
PHYSICAL RKVIE% A VOLUME 23, NUMBER 5 MAY 1981

Bound excited states in density-functional theory
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Using recent modifications of the original Hohenberg-Kohn theorem due to Levy [Proc. 'Natl. Acad. Sci. USA 76,
6062 {1979)]and Valone [J. Chem. Phys. 78, 1344 {1980)Jand the modified Ritz variational principles [J.K.L.
MacDonald, Phys. Rev. 46, 828 (1934j]alternative density functionals are exhibited which respect the bounds of the
modified principles. Excited-state energies and electron densities may be calculated by direct minimization of the
new functionals. The density functional R,[p,U] obeys the bound R,[p,U] & {Ei —U)', where U is a fixed constant
energy and Eb is the bound-state energy of the system closest to U. At present, it appears that the functional
depends nontrivially on the external potential. Some properties of reduced density-matrix functionals are presented.
The nature of the 2 matrix functional, R gp, UJ, provides clues to the nature of the density functionaL The evident
dependence of R,[p,U] on the external potential indicates that the presence of excited states in the Levy density
functional is very unlikely. The point of view in this paper is found to complement the recently proposed Theophilou
density functional for excited states.

I. INTRODUCTION

A. Prior history of excited-state density-functional theory

8. The conventional variational principle and Hohenberg-
Kohn theorem elucidated by the Levy functional

In an immediate sense, the Hohenberg-Kohn
(HK) theorem, ' valid for variationally determining
ground-state density, may not be extended to ex-
cited states. Previously, Epstein and Rosenthal
demonstrated by counterexample that the external
potential is not uniquely determined by an excited-
state density. Recently, Theophilou produced a
functional of "composite" densities with excited-
state components which satisfy an HK-type theo-
rem, using Schrodinger-type functionals. How-
ever, the excited-state density must be calculated
from the difference of two composite densities.
In the precipitant analysis of Katriel, the Theo-
philou approach was shown to be a variant of the
original HK theorem applied to a composite Ham-
iltonian. Of further interest is the fact that each
composite state requires a new (composite) den-
sity functional, and each composite density con-
tains the ground-state density, which determines
the external potential. Because of this situation,
the relationship between the external potential
and the excited states remains unclear in details,
but it is apparent that a different functional must
be constructed for each external potential.

To continue the elucidation of this relationship,
we examine density functionals based on Mac-
Donald-type functionals, ' i.e. , expectation values
of various powers of the Hamiltonian. These
functionals are not a consequence of the original
HK theorem and prior knowledge of other states
is not required as in the Theophilou approach. '

The role of the external potential appears ex-
plicitly in the resulting map between densities and
ensembles, necessitating a different functional
for each external potential.

The Ritz variational principle states that the
Schrodinger energy functional E,[4'] is bounded
below by some finite constant, the ground-state
energy

E,[@]-=(4, M)~ E,

for all normalized, antisymmetric wave functions
+ and for a fixed, molecular Hamiltonian &. The
original HK theorem demonstrates the existence
of a universal energy functional EHK[p] for a fixed
Hamiltonian, depending only on the total, 1-parti-
cle density p, which respects the bound in Eq. (1),
for all p which are representable by a wave func-
tion of appropriate symmetry which is also the
normalized, nondegenerate ground state for some
local, external potential:

EHK[p] E0 x

for representable and normalized p. - A density
p is representable by a wave function if

X(x) fdx P(x, xx&}@ (x, x g},

where xx=(x„. . . , xJ is a vector of spin-space
coordinates. By universal, we mean that the de-
pendence on p does not change when the local, ex-
ternal potential changes. '

This definition of universal is different than the
one used by HK in Ref. 1 and by Levy. ' In Ref. 1
for instance, E„„[p]is decomposed as

x, [p) x(x)»f axx(x)x(x), =
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D(N, N') = Q &vP'~(N)4'~(N'),

where N stands for a vector of spin-space coordi-
nates (x„.. . , x„), f+„(N)) is some set of ortho-
normal, antisymmetric n-particle wave functions
and Z,v&, =1, with all co, ~ 0. The set of all such
density matrices we denote by 8„. The one-
particle density is obtained from some n-particle
density matrix by integrating all but one coordi-
nate

pn(s) =fdry iD(X x 1',X XII I) . (5)

We call the set of all n-particle density matrices
which produce the same one-particle density

L,(n) IDc 8„:f d=-x„,D(xx~, ;x, x„,)=p(,x)I,

for one fixed p(x). As Gilbert has shown, none
of the L,(n) is empty. Then the one-particle den-
sity function as E,[p] may be defined by'

E,[p] =—min((H, D): D c I (n)] . (7)

The inner product notation, (A, B), for matrices
A and &, is adapted.

Recently it has been shown that there is a well-
defined method for selecting one energy-minimiz-
ing ensemble from L,(n) which one may uniquely
associate with p. ' Consequently, there is a
parametrization of a set of ensembles by the den-
sities,

where E[p] is a functional only of the density p
and not of the external potential v. Thus, E[p]
is ' universal" in the sense that it need be corn-
puted only once for all times. A part of E«Lp]
is universal in this sense. The concept to be used
in thiS paper is most naturally referred to as a
type of universality and so we have not introduced
new vocabulary. In addition, the excited-state
density functionals to be discussed do not submit
to.such a helpful decomposition. Therefore, we
have chosen to shift the definition of universal,
in order to aid the comparison of ground- and ex-
cited- state functionals.

The original theorem has been extended by
Levy and modified by Valone to establish the
existence of a universal energy functional of the
total one-particle density which is defined for
any density, representable by an n-particle den-
sity matrix. A density matrix D(N, N') (or an
ensemble) may be defined as

D(p) = D(N, N'; p),
such that

for all normalized p. We call this the Levy repre-
sentation of the energy-density functional. The
result is that grouping the n-particle densities
together according to which one-particle density
is produced preserves the bound in Eq. (1)

E Lo]o E (10)

dx„PO(x, x„,)+,*(x,x„,) =po(x) .

Therefore, a direct minimization of E,[p] would
yield the ground-state energy E0 and the ground-
state density po.

' We may identify EHK with E,.
One wonders whether analogous results hold for

excited states. Is there a method for calculating
excited-state energies and one-particle densities,
representable by excited-state wave functions, by
direct minimization of a functional'P We will
show that such a method exists but first we must
ask how to do this for wave functions (or n-parti-
cle density matrices).

C. Modified Ritz variationa1 principle

MacDonald' long ago gave an answer for the n-
particle case which does not require prior knowl-

edge of other states. ' He defines functionals

(13)

where U is an arbitrary, fixed real constant and
nz is an integer ~ 1. The Euler equation from Eq.
(13) is

[(If U)m y&m& j@&m& 0 (14)

where A.
' is the I agrange multiplier associated

with the normalization constraint. MacDonald
then shows that the solutions to Eq. (14) are &1'&"&

=+s and X&"'=(E- U)" where

(15)

where E is some discrete eigenvalue of H. The
critical fact is that if E, is the bound-state eigen-
value of If which minimizes (E—U)", then

I [O', U] ~ (E~- U)m,

for all p with unit norm. Further, there is a den-
sity p„representable by the (assumed nondegen-
erate) groun'd-state wave functions, &1'0 which
attains this bound

E~[po J =Eo,
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for all normalized + of appropriate symmetry.
For even m, these equations allow excited-state

energies and wave functions to be calculated by
direct minimization of the functional I . Apart
from the problem of computational attractiveness,
this is a possibility which is available in principle
and provides an analytical scheme which may be
examined for. general physical principles and used
for approximation purposes. These provide the
sta, rting point for a density-functional theory of
excited states.

In Sec. II, . the new density functionals analogous
to the Levy functional are defined. The preserva-
tion of the variational bound and the represen-
tability of various extremal eigendensities by ex-
cited-state n matrices are proved. In Sec. III
the generalization of these functionals for re-
duced-density matrices suggests easier evaluation
of the functionals, -but for matrices of order two
or higher, the N-reyresentability problems pre-
vent their immediate use. ' ' In Sec. IV, spec-
ulation concerning the nature of the density func-
tional is based upon the corresponding 2 matrix
functional. The yossibility of excited states in
the Levy functional are also considered.

R, [p, U] =Z.[p] —U. (2O)

This approach to density-functional theory em-
phasizes the parametrization implicit in the theo-
ries of HK' and of Levy. ' It also provides for the
construction of a density-functional theory for
nonlocal potentials and arbitrary powers of the
Hamiltonian, even though the functionals may not
be universal. Nothing of this type is available
from the HK approach, which relies on a proof
by contradiction and is not defined for all densi-
ties. The approach advocated by Levy is seen to
be essential. Note also that knowledge of states
other than the one resulting from minimization of
Eq. (19) over p is not required to produce an ex-
cited-state density, as will be demonstrated in
the next subsection. ' The advantages of this are
in part counterbalanced by the fact that D2(p, v)
apparently depends on the external potential v.

Since excited states 'appear as absolute minima.
in the MacDonald functionals I2[D, U], we may
concern ourselves with the corresponding m = 2
functionals R2[p, U] . In spite of the apparent lack
of universality, we fix the external potential and
proceed with the incumbent restriction.

II. A DENSITY-FUNCTIONAL THEORY
OF BOUND, EXCITED STATES

A. Definitions of density functionals

We first note that the MacDonald functionals of
Eq. (13}may be defined on ensembles without
violation of the associated variational bound in
Eq. (16). Now define the functionals R„'[p, U] by

R'„[p, U] = min{((H —U)", D): Dc L (n))

= min(I„[D, U]: D c I,(n)],

for B with a local external potential v and U as
above. Using the arguments of H,ef. 10, one en-
semble of those minimizing I [D, U] over L,(n)
may be uniquely selected to associate with p.
The resulting parametrization of ensembles is
denoted as

D„(p, v) =D„(N, N', p, v),

allowing definition of the functionals

(18)

R [p, U] = ((H —U), D (p, v)}

=I.[D.(p, v), Ul. (19)

These are the density functionals which we will
exploit in describing excited states. At this time,
we assume that, for m~ 2, D (p, v) depends on v.
A long-range goal is to verify whether or not this
is indeed the case. (See Sec. IV. ) Note that,
for a local v, D~(p, v) =D(p) of Eq. (8) and

B. Variational principle

1. Theorem

2. Proof

To arrive at Eq. (21), note that the evaluation
of Rq[p, U] for any normalized p requires only
expectation values already appearing in the origi-
nal n-particle theory.

The second assertation is proved in two parts.
First, assume p = p, so that D, c I., (n}. Then

I2[D», U] =(E» —U) «R2[p», U] ~ (Z» U) . (22)-

The left inequality follows from the definition of
R2 [Eq. (19)] and the right inequality follows from
Eq. (21).

For the second part, let

R2[p», U] = minR2[p, U] —= S".
P

Assume that

S'= [Z,(U) U]'=I, [D,(p', v—), U] .
To proceed, we must prove that D2(p", v) = D" and

(24)

Assume that U and the known external potential
are fixed. We wish to prove that R2[p, U] respects
the lower bound (E,—U), with E„as in Eq. (16)

R2[p, U] ~ (E» —U), (21)

for all normalized p. Further the bound is at-
tained at the density p~, if and only if p" is repre-
sentable by D„where (H- E,}D»=0.
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s"(v') =(E,—v')'=f, [D', v'], (25)

for all U' sufficiently close to U (which determines
E,). Now, by optimization with respect to U,

EU(U) are independent of U for sufficiently small
changes in U. For sufficiently small changes
in U, the minimizing ensembles of I2[D, U]
remains the same. (We are dealing with a dis-
crete portion of the spectrum. ) Therefore mini-
mization of R2[O, U'] over») must yield the same
minimizing ensemble D", if U' is sufficiently close
to U. This implies that Rq[o, U'] =min, Rq[p, U']
for such U', further implying the assertion that
D2(p, v) and E,(U) =E, are independent of small
changes in U.

This result is necessary so that we may define
the differentiable function

Now'we turn to analogous functionals for reduced
matrices.

III. FUNCTIONALS FOR REDUCED MATRICES

Defining reduced density matrices by the formula

U (Xts;XJ —f dX= D„(XX„,; XX ),

(29)

for 1- t) -n, functionals analogous to those in Eq.
(19) may be easily formulated. Denoting the pa-
rametrization of n matrices by p matrices as
D (I'»'), »j), we define the functionals

t

R„[r"', U] =((H —U), D (I""',»j)&, (30)

es¹
8 U/

5

=-2(H —U~, D &. (26)

This implies

U~=E~= gX, D2(o", t))&

8 (E~) =0= ((H —E~), D &. (aa)

Following Gilbert, we conclude from the diagonal-
ization of D that D¹must be some particular con-
vex combination of degenerate wave functions
belonging to E,. Thus 0¹=p,is represented by

D~, where (H-E~)D~=O, completing the proof.

for 1 ~ p ~n. These have the same basic proper-
ties as the density functionals R„[p, U], although
N representability problems arise for 2 - p- n - 2." The functions D (I'~', »)) have different
properties for different values of p and m. For
example questions of differentiability and the
presence of excited states may change as t) and m
change.

&s a specific example, define I (n, I" ' ) as the
set of all n matrices which represent a given p
matrix, 1'~'. Then, for reduced matrices of
order 4 or greater, minimization over 1-(n, I" ~')

is not necessary, as may be seen in the expression
for (H- U) in the second quantized notation

2

((tt —U), D)= P (j( ( )tst, ata' rI (s, r(V(s, t)a'at'aa, —U), D),
tej qgr, g, t

(31)

where I» is a 1 particle operator and V is a 2 particle operator. The terms that will contribute to (H2)

alone are

gg &ilf»l»&&I I@I~&a»a»a'»a, +-.' P g &ill» If&&»»» )»I I'Io P&a",a»a'„a'.a.a,
hyj A'~f fe j s&eoep

+ —,
' P g (q, rl I Is, t&(jlI»II»&a'„a,'a, a»a,'. a,

Q~ j qer~~ ~ t

r —,
' I g td, r~r~s, t)(m, a~res, d)a'at,'a,a,a„'a'„a,arD).

t5y fly Oy p qt ry sy t
(32)

Hence, the expectation value of ((H- U)2, D& is determined by I'D '.
As discussed by Erdahl and Grudzinski' if the N-representability conditions for I' were known, a

direct minimization of Eq. (31) would be possible yielding some eigen-4 matrix. To this effect, it is in-
teresting to note that Eq. (31) contains some necessary N-representability conditions. One such condition
is the non-negativity of the first term of the right side of Eq. (32), which may be rewritten as

&@ &= ZZ && I@ lf&&f 1 "I+&[s»»r(I»li) - I (' +II &)] ~ 0.
iy j Apl

(33)

This equation is the 6 condition of Garrod and apercus. ' Similarly, the last term on the right side of Eq.
(32) can be rewritten as
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les tfy Oy P tgs Ts as t

+ [5„,5, F(o, p
~
q, r) —5,5, „I'(o,p ~q, r) —5, „I'(t,o, p ~n, q, r)

- 5„,r(s, o, t
~

m, q, r) +5. , 1(s, o, t ~n, q, r) +5, „1"(t,o, f ~m, q, r)+r(s, t, o, p~m, n, q, r)] o-0. (34)

This equation is also a hyperplane constraint, a
necessary N-representability condition, on I'4'.
Should Eq. (31) be minimized subject ot incom-
plete N-repreyentability conditions, then the
equation itself partially selects the approximate
N-representable cone for the search. Other com-
ments in Ref. 12 lead to the additional conclusion
that if I'v4' is some eigen-4 matrix, Eq. (31) is
equivalent to the Nakatsuji density equation. '

Other differences in the behavior of the functionals
R [I'~', U] will be noted in the ensuing discussion.

IV. SPECULATION ON THE STRUCTURE
OF D2( p, y)

A. Background

A central concern with D2(p, v) is its dependence
on the local external potential v. How does
D2(p, v) change with changes in v'p Changes in v

may be broken into two categories. One category
consists of constant shifts in v. In the functional
R2[p, U], constant shifts are nontrivial, as these
changes may result in the density corresponding
to the absolute minimum to change. Such is not
the case for R~[p, U] =Z, [p] —U. In a second
category are nonconstant changes of the potential.

For small constant changes of the potential,
Dq(p„v) has been seen to be independent of U.
However, results for other p's are not available.
The presence of excited states may not be dem-
onstrated currently. As a potential probe of
D2(o, v), and as a further example of how proper-
ties of D2(I' ~', v) may change with p, we examine
D2(I' ', ).

Without question, D2(1, v) represents all the
excited states independent of U, which we now

prove. Suppose E& and I
&

are the jth excited-
state energy and eigen-2 matrix of H, respective-
ly. By definition of R2[I' ', U],

(Z, —U)' R,[r,"', U] = ((H- U)', D,(rI2', v)&. (35)

From the Schwartz inequality, ' modified for en-
sembles, '6 we have

&H- U, D,(rI", v)& = &(H"' —U), r,"'&

=E —U (37)

Here we consider the possibility that Dq(p~) is
an excited-state ensemble, if p& is an excited-
state density of some Hamiltonian. One approach
is to examine the relationship between D, (p) and

D2(p, v). Again, we turn to the 3-matrix situation
for inspiration. Since it seems likely that
D2(I' ', v) depends on v, it is doubtful that D,(I' ')
and D~(I' ', v) agree even at eigenmatrices (ex-
cept, for the ground-state 1 corresponding to
v). If this holds, D, (p) would not represent the
excited states. In fact, the presence of excited
states in D,(p) 'openly contradicts the stronger
likelihood of v dependence in D2(p, v).

To see this, again consider D,(1 ', v). Assume
that (H'-'Z')D, (r"') =0 and D,(r"') =D,(r"', v)
for all v. From Eq. (19), for Hamiltonian H,

&(H Zi)2 D (I (2))&

= min{&(H —Z'), D&: Dc L(n, 1 ')) . (38)

A simple calculation shows that our assumption
leads to

0 = min/&(H' —Z')

+3(H'-Z')(v-v'), D&: Dc L(n, I"')), (39)

Again using the properties of the Schwartz in-
equality, Eqs. (35)-(37) imply that D2(I'I ', v) is
an ensemble (with minimum L2 norm by definition)
composed of degenerate pure states. The quan-
tity U has been arbitrary. Since Eq. (37) is not
known to be true for D2(p, v), we may not as yet
conclude that D2(p&, v) =D&.

As for nonconstant changes in v, the evidence
from other sources, such as the Green-function
theory" and other density-functional theories, '

gives little hope for D2(1', v) to be independent
of v. However, it may be possible to elucidate
the nature of the v dependence.

B. Speculation on the presence of excited states
in D,(p) and D,(p, v)

&(H —U), D (I2'&, v)& ~ (H —U, D (I2'I, v)&

However,

(38) independent of v. This is very unlikely.
From a somewhat different point of view, Nakat-

suji has shown that not all Dc L(n, I'I ) are solu-
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8E2 8Eg '

(2)

8D "8p. '
b

(42)

-2(H —U, Dg( v))+v(( U)H', ) =0. (43)
Pb

The second term in Eq. (43) is zero because
D2(p„v) is assumed to be independent of U. This
allows the elimination of U from Eq (42):.

&E2 &(E()' (2)

8p 8p P ext

In this case, A.
' would be related to an energy

derisity. 8 Motivated by the analysis of D2(I', v).
One hopes that Eq. (42) also contains excited-
state solutions.

The second procedure consists of replacing all
n in H(n) and D2 by n xf(([o] . One may wish to in-
troduce a second quantization formulation of Eqs.
(6), (18), and (19) at this point. The Lagrange
multiplier would then have a different physical
significance, presumably related to the chemical
potential, p, . A similar situation arises in the
case of E,[p] (see Ref. 18) and one must decide
which procedure to use. They need not be equiva-
lent.

(44)

tions to the Schrbdinger equation, even if l
&

is
an eigen-2 matrix. ' On the other hand, D2(1 J

', v)
is an eigen-n matrix, as demonstrated in Eqs.
(35) through (37). Therefore, in general,
D((I') ') «D2(I') ', v).

The physical significance of this conclusion is
that nonground-state solutions to the Euler equa-
tion for the Levy functional contain no known

physical meaning.

C. Euler equations for R2 [p, U]

Suppose that D2(p, v) is differentiable and is in-
dependent of constant shifts in v at D =pb. It
would then be worthwhile to examine an Euler
equation. First, note the expansion of I2[D2(p, v),
U]-

I2[D2(p, v), U] = (H'(n)) Dq(p, v))-2 U(H(n), D2(p, v))+ U

E2(D, v] —2—UE&[o, v]+ U . (40)

Now there are two ways to proceed. The first is
to leave n fixed in H(n) and in Eq. (19). Let
Ã[)o] =1 be the normalization constraint with

Lagrange multiplier X . Construct the auxilia, ry(2)

functional 02[O, U]:

II2b Ul -=f2[D2(p, v), Ul —&' '&[p] . (41)

Take variations with respect to p and U to obtain

D. Comparison between R2 [p, Uj and other constructions
of density functionals

We emphasize that the nature of the present
theory of density functionals rests upon the pa-
rametrization of a set of ensembles according to
the density each produces. The parametrization
results from strict adherence to the variational
principle. To derive a description of excited
states, the external potential is shifted by con-
stant values, ' the mapping between densitieq and
ensembles appears to depend on the nonconstant
portion of the external potential. In another theory
of excited states, developed by Theophilou, ' in
order to variationally calculate nonground-state
eigendensities, one must possess knowledge of
the next lowest composite state. This seems to
replace the information contained in the v depen-
dence of D2(p, v).

Concerning gradient expansion techniques for
constructing density functionals, they are very
different in character than the present theory. "
It ha, s not been shown that they adhere to the var-
iational principle, or to the minimum-energy
characterization of a set of ensembles. Hence,
the present approach provides no justification for
their pursuit.

On the other hand, any density functional acting
as lower bound to the true functional may be re-
garded as a partial characterization of an exact
procedure. An example of this is available in the
work of I ieb and Lieb and Thirring. ' This ex-
ample is not completely satisfactory, since two
different approximations were used to derive
their functionals, and it is difficult to see what
parametrization of ensembles is being suggested
in this case. Their approach seems closer to
an approximation of the action of the Hamiltonian,
rather than an approximation to minimum-energy
ensembles. The pseudo-potential method is cer-
tainly an example of one which approximates the
action of the Hamiltonian. Consequently, no
approximations to density functionals incorporat-
ing the prescription of Eq. (19) exist at present.

V. SUMMARY

In Eqs. (1V) through (19), we have constructed
functionals of the one-particle density which re-
spect the bounds associated with the analogous
modified Ritz variational principles. I'he func-
tional R~[p, v), U] was shown to possess absolute
minima acquired by one-particle densities repre-
sentable by excited-state n-particle density ma-
trices or ensembles. Thus, it has been estab-
lished in principle, that all bound states may be
calculated by direct minimization of an energy-
related, density functional, provided the external



BOUND EXCITED STATES IN DENSITY-FUNCTIONAL THEORY

potential is known. This contrasts with the
Theophilou approach to excited-state density
functionals, in which one must know a certain
additional composite state in order to calculate
an excited-state energy and density of interest.

The reduced 2 matrix functional, Rq[I' ', U]
has been shown to contain all the excited states
for a fixed (apart from constant shifts}, local ex-
ternal potential. We speculated that the same
holds for R2[p, U]. The v dependence of &2(p, v}

leads to the conclusion that D~(p} does not repre-
sent the excited states.
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