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First-order many-body theory has been used to calculate the differential and integral cross sections for electron-

impact excitation of the argon atom to the 4'Po, 4'P„4'P„and 4 'P, electronic states, for incident electron

energies of 16, 20, 30, 50, and 80.4 eV. The resulting cross sections are in good agreement with recent results

extracted from electron energy-loss measurements on argon. Detailed calculations show that spin-orbit coupling

must be included in the 'P, wave function in order to describe the electron-impact excitation of the state properly.

I. INTRODUCTION

The electron-impact excitation of the argon
atom, first studied experimentally and theoretical-
ly in the 1930's, has been the subject of renewed
scientific interest because of its important role in
(for example) certain rare-gas discharge lasers. '
The early experiments of ¹icoll and Mohr' showed
a characteristic diffraction pattern in the differ-
ential cross section (DCS) for excitation of the un-
resolved 4s[3/2],'(3P, ), 4s[3/2]', ('P, ), 4s'[1/2], ('P, ),
4s'[1/2],'('p, ) levels' for a wide range of en-
ergies. Massey and Mohr4 were subsequently
able to explain this pattern qualitatively, on the
basis of a simplified form of the distorted-wave
approximation (DWA), as due to the interference
among various distorted waves. Their simplifica-
tion of the DWA consisted of replacing the distorted
waves by their asymptotic forms and calculating
the scattering phase shifts in Jeffrey's approxima-
tion (also called the JWKB approximation). ' The
recent measurements of the DCS by Lewis et al.'
(of the still unresolved 4s, 4s' levels) confirmed
qualitatively the earlier results of ¹icoll and
Mohr. For example, at 40 eV incident energy, the
results of the two measurements are practically
identical although the diffraction pattern became
more pronounced (deeper minima) in the more re-
cent measurements. Sa,wada et al.' have recently
reported calculations in which the distorted waves
were obtained numerically from a semiempirically
determined distortion potential. Spin-orbit cou-
pling effects were neglected in the target states
and the sum of the DCS's for the "singlet" and
"triplet" final states were calculated as a good
approximation to the unresolved DCS. Their re-
sults are in reasonably good agreement with the
unresolved 4s, 4s' DCS's of Lewis et al. The
only other calculation which is available in the
literature for the DCS for electron-impact excita-

tion of the argon atom is that of Ganas and Green. '
They used the Born approximation and consequent-
ly interference among the various partial waves
was not properly described.

There have been more experimental and the,oret-
ical results reported for integral cross sections
for excitation of various electronic states of Argon
than for the DCS s. From an experimental stand-
point, this is due to the relative ease by which ap-
parent excitation (or photon emission cross sec-
tions) can be measured. From a theoretical view-
point, this work has been motivated by the need
for such data in modeling studies of a variety of
discharge processes involving argon. The early
experimental work on the electron-impact excita-
tion of the resonance lines of argon by Fischer,
Herrmann, " Volkova and Devyatov, "and Zapeso-
chnyi and Feltsan" has been well summarized by
McConkey and Donaldson. " They also suggest that
some of the early measurements may be in error
and examine, in some detail, cascade contributions
to the measured emission cross sections for the
argon resonance lines. Mentall and Morgan" re-
cently reported absolute emission cross sections
at an electron energy of 200 eV for those emission
features that lie between 70 and 110 nm. Schaper
and Scheibner" have reported a measurement of
the total excitation cross section with an improved
Maier-Leibnitz apparatus, from the lowest excita-
tion threshold to 16 eV. Absolute cross sections
for excitation of the metastable states of argon
have been reported by Borst" who also discussed
the earlier measurements of Kuprianov" and of
Lloyd et al." In addition to the results reported
by Sawada et al. ' and by Ganas and Green, theo-
retical integral cross sections for excitation of
many of the discrete states of argon have been re-
ported by Peterson and Allen, "and by Eggarter, "
as determined from generalized oscillator strength
relationships and the Bethe approximation.
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In order to test quantitatively the original ideas
of Massey and Mohr, 4 it is desirable to perform a
calculation that incorporates distortion and ex-
change effects in ab initio way. The first-order
many-body theory (FOMBT) of inelastic scatter-
ing [also called the random-phase approximation
(RPA)], which was first introduced by Csanak et
al."contains these physical effects and has been
applied to the electron impact excitation of vari@us
states of the helium atom. "" The FOMBT ean be
considered to be one form of the DWA which incor-
porates static and exchange distortion effects on
the free-electron wave functions and the inelastic
T matrix, consists of both direct and exchange
parts. Consequently, it includes the physical ef-
fects that are believed to be the most important
for describing inelastic scattering in the interme-
diate energy region (between about 30 eV and 100
eV incident electron energy). The FOMBT has
been shown to be one of many possible forms of a
DWA by Rescigno et al." The relationship of the
FOMBT to the more conventional forms of the
DWA has also been discussed by Pindzola and
Kelly, ' by Calhoun et al. by. Madison, "by
Winters, "and a comprehensive review has re-
cently been given about these, and related methods,
by Bransden and McDowell. " In the general con-
text of the equation-of-motion (EOM) method,
FOMBT, has also been reviewed by McCurdy et
al." A special feature of the FOMBT as a DWA
is that the distorted waves for both the incident
and scattered electrons are calculated in the field

. of the ground state of the target, including static
and exchange distortion effects. This lowest-ord-
er approximation has the numerical advantage of
making the continuum orbitals orthogonal to each
other, although it appears as "unphysical" for the
outgoing electron. A very similar form of the
DWA has also been used by Madison and Shelton"
in a calculation for the electron-impact excitation
of the 2'P state of helium for which various forms
of the DWA have been compared numerically and
the FOMBT form gave the best overall agreement
with experiment. It is interesting to note that
Sawada et al. ' also used the same distortion poten-
tial for the incoming and scattered electrons.
Progress has also recently been made in obtaining
experimental DCS's for the excitation of argon.
Tam and Brion'4 reported the first measurements
of the relative DCS's for excitation of the resolved
4s[3/2],'( P,), 4s'[1/2]0('Po), and 4s'[1/2],'('P, )
levels.

In the work reported here, the FOMBT has been
applied (in a simplified form) for the calculation of
the differential and integral cross sections for the
electron-impact excitation of the 4s [3/2]~o('P~),
4s[3/2],'('P, ), 4s'[1/2]', ('PJ, and 4s'[1/2],'('P, )

states of argon, for incident electron energies of
16, 20, 30, 50, and 80.4 eV. In order to calculate
cross sections for the individual 4=1 levels, the
spin-orbit coupling effect in the excited-state wave
functions must be i.ncluded, since this effect is
responsible for the splitting of the 4=1 levels and
the results reported here show that the shape of
the DCS for the excitation of the 4s[3/2],'('P, ) state
is strongly influenced by spin-orbit coupling. The
spin-orbit coupling effect in the target states has
not been considered in any of the previous calcu-
lations of the DCS although the importance of vari-
ous coupling schemes for the integral cross sec-
tions for electron-impact excitation of argon has
been investigated by Veldre, Lyash, and Babik36
in the 'Born approximation. The results obtained
in these calculations are compared with the recent
experimental data of Chutjian and Cartwright" and
with the earlier relative DCS measurements of
Lewis et al. ' for unresolved states. In most cases
the agreement is good. The coherence properties
of the 4s[3/2],'('P, ) and 4s'[1/2],'('P, ) states excited
by electrons, predicted by the FOMBT, are being
reported in a separate publication.

II. THEORETICAL FOUNDATION

The formulation of the FOMBT (or RPA) of elec-
tron-atom inelastic scattering was motivated by
the observation that the Bethe-Salpeter amPlitude
plays the same role for inelastic scattering as the
one-electron Green's function does in the many-
body description of elastic scattering. "

X (»1') = &~. l
T(y(1)q'(1')) I~.&, (2)

where lC,) refers to the excited-state wave vector
of the target. In the case of elastic scattering, the
importance of the one-electron Green's function
was recognized by Bell and Rluires4' and by Na-
miki~ and formed the foundation of the many-body
description of that process. From the interpreta-

A. Elastic scattering

The one electron Gre-en's function, &(1,1'), is
defined by the formula" '0 (atomic units are used
throughout)

&(1,1') -=-,. &~.
l
1"(&(1N'(1'))l~.),

where $(1)=—g(r,o,t,) is the electron-field operator
in the Heisenberg representation, the symbol 1 de-
notes the combined spatial (r, ), spin (v,), and
time (t,) coordinates of the electron labeled as
number 1, l4', ) refers to the ground-state wave
vector of the target, and T is the Wick time-ord-
ering operator. The Bethe-Salpeter amplitude,
X„(1,1'), is defined as
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tion of the one-electron Green's function, "' "
the 8 matrix for the elastic-scattering process
can be written in terms of Eq. (1) as

Sp g= i lim dx,'dx, Q*, (x,', t,')
I ~+oo

&& G(1', 1)(t))2(x„t,), (3)

+ d2d3Go 1, 2 2, 3 G 3, 1'

where (t)~(x, t) denotes a propagating plane wave,
k, k' refers to the quantum numbers (momentum
and spin) of the incoming and outgoing electron,
respectively, the limits are taken. with adiabatic
decoupling, " ' and the symbol x refers to the com-
bined spatial (r) and spin (a) coordinates. In ord-
er to calculate the limit in Eq. (3), the Dyson
equation"" for G(1, 1'),

G(1, 1') = G, (1, 1')

B. Inelastic scattering

In the case of inelastic scattering, the 8 matrix
can be written in the form" "

S„;,-= lim dx~dx,'Q~(x23t, )
g

I ~ 42Ol
&& X„(1',1)y-,*(x,', t,'), (8)

where the subscript 0 refers to the initial (ground)
state and, n to the final (excited) state of the target.
The quantities p and q refer to the quantum num-
bers (momentum and spin) of the incoming and out-
going electron, respectively. From a comparison
of Eqs. (3) and (8), it is apparent that the quantity
X„(l,1') plays the same role for inelastic scatter-
ing as the quantity G(1, 1') plays for elastic scat-
tering, in order to evaluate the time limits in Eq.
(8), an equation for X„(1,1') is needed. This equa-
tion is provided in the form of the Bethe-Sa/Pete~
equation as

is used. In Eq. (4}, G,(1, 1') is the free partic-le
Green's function, P(2, 3) is called the irreducible
self-energy, ""and the integration for particles
2 and 3 means integration over spatial and time
coordinate and summation over spin. Substitution
of Eq. (4) into Eq. (3) gives the following result for
the ~ matrix for elastic scattering"

X„((,1) =fd3d3'd4 d4'G(1', 3)G(3', 1)

x = (3, 4, 3', 4')X„(4', 4),
where the quantity =(34, 3'4') is called the tu)o-
Point vertex function "4' .Substituting Eq. (9) into
(8), the following exact formula is obtained for the
S matrix for inelastic scattering"

S„;0~= —.2 d1 d2d3d4 ' 1

x =-(24, 13)X„(3,4) .
From this exact formula, the FOMBT (or HPA} is
obtained by substituting (i) the first-order approxi-
mation for the two-point vertex function"

=-,",~„„,=i5(3 4')&(3'-4) V(S 3')

—ib(3 —3') &(4 —4') V(3 —4), (11)

f,"(1)= lim i dx'G(1, 1')(t „-(1') . (6)

From Eqs. (4) and (6), the Dyson equation for this
amplitude can be written as

where

3;.; =3(4;—43,)(3;.;+—. d2d34,.'(2)1

Z(2, 3)f,."(3)). (3)

In Eq. (5), the quantity f~ (1), the &eynman Dyson-
arnplitude, has been introduced by using the form-
ula '

f "(1)= 4( o+f G (.1, 2)Q(2, 3)f-(3)d2d3. (7)

Equations (5) and ('l) together suggest that f „- (1)
can be interpreted~ as the "effective one-electron
orbital" of one electron moving in the field of the
other electrons described by the nonlocal optical
potential P(2, 3).

V(1-2)=5(t, t,)
~

1
lr-r, l

and (ii) the Hartree-Fock approximation for the
Feynman-Dyson orbitals. " By making those ap-
proximations in Eq. (10), and carrying-out the in-
dicated time-integration ' the following result is
obtained for the S matrix for inelastic scattering:

Sol) 23((
2~i (~fx ~(3 22) ol3, 232

RPA RPA

=-2xi3(xx-4; —x„)f dxdxg ' "(x)f ' '(x, )4' (x„x,), „ (13)

where c~ and a; refer to the energies of the incom-
ing and outgoing electron, respectively, and &„ to
the excitation energy of the state n. V "(x„x,)
is defined by the formula (x„x,),r, —r, l

(14)
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where X„"" (x»x, ) is the value of the transition
density inatrix ' in the BPA between states n and

0, r, and r, are the spatial parts of x, and x„re-
spectively, 6(x, —x,) —= 6(r, —r,)5... where e, and

o, are the spin parts of x, and x„respectively,
and &~,a2 is the Kronecker delta symbol. The tran-
sition density matrix can be defined by the formu-
la"

X„(x,x') = (e„~4'(x)4(x')
~
+.), (»)

where ~4g and' (4g refer to the wave vectors of
the ground and excited state, respectively, and

g(x) is the electron field operator in the Schr'o-
dinger representation. " The transition density
matrix can be expressed in terms of the wave
functions of the ground [4',(x,x, ~ ~ x„)] and excited
[4'„(x,x, ~ x„)] states, respectively, in the form

x„(x,x')=Nfl '(x, x, ...„x„)

x 4 (x' x ~ ~ .x„)dx, ~ ~ dx„,
where N refers to the number of electrons in the
system. In E(I. (13)fj' (x) and f; (x) are the
electron scattering orbitals in the HF approxima-
tion with outgoing wave and incoming wave bound-

ary conditions, respectively.

III. ANALYTICAL AND NUMERICAL DETAILS

A. Wave functions

In order to obtain realistic cross sections for
electron impact excitation of the resolved states
of argon, spin-orbit interaction has to be in-
cluded in the description of the excited states of
this system. " To be completely consistent, the
spin-orbit interaction should be introduced into
the total (K+1) electron Hamiltonian, as, for
example, mas done in atomic spectroscopy by
Condon and Shortley. Following this procedure,
spin-orbit coupling effects would enter the calcu-
lations of the f ""F(x),f-' '"F(x) orbitals as well
as the transition density matrix X„"P"(x„x,). How-

ever, the essential effects due to spin-orbit cou-
pling in the target can be included and the scope of
the calculations kept reasonably small by making
the following two approximations.

(1) Spin-orbit coupling effects were neglected in
the calculation of the f~" (x) and f ' (x) orbit-
als. These effects are expected to be important
only if spin-polarization effects are to be calcu-
lated" but are believed to be negligible if spin
orientations are averaged over. This is the usual
case when the incident electrons are not spin po-
larized and the spin of the outgoing electron is not
detected. This assumption makes it possible to
factor the free-electron wave functions into the
form

f '"'(x) =f ~'"'(r)n„, (o),

f (-)HF{ ) f (-)HF( r) )I (~)

where p and q refer to the momentum and ~,, and
m, , to the spin projection of the incoming and out-
going electrons, respectively, and g~, (a') is the
Pauli spin function.

(2) Spin-orbit effects were incorporated into the
calculation for the transition density matrix by the
following simplified scheme. " Spin-orbit coupling
and electron correlation effects were assumed not
to be important in the ground state of the argon
atom, so that the Hartree-Fock (HF) approxima-
tion was adopted for 4;, i.e.,

4'0=4'(", = (1s)'(2s)'(2P)'(3s)'(3P)'.

Here the customary symbols for spatial configura-
tion" have been introduced to denote the properly
normalized Slater determinant.

An approximate ground-state wave function of
this form was first calculated by Hartree and Har-
tree" and was also used by Knox" to calculate
optical oscillator strengths from the ground state
to the 4s'[1/2],' and 4s[3/2],' states. It should also
be mentioned that recent calculations of Swanson
and Armstrong" show that ground-state correla-
tion effects are important for rare-gas photoioniz-
ation processes (i.e., optical transitions between
ground and continuum states). Thon- That and
Armstrong" have taken into consideration ground-
state correlation effects in a Born calculation for
the total cross section of electron-impact excita-
tion of argon for the unresolved 4s, 48' levels
and found it to be important. However, since the
Born approximation was used, and spin-orbit in-
teraction was not considered in the excited state,
it is not possible to draw quantitative conclusions
about the importance of ground-state correlation
effects in electron-impact excitation of argon at
intermediate energies. The importance of ground-
state correlation effects in the FOMBT description
of electron scattering by argon at intermediate
energies will be considered in a future study.

For the excited-state wave functions, spin-orbit
coupling has to be taken into consideration. In
calculating the excited-state wave functions, a
fixed-core HF approximation (FCHF) was used
initially for the construction of the L~-coupled
[3P'4s] 4'P configuration. (This configuration con-
sists of states that are eigenstates of the L', 8',
L„S,operators with eigenvalues L =1, S=O, and
M~ =0, al, Ms =0.) The' (1s)'(2s)'(2P)'(3P)' core
orbitals were chosen to be that of the HF ground
state [i.e., the ones entering E(I. (19)]. The 4s
orbital was obtained in the FCHF approximation
for the [(3p)'4s] 4~I' configuration, keeping the
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~
4s'[1/2]; M~) = b

~
[(3p)'4s]4 P;M )

+a
~
[(3p)'4s]4'P„'M ),

4s[3/2]xiMz) =-a
I
[(3P)'4s]4'P„M/)

+ b
)
[(3p)'4s]4'P„M, ),

(20a)

(20b)

where a = -0.450, b = 0.893, and the wave function
is now characterized by the term symbol or con-
figuration symbol and the ~~ value referring to
the eigenvalue of the J, operator. The coefficients

core orbitals fixed.". The same 4s orbital was
then used to construct the IS-coupled wave func-
tions that belong to the [(3p)'4s] O'P configura-
tion. " (These wave functions are also eigenfunc-
tions of the L', S', L „and 8, operators with ~ = 1,
S= 1, and M~=+1, 0 eigenvalues. ) Since the spin-
orbit coupling effects are known to be most impor-
tant for the description of excited states of ar-
gon4'40 the wave functions belonging to the [(3P)'4s]
4'P and [(3p)'4s] 4 P LS-coupled configurations
were recoupled into J= 0, 1, 2 states where J re-
fers to the eigenvalue of the total angular momen-
tum operator. First a transformation using
Clebsh-Gordan coefficients was effected whic h re-
sulted in states that are eigenfunctions of the
I.', S', J', and J, operators. These states can
be grouped into the configurations: [(3P)'4s]4'P„
[(3p)'4s]4 Pl; [(3p)'4s]4'Pp and [(3p)'4s]43P, where
the subindex refers to the J value and every con-
figuration represents a collection of states with

M~ =Z, Z-1, . . . , -J. Spin-orbit coupling was then
introduced into the states with J=1 by the semi-
empirical method of Cowan and Andrew" and
Cowan. " Thus, the wave functions belonging to
the 4s'[3/2); and 4s[1/2], levels were obtained as
a linear combination of those that belong to the
[(3p)'4s]4'P, and [(3p)'4s]4'P, configurations in
the form

(a and b) were determined from the experimental-
ly observed energy'levels of the 4s and 4s' states.
It is to be noted that states with different J or M~
value do not couple by spin-orbit interaction since
the spin-orbit coupling operator commutes with
the J' and 4, operators T. hus the

~
[(3p)'4s]4 P„Mz

=0) and
~
[(3p)34s]4'P;,M/) wave vectors do not

change due to spin-orbit interaction, thus we can
write

14s[3/2]'M z& =1[(3p)'4s]4'P.;M.),
~4s'[1/2]„'M =0) =

~
[(3p)'4s]4'P;M =0).

(21a)

(21b)

B. Transition density matrices

Xp Ss[3/ 210 l/ (Xly X2) Xp Sssp l/ (Xl, X2) . (23b)

In Eqs. (2la)-(23b), the following notation was in-
troduced:

Now that approximations have been introduced
for the ground- and excited-state wave functions,
Eqs. (19)-(21) can be used in Eq. (16) for the cal-
culation of the transition density matrix for the
states discussed. The results can be summarized
in the following form.

For the J=1 states, we obtain

0 Ss~ll/2]1, Afg( 1& 2) b 0 431P 2/ ( 1& 2)

+ax, ~sp „(x„x,),
(22a)

Xp sshs/2jlI/1/ xlsx2) p, ss P s ( lt 2)

+bX, 3P „(x„x,),
(22b)

and for the J=O and 2 states,

0 ss'll/2]l, s/ 0( lt 2) 0 ss Pp 1/
( 1$ 2)

~ ~d =0

(23a)

X, 2S+1 „(x„x,) = ( [(3P)'4s)4' "L~;M~ lg'(xl)g(x2)
I P, )

As discussed in the preceding section the
~

[(3p)'4s]423 "L/, M/) state vectors were obtained from the

~

[(3P)'4s]4'2 "L;Mz, Ms) state vectors via a Clebsch-Gordan transformation,

(24)

Xp 0,2S+ lz '1/ (xl x2) = Q (LM/SMs
~

LSDg)xp s,2S+ lg l/ 1/ (x„x,),
I S

where

X, 2S+1 .„„(x„,) =([(3p) 4s]4""L;M.M. Is'(x, )|1( .) I+".').
The simplest way to calculate (in practice) this latter transition density matrix is to use the technique

(27)

~[(3P)'4s]4'2"L;M )= g (LM SM, ~LSD )[[{ 3)'P4 ]4s"" ;LMM ), (25)
NUNS

where the ~[(3p)'4s]4 ' L;MlM3) wave vectors are the ones that belong to the [(3p)'4s]4' "L configuration
with Mz, and Ms eigenvalues of the L, and S, operators. Combining Eqs. (24) and (25), the transition dens-
ity matrix for the (

[(3P)'4s)4'3 "Iz, Mz) states can be written as
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introduced by Altick and Glassgold"'" to generate excited-state wave vectors. In their formulatio~, we
can write

(sj) 4s s 'L;M~Ms)=C'(LM„SMs$4ssP)) I+a'&

where we have defined

C'(LMI„SMs(i &])=e'"~s' g (-1)"~" (I m-I,m, ~l„/, LM) (s —P s P, ; ~ ,'SM—s)ata
mflfo p (M

(28)

(29)

g (r ) = Q a,.y,.(r) + Q a y (r) .

The use of Eq. (28), (29), and the commutation
properties of the a, and a second-quantization
operators allows rapid calculation of the transi-
tion density matrices, given by Eq. (2'I). The
final result can be given in the form

(so)

Xo ~2S+1~.„„(x„x,)

(sla)

~,s, u

=~„(r,)ft„(r,) Y,„,(r, ) Y„(r,),
where the p»,„(r)normalized HF ground-state
orbital was factored into the form

(slb)

y, ,„(r)=Il, (r) Y,„(r) (31c)

and the normalized 4s orbital was written as

y~(r)=&~(r) Y„(r). (31d)

In the above formulas Y~„(r) denotes the spherical
harmonics as defined by Edmonds. " The
fs ~ (o,vs) spin functions are defined as follows:

S

here i refer s to all quantum numbers n,.l,m, ~ p, of
the one-electron orbitals Q„,.q„„,.&, y, ~ ~,. (r, &) that has
been selected as reference. In our case the one-
electron orbitals are selected as the ground-state
HF orbitals and the FCHF excited-state orbitals
of 'P symmetry. In Eq. (29) i refers to an ex-
cited state, & to a ground-state orbital and a~, a
are the second quantized creation and annihi1. ation
operators that are related to the field operator
g(r) by the following equation:

&., .(v,~.) = [~(~,) ~*(~,)+P(o,)P'(o,)),=1
(32a)

~, .(, .}=,[~(v,) ~'(..) -~(.,)~*(;)],=1
(s2b)

(32c)

(32d)

&&, ,(a,c.) = -o'(v, ) t)'(o,),
&&.,( o, c)=P(o,)&*(o,).

Substituting Eqs. (31a}-(31d)and (32a)-(32d) into
Eq. (26) and the results into Eqs. (22a) and (22b)
and (23a) and (22b), one obtains expressions for
the spin-orbit coupled transition density matrices
in terms of the 4s and 3p orbitals and spin func-
tions.

C. Cross-section formulas

Substituting these transition densities in Eq. (14),
to be used in Eq. (13), the T matrix can be ob-
tained in the FOMBT (with the additional simpli-
fications introduced} for the excitation of each
particular 4s[j]o~,M ~ state (where j= -', , -' and J= 0,
1,2; M~= —J, —J'+ 1, . . . , J)which will be denoted by

T 0Os ym; 4$ fjj~~Q~~ qms
1 2

and the S matrix is related to the T matrix by the
usual definition S=1—T. From the T matrices,
the differential cross section for the excitation of
a particular 4s[j]~ level can be obtained (the term
level here refers to the collection of all the M~
states for a given J). Since the incident electrons
are not usually spin polarized and the spin of the
outgoing electron has not been detected in the ex-
periments reported to date, an averaging for the
spin of the incident electron and a sum for the spin
of the outgoing electrons (as well as the magnetic
sublevel of the final ta,rget state) has to be intro-
duced. The DCS for excitation of a given level
then takes the following form:

(da' q IT I2
4 2 ~ s ITo,&,4~~g]o, M, q~s i

4sU3~ + P NJ ms ma2

(33)

where p and q refers to the magnitude of the p and q vectors, respectively, i.e. , p= Ip ~, q= ~q I. Using the
result obtained above for T matrices in Eq. (33) the following formulas are obtained for the various level
cross sections.
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~ ~ ~

Lfo) 1 q b'

dg,l, o-4v2 2 I L, +=.l, s=o L, NLH, s=ol I L NLd), s=o L, NLd). , s~)II 2TD TE I2+ 12TD TE I2

j 4 (~/2]o 7T .

, I4r;,„„„r;,„,, ..I)
a'(

+
2 I&!

TL, N =, s l I
+

I TL, N =l, s= I'+ IT L N =-l, s=l I" (34a)

2TN —Ts '+ 2TN —Ts,
I'da'I 1 q a2 (

, -4,.„-,
I I 1 NL-l, s=o L, NL--l, s=o I

~ 4s[3/2]y

!

Q2

(34b)

do & q & I'
2 E 2 TE=, . --41,14'*.,=,* ~ I

~
I 7',;... I

~ IT'.,;-.*-, I )4S' $&/2]O

(dO & q5 E 2 TE 2+ Ta-4 .--, IT', .-, s-,
1

+14':,, *,I*
I ..~, . I),

4Si3h]2 P L

where TL ~ ~ and TEL ~ ~ are defined by the following expression:

(34c)

(35a)

and

(35b)

Thus the calculation of the DCS's according to (34a)-(34d) reduces to the calculation of T~L „s and TSL „
integrals given by (35a) and (35b), respectively. It can be noted that, in our approximation scheme,

dj 4g[3/2] )4a Pl/2]

D. Angular momentum analysis

In order to calculate the three-dimensional integrals indicated in (35a) and (35b), an angular momentum
expansion is introduced for f; (r) and f; (r) . The z axis can be chosen along the p vector (momentum
of incident electron) and consequently the expansion for f-'"F(r) can be written in the following form:

f '""(r) = Q i'cospv(p)e4s(" &» u", F(p, r)P, (cose),
l=O

(36)

where u", F(p, r) is the HF continuum radial function with the asymptotic form,
I

u, (p, r) = sin pr- —I+tanb, cos pr-—17LI „r ( 1v

2) (37)

where 6, is the lth partial wave HF phase shift, ti is the polar angle of r, and PI(cosg) is the lth order
Legendre polynomial. o' The angular momentum expansion for f; (r) can be given in the following form:

f ' (r)=—g g i'cos6", F(q)e 'o, '"u", F(q, r)Y, , (q)Y, , (r),
q l=O e=

(38)

where q refers to the polar angles of the vector q. Substituting expansions (36), (38), and the formula
given by Eq. (31b) into (35a) and (35b), respectively, along with the usual multipole expansion for V(r, —r,),
the following result is obtained:
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Itl +1 (1

T,„,=—g g (-2)exp(2[5", '(p)+ 5", '(q)]]
Pq 1 "~

I j)/LI 1 '=I 1 "-1
I r

1/2,
'

~r Eir
x (2I'+ 1)(2l"+ 1)

(I +ML) 0 0 0 p L L~

x cos5",,t(p)cos6(F(q)It(';(:, P;.(cos8,)e-( L22

where

T "Pi cos8 8 & e,
gtl

and

I)& ) ~ s: dry dr2 ' g ry, " p
0 0

II

( 1)( l'+1"+1)/2( 2)~3 (2f jj+ 1)TE
PQ l"&I Ngl l' = l"-1

(40)

xexp('[5", (p)+ 5",- (q)]]. cosh", (p)cos&",- (q) I"+ML !

where

l" l' ].

0 0 Oi M 0 -M

T .Pp' cos8 e™z,'~,
l". ~/N I

P (cos8,)e '"('4J't(41-,-

(41)

~ 'i-S=-
0 0

r'
Cr, u(- (q, r, )u",. (p, r, ) („P32,(r2)P4,(r,) . (42)

E. Numerical implementation

In its numerical implementation, the sums over l in Eq. (39) and (41) have to be terminated at a finite
value, l . However, in the case of T~~ „sthe series for E' is slowly converging and / has to be chosen
quite large (l & 90). This numerical difficulty can be overcome if TL „3 is written in the rearranged
form'

T = T -Pr- cos8 e™&~+ T~'„'"s — T,". "P,- cos8 e '"~~
NgS l l e t Ct (43)

where T2„"„" 3 is obtained from TDL „3by the substitution f; "(r)- e'2',
in Eq. (36) fhe substitution 6H(F-p, u)F(p, r)-prj, (pr) [j,(2) is the lth order
T~'„s can be calculated without partial-wave analysis using the following

(4)l)3/' .
L jt 3 2 LjtL(

&)ATE)

L( ) j

fp' '(r) - e '2'& (which implies
spherical Bessel function]).
formula:

(44)

where K=p —q is the momentum-transfer vector, K= ~K~, and ez, gr are the polar angles of K and IL(K) is
the one-dimensional integral

j W= f j' ~b;)j'„b;)j.,(jj~,)d~, .

Using the substitutions mentioned above T(' can be obtained from Eq. (39);

( 1)(l +l-l )/2 (f n /!/! ) I ) 1/2

T,,', -=4m (—2)(2f'+ l)(2l" + 1)
l'-

I l"-1 I

(46)

dry dr rjr2) ) tgrg )) ~ pry P3I, r2 P4 r2 (46)
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In Eq. (43) the sum over I" in the first and third
term can be terminated at some l" = /' value
where 5a(v- 0 and u",S(p, r) =j~ (p, r) approximations
hold. This usually appears at a much smaller val-
ue of I ~ then the value l - needed to reach the
convergence in the series given by Eq. (39). In
this case the formula given by Eq. (43) ensures
that undistorted partial waves [u,(P, r)-Prj, (P, r);
5a(F- 0] are taken into consideration up to infinite
order for any value of l

Another num er ical problem arises in calculating
the individual integrals I,~,-~ . These integrals can
be written in the form "

rI~;; = dxx&", q, z, &",- p, x, ~3~ „~, , 4 7

where

IV. RESULTS AND DISCUSSION

The results from the FOMBT description of the
electron- impact excitation of the argon atom, that
can be compared with experiment (or other theory),
are the integral and differential cross sections
(DCS's) for excitation of the four electronic states
considered in this study, and the parameters char-
acterizing the electron- photon coincidence mea-
surements involving the tw o J = 1 states . The dif-
fe rential and integral cross sections predicted
by the FOMBT will be compared with the results
from other theoretical models and the available
experimental data in this paper and the des crip-
tion of the electron- photon coincid enc e parameters
for argon wil 1 be discussed in subsequent publica-
tions . 3..„.,(.)= f ., :~.'(;)~.,(..).

0
(48) A. Differential cross section

V.. ..(r)-
f'-OO

where

(49)

&3~4,= dx y P3~ r P4, x .
0

(50)

This means that V,~„(r) is of long-range nature
and the integral in Eq. (48) has to be extended to
very large values of x. The numerical cal cula-
t ion of I,~,-s can be s impl if ied however in view of
the fact, that (i) V» „(r) reaches its asymptotic
value indicated in Eq. (49) outside the range of the
orbital 4s (ii) in the intermediate-low energy re-
gion, u", F(p, r) reaches its asymptotic form [given
by Eq. (3"l)] for values of r (r & 100 a.u. ). Thus
the integration region in Eq. (47), for y;, was
divided into two parts,

I,I II l&yQ, I g y fy Q, P p
'Vy) V3p~

0

+ df'~Qg. g, ~~ g) p) g~
B0

(51)

In the first term ([O, RO] interval), accurate nu-

merical integration is used, whereas in the se-
cond term (in the [R„~]interval), the u", F(q, r),
u",Z(p, r), and V»~, (r) are all approximated by
their asymptotic forms as given by Eqs. (37) and

(49). If /' and I" are not very large (I', I" ~ 15),
Ap can be conveniently chosen A0 = 70- 130 a.u .

From the definition of V,-„(r) it immediately fol-
1ows that

1. Spin- orbit coupling in the target

Before embarking on a detailed comparison of
the present theoretical results with the available
experimental data, the role of spin- orbit coup 1ing
in the target should be elucidated. As described in
Section III A above, re lativi stic effects w er e not
included in the dynamics of the scattering process
but only in the description of the final target state.
Figure l(b) illustrates the importance of spin-
orbit coup 1ing in the final target state for a proper
description of the excitation of the 'P, state . The
effect is particularly d ramatic for scattering
angles less than 60 degrees since the transition
is optic all y forbidden in I.S coupling. As a con-
sequence of a small admixture (-20%) of the 'P
w ave function into the 'P wave function, the shape
of the DCS is transformed into one characteristic
of an optically al 1ow ed transition and in excellent
agreement with the exp er imental magnitude and

shape . On the other hand, the effect of the spin-
orbit coupling on the Py DCS is essentially negli-
gible as shown in Fig. 1(a). As will be apparent
in the next section, the effect of spin- orbit coup-
ling on the DCS for excitation of the 'P, and 'P,
states is the same as shown in Fig. 1 at all inci-
dent electron energies examined in this study . It
w as not necessary to consider relativistic effects
on the 'P0, states since there are no other n = 4
states w ith the same J values .

The Born DCS for excitation of the 'P state is
also shown in Fig. 1 (a) for comparison with the
FOMBT result. It is obvious from the comparison
in Fig. 1(a) that the Born description of the ex-
citation process is inadequate - and both electron
distortion and exchange effects need to be inc luded

to properly describe the excitation process .
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FIG. 1. Differential cross section (DCS) for excitation of Pg and Pg states of argon at 50 eV, with and without spin-
orbit coupling; (a) excitation of P~, (b) excitation of P~. The short dashed line in (a) is the Born result. The solid
line is for spin-orbit (jE) coupling. The dashed line is for I $ coupling.
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FIG. 2. DCS for excitation of the (a) Pg and Pg and the (b) P2 and Po states of argon at 16-eV incident electron
energy. The solid lines are the results from the FOMBT hand the data points are &;he results from electron energy-loss
measurements (Ref. 35). Note that the results for P~ and Po have been tedueP ':;~y a factor of 10.
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FIG. 3. Same as for Fig. 2 except for 20-eV incident electron energy. Note that the results for P~ and Po have been
~educed by a factor of 10.
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2. Comparison with experiment

ARGON

I
'

I

Tables I and II contain the FOMBT DCS values
for excitation of the 'Py Py Pg and Pp states
of argon at incident electron energies of 16, 20,
30, 50, and 80.4 eV. Figures 2-5 show compari-
sons of the theoretical DCS's with the absolute
cross sections obtained" from electron energy-
loss measurements. Figure 6 illustrates the re-
sults for an incident electron energy of 80.4 eV,
for which no state specific experimental or theo-
retical results are currently available for com-
parison. Figures 2-5 show that the FOMBT re-
sults are qualitatively accurate at all incident
energies considered and quantitatively accurate
at 16 and 50 eV. When in error, the FOMBT ap-
pears to slightly overestimate the DCS. Generally
speaking, the FOMBT appears to do a somewhat
better job describing the optically allowed (bJ =1)
excitation processes than the optically forbidden
('P„'P,) excitations. This can perhaps be under-
stood on the qualitative grounds that excitation of
the 'P, and 'P, states from the 'Sp ground state of
argon is dominated by exchange interactions which
are not as well described by the FOMBT as the
direct interactions that dominate the 'P, and 'P,
excitations. This explanation is consistent with
the observation that the DCS's for excitation of the
'P, and 'P, agree best with experiment at 50 eV
incident electron energy and, at the higher inci-
dent energies, the noniocai interactions (e.g. ,
exchange) are relatively weaker than for the lower
incident energies.

Figure 7 contains a comparison of the FOMBT

results and the relative DCS measurements of
Lewis et gl. ' for excitation of the unresolved 4s
and 4s' states. The theoretical DCS's for excita-
tion of the 'P» 'P» 'P„and 'Pp states were simply
added together and the relative experimental DCS
was normalized to the theoretical result at a
scattering angle of 40 degrees. The shape of this
composite theoretical DCS is seen to be in excel-
lent agreement with the experimental result.

B. Integral cross sections

This section contains a comparison of the inte-
gral cross sections obtained in the FOMBT with
the other theoretical and experimental results.
Although it is known" that integral cross sections
are a much less sensitive test of a theory than the
DCS's, such a comparison is informative because
the integral cross sections for inelastic scatter-
ing are the most frequently used in applications.
Upper limits to integral cross sections can also
be obtained experimentally by optical emission
studies which provide additional data for compari-
son of the theoretical integral cross sections.

Figure 8 shows a comparison of the FOMBT
integral cross section for excitation of the 'P
state with the same cross section deduced"
from electron energy-loss measurements. The
theoretical and experimental results are in good
agreement except at 100 eV where the experiment-
al value is substantially greater than theory. Fig-
ure 9 contains a comparison of the FOMBT inte-
gral cross section for excitation of the 'P, state
with the cross section extracted" from electron
energy-loss data. The experimental and theo-
retical results are in excellent agreement through-
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out the energy range except in the 20-50 eV where
the theoretical cross section is somewhat large.
There are no other measurements of the integral
cross sections for excitation of the 'P, and 'P~
states of argon for comparison.

Figure 10 contains a comparison of the FOMBT
integral cross section for excitation of the Py
with available experimental and other theoretical
results. The FOMBT integral cross section
agrees in shape and the energy location of the

maximum value but is somewhat larger than the
cross section deduced from electron energy-loss
data, "which is the only measurement of the direct
excitation cross section. Two different optical
emission cross sections have been reported.
McConkey and Donaldson" have reported a cross
section for which most of the optical cascading
from higher electronic states has been subtracted
and their integral cross section agrees reasonably
well in magnitude with the FOMBT result but has
a different shape. Mental and Morgan' have re-
cently reported an optical emission cross sec-
tion that has no correction for cascade. As ex-
pected, their cross section is substantially larger
than that reported by McConkey and Donaldson, "
as well as the result obtained from electron ener-
gy-loss data. One other theoretical result, has
been reported, the results of a Born calculation by
Peterson and Allen. " As expected, this integral
cross section is larger than the FOMBT cross
section and appears to asymptotically approach the
FOMBT result as the incident electron energy in-
crease.

Figure 11 contains a comparison of the FOMBT
integral cross section for excitation of the P,
state of argon to experimental measurements
and the results of a Born calculation. The Born
integral cross section is in good agreement with
the FOMBT result over the entire energy range.
Both of these theoretical cross sections are slight-
ly larger but in reasonably good agreement with
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FIG. 11. Integral cross section for, excitation of the
Pg state of argon; The heavy line denotes the result

of the FOMBT and the data points with error bars are
the results from electron energy-loss measurements
(Ref. 35). Other results shown are the optical emission
cross sections of McConkey and Donaldson (Ref. 13)
(squares) and of Mentall and Morgan (Ref. 14) (triangle,
200 eV), and the theoretical (first Born) results of Peter-
son and Allen (Ref. 19) (dashed line). See text for de-
tails.
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the results from electron energy-loss data." Be-
cause of cascade contributions, the optical emis-
sion cross section of the McConkey and Donald-
son" is larger than the other integral cross sec-
tions over the entire energy range.

C. Inelastic momentum transfer

The inelastic momentum-transfer cross section
associated with electron-impact excitation of
state i, QP(E), is determined from the DCS ac-
cording to~

for scattering angles greater than 140 . The ex-
perimentally determined DCS's were extrapola-
ted" smoothly from 140' to 180' but there is, of
course, uncertainty associated with such a pro-
cedure.

Figure 12 contains a comparison of the inelastic
momentum transfer associated with the excitation
of the Pp P2 Pj and 'P, states of argon, as
calculated using FOMBT and as determined from
analysis of the electron energy-loss data." The
FOMBT results are in semiquantitative agree-
ment with the experimental data for all four tran-
sitions.
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