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No-go theorem for the superradiant phase transition without dipole approximation
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A diamagnetic inequality is used to extend beyond the dipole approximation an earlier result concerning the
nonexistence of the superradiant phase transition.

p,. ——A(x, + 5, i '+ V(x,), (I)
j=l

and the Hamiltonian of the photon field,

Hz= +5'&(), a',.a, (2)

Here pj denotes the canonical momentum of the
electron in the jth atom, xj the electron's posi-
tion with respect to the nucleus, and Rj the mean
position of the jth atom, which will be regarded
as a fixed parameter.

To simplify the discussion, and to keep it on a
rigorous level we have the following:

(1) We have excluded here the direct interaction
between different atoms. Such interactions, of
course, can lead to a variety of different phase

Since the paper of Hepp and Lieb, ' considerable
effort has been devoted to the study of the impact
of coupling to radiation on the equilibrium thermo-
dynamic properties of atomic systems. It has
been proved recently that the superradiant phase
transition found in Ref. 1 for the Dicke Hamilton-
ian cannot occur in a general system of atoms, if
only charges (not spin magnetic moments) of the
particles interact with a finite number of trans-
verse radiation modes in the dipole approximation.
The result was shown to hold without the dipole
approximation if the Coulomb potential binding the
electrons in the atoms is replaced by a harmonic
potential. .' This last result is a strong indication
that an extended version of the no-go theorem
without restriction to the dipole interaction and for
arbitrary binding potentials, is also true. It is
the purpose of this note to demonstrate that.

Our Hamiltonian H for the system is a sum of
two terms: the atomic Hamiltonian

N

transitions and a large part of standard statistical
mechanics is devoted to them. In an earlier
publication, ' however, we showed that they play
no role in the study of the equilibrium thermo-
dynamics of atomic systems interacting with trans-
verse radiation in the dipole approximation.

(2) The potential V(x) is assumed to go to irt-

finity for I xl -~ at least as rapidly as, say,
(InI7I )"'. It is the same as the assumption that
it has only a discrete spectrum without a finite
limiting point. This is a purely technical assump-
tion, which guarantees the finiteness of all the
atomic traces encountered in our derivation. An

alternative would be the truncation of the Coulomb
potential with a subsequent elaborate proof of
the existence of the limit for the intensive thermo-
dynamic quantities when the truncation is re-
moved. As the super radiant phase trans ition first
occurs at T =0, physically the detailed properties
of highly excited states should not matter anyway.

The transverse electromagnetic field is taken
to be composed of (a fixed number) m modes,
characterized by photon energies h~„wave vec-
tors ki, and polarization vectors 7, Plane-wave
decomposition of the vector potential has the form

A(r)=(2wR'p)"'Q — „, ' ' +H.L), (3)

where the density p=N/V has been introduced with
the usual identification of the sample volume with
the quantization volume. The simple argument
outlined below does not require any approximation
of the plane-wave exponents in (3), neither in the
operator x nor in the parameter R. That means
that we do not make a dipole approximation in
either global or local senses.

All equilibrium thermodynamic properties of
the system can be derived from the partition
function Z(lV, T) as follows:
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Z(N, T) =Tr~Tr„(e ~"),

requiring summation over both field and atomic
variables. This task is simplified greatly by the
observation of Wang and Hioe' that the leading
term of Z in the N - limit comes from that
part of the e ~ operator that is normally ordered
with respect to the field operators. The validity
of this statement has been justified by Hepp and
Lieb' for the case of an atomic system described
by means of a finite dimensional Hilbert space-
of which the notion of the "two-level atom" is the
most common example. Their proof holds also
for the case studied here, as finiteness of single
atom traces and not finite dimensionality of the
atomic space is required there. ' It is just to
secure the rigor of this statement that we have
chosen the assumption concerning the behavior
of the binding potential at large distances. There-
fore we shall explore once again the c-number
substitution for the field variables a, —a, , a&

'The partition function takes the following form:

J
' " exp) p)Z-yte:I e

I ')
(

7T j=l

X Tr~(e +7 e },

The traces over atomic variables are finite for
the considered class of potentials.

At this point we are dealing with noninteracting
atoms subjected to the external magnetic field
described by the amplitudes a, For this case
several so-called diamagnetic inequalities have
been recently discovered. They show that the
spectrum of the atomic Hamiltonian goes up in
mean when the magnetic field is turned on. ' ' The
inequality applicable here is due to E. Nelson, as
cited in Ref. 8. We now have

[(x(exp(-p [1/2m(p —e/cX)'+ V]] ( y} (

~ (x ( exp [-P(p'/2m+ V)] ) y) [ . (6)

It follows from the path-integral representa. tion"
for the matrix element of

8 r

(x) exp[ p[lypm(p —e/eX) +p[})y)= f exp i —I A(z)xee exp — ['mpeyS))eel .... ~x&e)
x(0)=x;x(B}y C 0 & o'='s='g

via estimation of the first exponent (which is just
a phase factor) under the integral by unity.

Nelson's inequality, when taken for diagonal
elements, implies the relation

Tr„[exp-ph(n, .)] ~ Tr„[exp -pk(n, . =O)]. (8)

As we argued in Ref. 2, those traces are exactly
equal in the dipole approximation.

But even in the present general case, due to
(8}, the maximum of the integrand of (5) is reached
for n,. =0. For the potentials considered here the
intensive thermodynamic functions in the N- ~
limit are given by the saddle-point values of the
a integrals. In particular, the mean photon num-
ber per atom must always vanish in the thermo-
dynamic limit and the free energy per atom does
not depend on the coupling to radiation. If there
is any impact of the coupling to radiation on the
equilibrium thermodynamic properties of the
atomic systems, it can show up only in more
realistic models, which account for spin mag-
netic moment, statistics, and infinitely many
modes of electromagnetic field.

The study of the infinitely many mode case is
both important and difficult. It is important since

I

even a single atomic transition has its natural
width; therefore, when approaching the thermo-
dynamic limit an indefinitely growing number of
field modes enters the resonance. It is difficult
since no proof of the existence of the thermo-
dynamic limit exists in the literature. Also, the
e-number substitution cannot be exact in this
case. Even a noninteracting system leads to a
contribution of Planck's distribution of radiation
to thermodynamic functions. With thermodynamics
unknown, it is nevertheless certa. in that a super-
radiant phase transition cannot reemerge. It is
not difficult to show that the ground-state en-
ergy of the atomic system described by the Ham-
iltonian [Eq. (1}], interacting with an arbitrary
(and perhaps infinite) number of modes, is bounded
from below by the sum of ground-state energies
of atoms noninteracting with radiation. We may
recall that the superradiant phase transition is
caused by the appearance of a density-dependent
ground state, whose energy indefinitely decreases
to -~ with the increase of density.

One of the authors (K.H.} is grateful to Professor
N. Staumann for bringing diamagnetic inequalities
to his attention.
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