZ should be added to our result at
4 Ry. This correction for neglecting higher par-
tial waves would improve the agreement of our
calculation with experiment at energies above
4 Ry. The correction for higher partial waves
is more important for the 1s— 2p excitation cross
section than for the 1s— 2s excitation cross sec-
tion since the 1s,2p coupling is relatively long
range. We also show the 1s— 2p excitation cross
section which is obtained by using a Coulomb
propagator. Again we see that the use of a Cou-
lomb propagator rather than a free-particle propa-
gator does not improve the agreement with ex-
perimental data.

In Fig. 3 we plot the ionization cross section as
a function of incident electron energy. The ex-
perimental curve which is shown is the average
experimental result.’* Again we see that using a
Coulomb propagator leads to poorer agreement
with experiment. We also used propagators gen-
erated by shielded Coulomb potentials and we
tried varying the effective charge in the interac-
tion. None of these attempts led to better fits
than those found by using a free-particle propaga-
tor.

Contrary to our expectations we found that the
use of a distorted-wave propagator to compute the
optical potential does not lead to better agreement
with experiment. We conclude that it is unlikely

20 N T T
g ae \\\
= I, ~a
z 16— —
g 'e d RN
= ~
(8] ~
l(})J 12 — \\\\\ —
w — -
(2]
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FIG. 3. Ionization cross section as a function of inci-
dent electron energy. The notation is the same as in
- Fig. 1. The experimental curve is the average of the
results of Refs. 3 and 4.

that one can introduce a simple, real distorting
potential for excited states and hope to improve
the calculation significantly. A possible reason
for this is that the neglected interchannel coup-
ling between excited states of the system is not

at all negligible in the total scattering interaction.
We have tried to gain additional insight into the
importance of interchannel coupling through an
approximate treatment of these effects. We show
in Appendix A how one may include this interchan-
nel coupling in a phenomenological way by using a
complex distorting potential in determining the
propagator. Equations (18) and (19) can be used
only if the distorting potential is real. The mod-
ification which must be made for a complex dis-
torting potential is discussed in Appendix B. We
found that making the distorting potential complex
can lead to significant improvements in the cal-
culations.

In order to assess the efficacy of a complex dis-
torting potential in representing interchannel coup-
ling, we chose a simple parametrized function,
purely imaginary, in the form

e-r/ 70

u(f) =-2ia (20)
This form for »(») was chosen simply for con-
venience, since our aim was not to try to repro-
duce any realistic potentials. This function has
readily interpretable range and strength param-
eters. For a=1, the magnitude of u(») near »=0
is the same as the Coulomb potential between the
electron and the nucleus. Thus, it is easy to com-
pare the strength of the assumed potential with
other interaction terms. The results of a limited
number of calculations utilizing the form (2) are
shown as the solid circles in Figs. 1-3. The re-
sults shown in the figures were obtained with
7o=5a,and @ =0.2. We used the same u({r) for
each excited target state. In a ‘more elaborate
calculation different distorting potentials could
be used in different channels. We did not attempt
an extensive parameter search to obtain the best
fit to the cross-section data. The results shown
here represent the best of several choices of & in
the range 0.1-0.5. We also examined a complex
distorting potential with an attractive real part.
With this form for «(r) the size of the imaginary
part had to be increased in order to obtain the
reasonable agreement with the data. Even for
strongly attractive potentials, comparable to the
electron-nucleus interaction, the required values
of @ did not exceed 0.4. On the basis of this
limited study it is apparent that interchannel
coupling plays a non-negligible role in determin-
ing low-energy inelastic-scattering cross sec-
tions, and that these effects can be represented
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reasonably well through use of a fairly weak com-
plex distortion potential in the propagator. We
made no attempt to vary @ or 7, with energy to
obtain a good fit to the data over the entire energy
range, though such a study would give some
insight into the energy dependence of the role of
interchannel coupling near thresholds for inelas-
tic collisions.

IV. SUMMARY AND CONCLUSIONS

We have extended the investigation in Ref. 1 of
the optical-potential method for atomic excitation
and ionization. We have calculated 1s— 2s and
1s— 2p excitation cross sections and investigated
the effect of two of the approximations made in
Ref. 1 on the calculations. We find that using non-
plane-wave propagators to compute the optical
potential seems to lead to poorer agreement be-
tween the calculations and experiment. This is
true as long as the potential generating the propa-
gator is attractive. It was noted coincidentally
that in the present context a repulsive potential
can lead to enhanced agreement with experiment,
but we know of no justification for the use of such
a representation in the present problem. More
work needs to be done in this area.

We also investigated the effect of making the
diagonal approximation in computing the optical
potential. Interchannel coupling can be accounted
for by using a complex potential to generate the

2217

propagator. This technique led to generally im-
proved agreement with experiment. This result
at least indicates that a reliable microscopic cal-
culation of the optical potential must include di-
rect coupling between excited target states in
some fashion.

We have not attempted to include exchange ef-
fects in excited states in these calculations or to
study the effect of their omission in the forma-
lism. Exchange effects will clearly play an im-
portant role in determining the effective potential
to be used in generating the propagators. Before
this type of calculation of the optical potential can
be expected to be reliable and practical, we must
have a method for generating a reasonable com-
plex potential to-describe the propagation of elec-
trons interacting with excited target states.
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APPENDIX A

Using a complex potential for electrons propagating in the field of an excited target state can be justi-
fied by following a procedure similar to that used in Sec. II. Suppose we want to find a particular wave

function X,,(#r) Gm#0). Then

(B = Hop @)X (F) = Hy o (F)X,o () +§” A REAR (A1)
whereS?” ES",O’,,,. For p #m,0 we have

S” b= iy FII, ) = o EF) + i F(Ey) . (a2)
Now we find a Green’s iunction for the reduced system in which both 0 and m are omitted:

G (T, T3) = GO (7, F;)+§" a%r GO (%, TV, )G, (F,, 7). (A3)
Then ’

%G =S" [a,CL @ FOH,FDXE + H, FX, D). (a4)

.
I we use Eq. (A4) in Eq. (A1) we obtain
(B~ Hp a6 = S [ @it )G oy FOH, 0 )
"4
~HpoEE)+ S [ @7 H )G (6o T, X ) (a5)

ky,n
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I we define
. - ” -
V@, =S H,F)GC,E,TF )H (75 (A8)
k,n

and neglect the last term on the right in Eq. (A5)
we get, in this approximation,

(B = Ho GO @) = [ dor18, o E, 6

=H_ o)X (T) - (A7)

In the present study we further assume that
V., can be replaced by a local equivalent potential
so that

[Em - Hmm(FZ) - VLm(;Z)]Xm(Fz) = HmO(Fz)x0(¥2) .
(A8)

V., will have an imaginary part whenever G, .
has an imaginary part. Thus V, will be complex
whenever any excited state other than 0 or m is
energetically accessible.

APPENDIX B

We establish a generalization to Eq. (18) and
illustrate the added labor involved in the use of
the “distorted” propagator in the calculation of
inelastic cross sections. In order to calculate
the total excitation cross section from channel 0
to channel m we will use Eq. (A8) to solve for X,,:

X () = f a%IG,.

[Em - Hmm(Fz) - VLm(;Z)]Gm(Fz’ ;é) = 6(:["2 - .fé) .
(B2)

(T3, T H o TXo(F2) » (B1)

The propagator can be written as

G, (T, 5 —,r 7 Eg).(km,Vz’ré)Yw('?z)Y:u(;é):
X0

2r2 (B3)

where k% =E,, in our units. Assuming for simpli-
city that the total potential in channel m is a com-
]

iRyt
G, (T, T} ,2—-::,—6 ;;2 w/_'_rz ;:e'“"/z

Also
Xl ) o B (),

‘where
Fm(;2)= Id ,h/z ( 2) Hmo(;é)ym

m 2

The excitation cross section is given by

k "
00--m=7eoL f]Fm(rz)‘zdgz-

plex central potential, the g, satisfy the equations

d? A(a+1)
(drz +k = 72

-u(r)) Sk, 7,7 )=8(r—7").
(B4)
Here u(r) is obtained by combining V,, and the

potential in H,,;. g, can be computed from

gk, 7,7 ) =g (k,7,7)

+ f gk, 7, »Mu(r")g, (R, 7", v")dr" .
(4
(B5)
g9 is the free-particle propagator and we have
assumed that the potential has a finite range. g{®
can be computed in the usual manner:
gk, v, v") =~f,(k, 7 0, (R, 75) . (B6)

vy (ry) is the larger (smaller) of 7,7’. Also
fiulk,v)=Vkvj,(kr) and h,(k,7) =VEv[-n,(k¥)
+ij,(k7)], where j, andn, are spherical Bessel
functions of the first and second kind, respec-
tively. We further note that asymptotically
filk, )~ (1/VE) sin(kr = An/2), and h,(k,7)
~ (1/@)ei(m-hrl 2).

To obtain the total excitation cross section we
must find the asymptotic form of X,,. We note that
asymptotically

&\(k, 7,7 ) —m =, (k, 7)F,(k,7'), B7)
where

F(k,7)=filk,7)
+ fwfl(k,r')u(r’)g,‘(k,r’,r)dr’ , (B8)
0

and F, satisfies the radial wave equation

( dz X (x + 1)
kZ
ar? *

(r))F (k,7)=0. (B9)

Using Egs. (B3), (B6), and the asymptotic forms
of f and #, we see that

w VDY E GO, (7). (B10)

(7)Y % (F5)Xo(TD) . (B11)

(B12)
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Thus
1 - - -
Oo-m==%— J‘ds"'zd&’éxzf (FIVER (Fo, TXo0D)
0
where V¥ is defined to be

= _Hmo( 2)(2 F;(km’ Tz)Fx(km 7;)

Vorh

V(T

(B13)

Y, (P )YE @) ) (r) . (B14)

¥ the potential # is real, Eq. (B14) and Eq. (19) are identical. When utilizing a distorting potential we
note that numerical solutions are required not only for the scattered waves, but also for the complex

radial components F, of the distorted propagator.

We have assumed that the potentials were local in this appendix. It is straightforward to generalize the

present derivation to account for nonlocal potentials.
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