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Differential inequality techniques are applied in the derivation of the following upper bound for the one-electron

density p(x) of atomic or molecular systems: Qp(x)&C(1 +r)'x "+'"~ ' ' e ~" where r = ~x(, e is the first

ionization potential, n the number of electrons, and Z the nuclear charge {or the sum of nuclear charges in the

molecular case). Related bounds on the decay of the k-electron density and the wave function itself are also given.

These bounds improve upon previous results [TH-O, MH-O, RA Phys. Rev. A 18, 328 (1978)].For the ground state

of a two-electron atom (ion) we report a lower bound to p(x) which exhibits the same functional form as the upper

bound. Finally, for this case we give a lower bound to the wave function itself which shows essentially the same

decay as the corresponding upper bound.

I. INTRODUCTION

In this article we generalize and improve upon
the results of four recent articles, ' (referred to
as I, II, III, and IV, respectively), on asymptotic
properties of )'r-electron densities ()'s = 1, . . . , n)
of atoms and molecules. I et us first define the
notation. We consider arbitrary bound states of
an n-electron atom with nuclear charge Z, de-
scribed by the usual nonrelativistic Hamiltonian
in the infinite nuclear mass approximation

x, ca', r, = )x, ), r, , =(x, -x, (

and the corresponding Schrodinger equation

(H —E)t/r(xi, . . . , x„)=0,
where (( is assumed to be real and normalized to
unity. As is obvious from (l. 1), (l.2) we con-
sider "spinless" wave functions, as spin enters
only in connection with the Pauli principle and

permutational symmetry. The k-electron density
is defined by

p,(xi, , x„)= Jl „ , (i(~(xt, . . . , x„)('dx„, . dx„,

I-u-n. (1.3)

It should be noted that ps as defined in (1.3} is not
identical with the "physical" spinless k-electron
density p~ derived from an electronic wave function
t(i obeying the Pauli principle and including spin.
p~is actually given by

ps(xt, . . . , xs)

~
((„(x„.. . , x„)~'dx„, dx„,~ v~i, m "~3(& ~)

where i(i„(v=1, . . . , rrt) is the set of eigenfunctions
belonging to the eigenvalue E (which is in general
degenerate due to the permutational symmetry of
If), from which the wave function g is obtained by
inclusion of spin. Since the differences between

p~ and p~ are immaterial for the following we shall
work with p„which can be regarded as a "math-
ematical" k-particle density.

As the successive ionization potentials (I.P. 's)
play a central role in the subsequent considera-
tions let us recall their definition

E(n-& & g ~ E(n-i & E(n-l+&)
1 0 ~ & 0 0

where E'" ", 1-j - n, denote the ground-state
energies of the j-fold-ionized particle system de-
scribed by the Hamiltonian

~(n-g &

l =g+&, n l l, ms g+&-" l&m l m
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in the appropriate symmetry subspace as deter-
mined by the symmetry behavior of g, see I.

Henceforth we a,ssume

~« ~ ~ ~
N

(1.6)

A discussion of (1.6) is given in Sec. V. Let us
now briefly review some results of I and 0 which
are relevant to subsequent considerations.

Theorem 2.l. For a sufficiently large and C
a suitable constant,

g]1/2 ~ CS P»//Is&-i -~2m, r&-

+ g +z
j

l=k=n, (1.8)

which were called Schrbdinger inequalities (I) be-
cause of their structure.

In I and II it was argued that the nuclear charge
Z in the pre-exponential factor in (1.7) should be
replaced by an effective charge Z* = Z- (n —k),
at least. Our reasoning was based on the physi-
cally plausible picture that due to screening ef-
fects of the remaining (n —k) electrons, the k
electrons far from the nucleus "see" only an ef-
fective charge 2*.

In this article, Sec. II contains some mathe-
matical preliminaries and then in Sec. III upper
bounds to p„exhibiting the above-mentioned screen-
ing effects are derived. This will be achieved by
an improvement in the Schrodinger inequalities
(1.8). Moreover, the new bounds will hold in the
entire configuration space, i.e. , the condition
r, & a on (1.7) can be dropped. For those regions
of configuration space $~» not covered in (1.7),
the corresponding bounds are derived via Harnack-
type inequalities (see Sec. II 8). In addition we
discuss for p2 the effect of "electron correlation"
[i.e. , the effect of the I/r, /terms in .the Schrb-
dinger inequality (l. 8)] on the asymptotic behav-
ior.

ln Sec. IV we improve a previously reported
lower-bound on the ground state one-electron den-
sity of a two-electron atom, using a recently ob-
tained lower bound to the corresponding wave
function. The new lower bound to p~ has the same

r. ~&, l «i «k «ni

where 8 acts as a symmetrizer. The derivation
of Theorem 1.1 is based on the following differen-
tial inequality (to be understood in the distribu-
tional sense)

asymptotic behavior as the corresponding upper
bound given in Sec. III. Using these results we
then derive an improved lower bound to the
ground-state wave function g(x&, x2) which coin-
cides in the exponential factors with the corre-
sponding upper bound. In Sec. V we discuss these
results in the context of some related open ques-
tions.

Remark 2.2. The restriction to the atomic case
is done only for the sake of notational simplicity.
All our results hold for molecules as well (in the
clamped nucleus approximation} if Z is under-
stood to stand for the sum of nuclear charges
Z„, Z=Z„Z„, in this case.

Remark 1.Z. Since we are mainly interested in
the asymptotic behavior the multiplicative con-
stants occurring in the various bounds will be de-
noted by C even when they are different, provided
that no confusion would result.

II. MATHEMATICAL PRELIMINARIES

A. Comparison theorems

Our derivations are largely based on the follow-
ing two comparison theorems. I et ~ be an open
subset of dl and let f, g satisfy

(i) f, g c C'(Q), f& 0 in Q, and f, g ' "'""0 if Q is
unbounded;

(ii) g ~f, Vxc sQ, the boundary of Q.
Theorem Z. l. (See II or Ref. 5.) Let f, g obey

(i), (ii) and let further
(iii) (-6+ W&)g ~0,

(-~+ W,}f& 0,
in the weak sense in ~,'

(iv) W~ & W2 in Q;
(v) W2~ 0 in Q.

Then f~g in ~.
Theorem Z.Z. (See Ref. 6.) Let f, g obey (i)

and (ii}, and f&0 almost everywhere in Q. Let
further

(iii) (-&+ W~)g ~0,
(-n + W2)f & 0&

in the weak sense in ~,'
(iv) W, & W2 almost everywhere in Q; and
(v) Zif, age: L'(Q).

Then f & gin Q.
Remark 2.1. For the reader's convenience we

recall the meaning of certain symbols. C'(Q) de-
notes the class of functions which are continuous
on the closure Q of Q. A function cp is in L'(Q)
if J„~y ~dx&~. Theorem 2. 1 is a simple conse-
quence of the maximum principle. It has been
used earlier ' to study decay properties of sub-
continuum wave functions. Theorem 2. 2 has been
proved for the one-dimensional case by Morgan'
and for the general case by T. Hoffmann-Osten-
hof, who has also discussed some nontrivial ap-
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plications. For subsequent considerations Theo-
rem 2. 1 would actually suffice. However, if
Theorem 2. 2 is used the condition 8'2 & 0 need not
be fulfilled, which facilitates applications.

B. Harnack —type inequalities

In order to bound pk from above in those regions
of configuration space where r, ~ a for all
i =1, . . . , k does not hold we need the following
estimate.

Theorem 2.3. Let x=(x». . . , x,)(=@', and

u(x) a nonnegative continuous function with

f„(u + Vu~ )dx&~, which satisfies ( b, +-W)u «0
in 0 (:(R'" in the distributional sense, where W(x)
is of "Coulombic type" (see Remark 2. 2 below).
Let I3I((x4) denote a 3k-dimensional ball centered
at xo with radius R, then

Corollary 2.2. ' ' Mathematical ground- state
wave functions (i.e. , no Pauli principle imposed)
of atoms and molecules are strictly positive,
i.e. are bounded away from zero on compact sets.
This follows from the well-known fact that ground
states are positive almost everywhere, together
with Theorem 2.4. %'ave functions are deter-
mined only up to an arbitrary phase, of course,
and in Corollary 2. 1 we have tacitly assumed a
convenient choice of the phase, as usual in this
context. Corollary 2. 1 has recently been
proved' '" in a different way in using Brownian
motion arguments.

III. UPPER BOUNDS WITH SCREENING

We first state the main result as follows.
Theorem 3.2.

X/2

sup u(x) «C Jt u'(x)dx
xeaz(xo) ~3~~~0~

(2. 1) ) ~(/2 «C(1 ~ )
(z-„+1)//'2s(-( -/reft Q ~ g3

(3.1)

for every ball B2„cO. The constant C depends
on R and properties of W.

Remark Z.Z. By "Coulombic" we mean

W(x(, . . . , x,) = Q V,(r,)+ Q V, /(r;/),
~&g=&, k

(-t(+ W}u=0.

If u~ 0 in 84+(xo), then

(2. 2)

where V,(r}, V, /(r) behave as I/r for small r and

remain finite for large r.
Theorem 2. 3 is simply a special case of a class

of general results on second-order elliptic partial
differential equations and inequalities given by
Trudinger, ' see also the book by Gilbarg and

Trudinger. For the derivation of a lower bound

to the ground state of two-electron atoms the

following result will be essential.
Theorem 2.4 (weak Harnack inequality ). Let

W and g be as in Theorem 2. 3 and

«C$ (1 + r )
(z-rl+4) /~&&-&e ~&r (3 2).

j*i, k

'(/(x(, . . . , x) c (R, 2 «k «n .

Remark 8.1. I et us briefly discuss the im-
provements achieved in (3.1) and (3.2) as com-
pared to Theorem 1.1. Firstly, the bounds now

hold in the entire configuration space whereas
certain tubes —one or several electrons near the
nucleus while the remaining ones tend to infinity—
were excluded in Theorem 1.1. Secondly, the
pre-exponenti. al factors now include screening
effects as discussed in the Introduction. The
bound (3.1) for p( is optimal in this respect —as
is further discussed in See. IV—whereas (3.2)
includes screening only partially. This is es-
pecially obvious for n= k, where (3.2) yields the
following bound for the wave function itself:

~
t(x(, x.}~=(p.)'"

sup u(x) «C inf u(x).
(&o' ~a&"o'

(2.3) «.C$ t. ' (] + )z/+2~ '

~='&, 'n
(3.2')

Remark Z.3. Theorem 2. 4 is called a weak
Harnack inequality since it is the natural extension
of the well-known Harnack inequality in the theory
of harmonic functions. .We note that a number of
related results have been obtained for quite gene-
ral elliptic partial differential equations. For
further applications of the Harnack inequality to
atomic and molecular physics see also Refs. 10
and 11. An immediate consequence of Theorem
2.4, which will be essential for Sec. IV is the

following.

which does not account explicitly for screening
effects. This problem will be discussed further
in connection with Theorem 3.2 which gives an
improved bound for p2.

Remark 3.2. As will be seen from the proof
the constants C in (3.1), ('3.2) could explicitly be
evaluated (in principle) but this would be of little
value since some quantities will have to be esti-
mated rather crudely. The proof of Theorem 3.1
wi11 be based on the following refinement of the
Schrodinger inequalities (1.8).
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Lemma 3.1.
g-n+4 1/2-~+ &—1 ~ ~2 1 & 1

——[p(x )]' '~0 r & a
1 1

( ~+. Z -n+k dt 1
[p, ( „",,)]'"-0,r,')

) a+1y ~ ~ ~ r' 0

(3.3)

(3.4)

for sufficiently large a and some positive constant d depending on Z, n, and k.
Proof of I.emma 3.1. To prove (3.3}we consider

the operator

H «-» (x )=I&»
(8& II«-» +1

)=2 n

/II«„",i»(I&dx, ~ ~ dx„~ Z,'" "(x,)p(x, )i
4

(3.6)

where I"' is the identity operator on L'(6l', dx, ).
Let Z,' "(x,) denote the lowest eigenvalue of
II'"-"(x,) in the subspace 9&C&~~" &: I, (IR'"

dx, ~ ~ dx„). Here R«~&i& denotes the subspace
which is induced by the symmetry behavior of (I&.

E,'" "(x,) depends parametrically upon x, . The
variational principle implies

(3.5)

I

lecular potential energy curves we know that

E,'"-"(x,}has the asymptotic expansion
\

n-1
0 1 0 y ~2) ~

1 1
(3.9)

Equation (3.9} is easily rationalized if the term
Zi, ,„1/r,.i occurring in (3.5) is treated by means
of perturbation. theory. Hence there is a constant
d such that

By the Schrodinger equation itself and with the aid
of a result derived in I,

E (n- 1 & (x )) E (n- i & ~
n-1 d

0 1 0 ~ ~2&
1 1

(3.10)

(p,)"'&,-(p,)"'- J(OI&,td—x, " d „, (3.7)

we arrive at

-~+ Z& - '(x„)-z ——,~[p,(x,)]»'- O.
(

gl
I

(3.8)

From the results of Morgan and Simon" on the
asymptotic behavior of Born-Oppenheimer mo-

for r, sufficiently large. We should also mention
that in Ref. 14 symmetry questions are discussed
exhaustively and that the space SC("„)"can be de-
fined in a strict manner. However, we are only
interested in the asymptotic behavior of Z,'"-"(x,).
Combining (3.8) with (3.10) and (1.4) inequality
(3.3} results.

To prove (3.4) we proceed in an analogous man-
ner; we have

Z,'~~'(x„. . . ,x~)= inf I
&I&*III"'(3II'~"+ Q Q ~I&(& dx... dx„

II e II =i& we &(,'I"&
&

i i, A J=A+i,=g i&)

rl
inf y "I I "&(3&II&""+-g- (3.11)

&=1,h llell=lion&CI&» " ( . J=h+iin ri&)

where I+& and 3'.(&~&~& are defined by analogy with I"' and R&("„&i&. Equation (3.11}states that the infimum of
the spectrum of a sum of operators does not exceed the sum of the infima of the spectra. For every sum-
mand on the right-hand side of (3.11) an asymptotic expansion corresponding to (3.9) can be used leading to
(3.4). I

Proof of Theorem 3.1. Let us first consider the for r, - a, a sufficiently large. Since p, (x, ) obeys
one-electron density p, (x,). We choose Q=(x, c(tl': (3.3) and condition (i) of'Theorem 2.1, we can
r, ~ a) in Theorem 2.1 with a, -(Z -n+1)/r, apply Theorem 2.1. Thus, if we choose the con-

d/r, '& 0 for r,-~ a. It is easily verified that the stant C large enough so that for
~

x,
~

= a,
function

v, (x ) = Cr &z-n+a&/~6&-i(1 - b/v r, )e "i"i (3.12)
v, (x, ) ~ max [p, (x,)]'~', (3.14)

with suitably chosen b& 0, satisfies

~-n+&
2 r +& ——v (x )~01 ~2 1

1 1
{3.13)

then v, (x,)~ [p, (x,)]'~' vr, ~ a follows. Since the

b/sr, can be absorbed into the constant C, in-
equality (3.1) holds for r, & a. For r, & a, (3.1) is
fulfilled with suitably chosen C since p, (x, ) is
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bounded. It should be mentioned that a Whittaker
function" solves Eq. (3.13) showing the same
asymptotic behavior as (3.12).

For the proof of (3.2) we proceed in analogy with
the method given in II. %e therefore indicate
only the main steps of the proof for the two-elec-
tron density p, (x„x,). The result for p, and

~
P~

itself is then obtained by a recursive procedure.
l

Let Q=. {(x„x,) c &R'. x„x,~ aj with a sufficiently
large so that (a)

C1+C~- Z -g+2 f';+d g; ~~ 0,
i =1, 2

and (b) Eq. (3.4) holds in Q. Neglect of the posi-
tive interelectronic repulsion term yields

————+& +E
hs

Furthermore (p, )'~'
(i) (3.15) in the other
bound to v p, in Q. A

-(Z -n+ 2) —+ — (p, )'i'& 0, V(x„x,)c Q.
1 2

(3.15)

obeys condition (i) of Theorem 2.1. If we can find a function &&,(x„x,)& 0 satisfying
direction and (ii) v, (x„x,) ~ [p,(x„x,)]' ' on SQ, then by Theorem 2.1 v, is an upper
straightforward computation shows that (i) holds for

v, (x„x )=CS,. r' "+" ~~~& '~1- le
sr, i

In order to verify (ii) we need the following.
Lemma 3.Z.

p, (x„x,) ~ C~ max p, (x,') 6& 0; x„x,c &R',
1G B6(X1)

(3.16)

(3.17)

where 86(x, ) denotes a ball with radius 6 in &R' centered at x, .
Proof. Since (1.8) holds in &R' for v p, and

~{p,(x„x,)+
i
&[p,(x„,)]' 'i']dx, dx, - 1+

i
@4&I'dx, dx„(

4

(due to Lemma 2 in I), Theorem 2.3 implies

[p,(x„x,)]"'-C,
B6(X1,x2)

1/2
(3.18)

Remark 3.3. This estimate is a generalization of an analogous estimate in 11, where (3.17) was shown
for regions where v p, is subharmonic. Now the bound (3.1) to p, (x, ) can be used to obtain a bound for

p, (x„x,) on BQ={(x„x,)c&R" x, ~ ra, = )Ua{(x„x,)c&R:r, =a,y, & aj.

Choosing the constant C in (3.16) large enough
leads to v(x„x,) ~ [p,(x„x,)]'~' on BQ, hence prov-
ing (ii). By Theorem 2.1 inequality 3.2 for p,
holds in Q. To extend this result to all of 8 we
proceed as above: Since the differential inequality
(1.8) holds for u p, in &R' we can apply Theorem 2.3
in the region

{(x),x2): r~ ~ a, x2 ~ a] LI {(x~,x2): r~ ~ a, y'2~ a].

to extend our bound into these tubes keeping the
boundedness of p, in mind. This proves (3.2) for
k= 2.

Remark 3.4. Our upper bound to v p2 is still
not entirely satisfactory since it is easily seen
that we have lost information. Namely, the bound
(3.16) for fixed x, behaves asymptotically as

(y + 5 (2- n+ 2) I~2&1-1 e-~261&'1

Whereas we know from (3.17) that the pre-expon-

l

ential factor should rather be (I+r, )&x ~+»~~&~&

By taking into account the hitherto neglected I/x»
term in (3.15), we obtain the following improved
upper bound.

T/280/eral . ~.

[p (x x )]' '~ CS[(1+r ) -'(I+a ) -'e- "&"&- "2"&]

&«&(x„x,)c &R' (3.19)

where

a = (Z —n+ I)/v'2c,

P& (Z -n+-', )/v'2e, .
The proof is a rather tedious application of Theo-
rem 2.I and will be sketched in Appendix A.

We note that (3.19) shows two different screen-
ing effects. The constant n determines the pre-
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Fr-,r, y( min[(42&2 —l2a, )-', 1], (3.20)

exponential term -for the outer electron and it in-
cludes full screening of Z by the remaining (n —1)
electrons. For P, which refers to the "inner"
electron, we could expect at best (if the outer
electron tends faster to infinity than the inner one)
p = (Z -n+ 2)/V2(! 2. However, if x, = -x„r,= r,
=r ~-, the electrons "feel" a potential -2(Z n-
+ 2 ——,')/r, corresponding to an effective charge
Z ~=8 -n+-', , which is just the average of the nu-
merators in the expressions for & and P. Although
this is a. vague intuitive reasoning only, it could
be considered as an indication that P as given in
(3.19) cannot be improved, at least if c,= 6:„ i.e.
if Z-.

Finally we note that we attempted to improve.
(3.19) by considering upper bounds with an explicit
r» dependence. Again using Theorem 2.1., we
obtained an upper bound to p2 which shows angular
correlation and which behaves for r»= 0 like

following nonisotropic lower bound to tjr which was
obtained in IV.

Theorem 4.2. For every 5& 0 there exists a
constant C6& 0 so that

-(~26&+6)~1 ~26& r2p(X X J

+ e-(~2ele6)r2-~222 rl) y(x x ) + 616
17 2

(4.3)
Remark 4.2. This result was derived using the

lower bound to v p, given in III by means of Theo-
rem 2.4 and a comparisonargument. For a related
procedure see the proof of Theorem 4.3 below.

Aemark 4.3. To our knowledge, there exist so
far only a few results on lower bounds to ground
states, '6 none of which deal with the Coulombic
case.

Proof of Theorem 4.2. The proof is patterned
somewhat after the considerations given in III.
Let (t)(x2) be the ground state of the corresponding
ionized system, satisfying

where E denotes the rhs of (3.19). It turns out to
be extremely difficult to exhaust the differential
inequality for )) p, with respect to the r» depen-
dence of the upper bound, and we do not attach
much physical significance to (3.20).

(
Z Z——0(x )=-—0(x )2 r. ' 2

and let

, u(x, )= P(x„x2)(t)(x2)dx, .

(4.4)

(4.5)

IV. LOWER BOUNDS

In the following we consider the mathematical
ground state (singlet S state) of a two-electron
atom. By corollary 2.1, ())(x„x2)&0 for r„r2(~.
We have the following lower bound to ))~p, .

Theorem 4.1.

[p (X }]/2~ C(1+r )(Z-l 2el- e- 2elrl +X (- 6t31 1 1 1

(4.1)

(,)= [p,(.,)]" .

By considering the expression

(4.6)

y(x2)(H —E)g(x»x2) dx,

By Corollary 2.1, u& 0. The symmetry properties
of g and Q imply that u is spherically symmetric.
Furthermore, from the Cauchy-Schwarz inequal-
ity,

Remark 4.1. Except for the multiplicative con-
stant the lower bound shows exactly the same
asymptotic behavior as the upper bound (3.1). We
have therefore the following corollary.

Corollary 4.1.. There are two positive constants
0&C &C,&~ such tha. t

we obtain

(
Z-~-—+e u(x )1 1

1

+ $(x„x2)p(x,) ~x, -x,
~

'dx, = 0. (4.7)

n ry i(Z-1)/~261-1e-~261~1

1 1 + 1
~ [p (x ))i/2 ~ Q (1+r )( 2-l)/~2el-l e-~2elrl (4 2}

The proof of Theorem 4.1 relies heavily on the
I

To prove (4.1) we have to find a good upper bound
to Jgp ~x, -x2~ 'dx„which will enable us to use
a comparison theorem on the resulting differential
inequality. We start with the following inequality,

..(.,), ( ))I.( e.l„„l..~)2-
Ix1 x2l t'2 is& 1/2

(4.8)

where we used the Cauchy-Schwarz inequality. Now the upper bound to v p, (3.1), together with an I," esti-
mate using the explicit form of (t)(x2) leads to

hi( a/2'8( 2 3'( x e 2}dx ~ ( l}+ g(1+r )(z-l)/~2e& le ~2e&ri zri/e y ~x
-x

~

-2-dx (4.9)tx, -x2/ 2 r,
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(4.10)

However, the lower bound to P (4.3) implies that for every 6& 0 there is a K, & 0, so that

(x ) ~ If e (~261+5~1 (

Hence, noting J (t [x, -x,
~

'dx, & ~ for r, & b& 0, and choosing 6&Z/4, we obtain for some positive con-
stants C, +

(4.11)

which leads to

(Z -2)+Ce z+& u(x )) 0.
2 y 1 1

1

We easily find a function z such that

(Z -2) +Ce "&+a v(x )~0 forr &b
2 y 1 1

1

(4.12)

(4.13)

with v(b) ~u(b), which behaves asymptotically as (1+r,) e '("& for some finite constant P. Therefore,
comparison 'Theorem 2.1 implies that

u(x, )~ A(1+r, )~e

with A. a suitable constant.
Using (4.14), we estimate f P(( ~x, -x,

~

'dx, again:

+ = ~+ [p, (x,)] ~t, — 2l

(4.14)

(4.15}

We proceed now in a completely analogous fash-
ion to the previous estimates. but using (4.14) in-
stead of (4.10) and obtain the following differen-
tial inequality for u:

2 g 1
-+e +Ke 1+K'y ' ' g x ~ 0 4.16Z-1

1 1
1

for some positive constants K, K', and y. By the
same reasoning which led from (4.12) to (4.14) we

obtain

(x )) C(1+r )(2 1)I ~26g 1e ~26) 0'y (4.17)

By (4.6), this is also a lower bound to Mp„com-
pleting the proof of Theorem 4.1. In order to de-
rive the aforementioned lower bound to g(x„x,) we

first need 'Theorem 4.3.
Theorem 4.3. Let r, ~ b, b some positive con-

stant, then there is a constant Cb& 0, such that

~ q(x x ) ~ ff (1+r )(e"1)I~2&& 1e ~2elrl (4.20}

Proof. The main idea behind the proof resem-
bles closely some arguments given in IV. We

combine Theorem 4.2 with Corollary 4.1, and
first prove (4.18) with r, =0. Let B ((y, 2R) de-
note a ball in (R' with radius 2R centered at
y = (x„0). By Theorem 2.4 we have

(~1, g2) O'B (y, 2R) (~l' ~2 + B (y, 2g)

I

(Lemma 3.2), implies that for r~ ~ b there are two
constants 0&C &C,&~, such that

C [p, (x,)]'I '- ()j(x„x,)- C,[p, (x,))'I ', (4.19) '

or more explicitly: there are two positive con-
stants K, and K with 0 &K &K,&, such that

ff (1 ~r )( - I see-ye asqrq

g(x„x,) ~ C, [p, (x,)]'I', Vx, (= 6V .

Remark 4.4. The upper bound to g(x„x,)

(4.18)
(4.21)

Equation (4.21) implies for (x„x,) c &"'(y, 2R)
with some elementary inequalities

(

(x y x )+B (yp 2+)
[

g )~/ g(/3t;1-Xl ~ r2

4~a' -1 2 -1
g(x„x,)y (x,)dx, (t '(x,)dx,

'

p ~B
2

4B
2

(4.22)
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Absorbing the 8 dependence in the positive con-
stant&„, we obtain

f"(u)+—f'(u) = —f(u) .
Q Q

(4.s4)

q(x„o)-~„ g(x„x,)y (x,)dx, . (4.2s) f is related to the Bessel function/, (Ref. 15):

But

B2 f (u) = Z, (2iVu).
1
u

(4.s5)

g (x„x,)P (x,)dx, We note without proof the following properties of

f, which will be used below:

(4.24)=u(x, ) — g(x„x,)y (x,)dx, .
y2&B

Using the Cauchy-Schwarz inequality and an L"
estimate, we obtain

f(u) = v4v 'u "4e' "[1+O(u '~')]
sI(

=u '~'[I+O(u 'I')]
f(u)

(4.s6)

(4.sr)

g(x„x,)P (x,)dx, O~u, ' ~uo ' for O~u~~um. (4 38)f'(u, ) f'(u, )
fu, 'fu,

p) x)
"y2aB

y'(x, )dx, ~

~ C[ p (x )P~'e-»~'
2]

(4.25)

Proof of Theorem 4.4. We have only to prove
(4.33) in the region Q,

(4.s9)

for some constant C & ~.
Now Corollary 4.1 implies that for some con-

stant E&0,

since (4.33) holds in 6I'QQ by means of Theorem
4.3 and (4.20}. Let

F(r„r„r»)=r, e "'"~ "2f(r»)/f(r, +r,),
u(x, ) ~&[p,(x,)]"'. (4.28) (4.40)

g(x„x,)y (x,)dx, ~ Cs[ p, (x,)]'~ '
y ~R
2

and furthermore by (4.23) for some constant R

(4.27)

Therefore, by choosing R in (4.25) large enough,
we obtain

and

g(r„rm)= (1+ar,")(1+arm"), y&0, (4.41)

(4.28)

Another obvious application of (4.21) leads to
(4.18).

We finally derive a nonisotropic lower bound
for p(x„x,), the main result of this section.

Theorem 4.4. Let

We use Theorem 2.1 to prove that

tf (x„x,) ~ Cv (r„r„r,m) in Q, (4.4s)

((x„x,) ~ Cv (r„r„r„) for (x„'x,) c 8Q.

from which (4.33) follows immediately. For the

application of Theorem 2.1 we first note that

(u)=Q, uc8,
«=o, k!(k+1)! ' (4.29) (4.44)

F(r»rm, r») =(1+r,)~e 2'& "& e"mf(r»)/f(r, +r,),
(4.30)

This follows directly from the definition of e and
the properties of f—as discussed in Remark 4.5—
together with (4.20). It then only remains to show
that

o'=(Z —1)/vs', -1, (8-E)v ~ 0 in Q, (4.45)

F (r~, rm, r») r, ~ r2
)y 2y 12&

(r2 rj r») rj,

then

(4.s2)

g(x, x ) - Cp(r, r, t ), b'(x, x ) c 6I (4.33)

for suitably chosen t &0.
Remark 4.5. The function f(u), defined in (4.29),

is a solution of the differential equation

which is verified in Appendix B.
Remark 4.6. As we are concerned here with a

two-electron system the upper bound (3.19) for
Mp, is actually an upper bound for g(x„x,). We
may therefore use the Theorems 3.3 and 4.4 to
bracket the ground state wave function for two-
electron systems. If we consider again only
r, ~ rm, (3.19}and (4.33) (together with v 2eo =Z,
n = 2) yield
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(-" (1+r ) e '""' "'f(r )lf(r +r )

- ((x„x,)
& & (1+r,) (1+r,)'e "-~"~-'"2 (4.46) lim y(x, , x,)[p,(x,)] '~'-y(x, ) (5.1)

to advance the following conjecture which is based
on a rather plausible physical picture. (We use
the notation of Sec. IV).

Conjecture. For every fixed x,

with o.'as in (4.31), P &1/2Z, and appropriately
chosen constants C and C,. The upper and lower
bounds agree in the exponential terms and, up to
(1+r2), also in the pre-exponential factors. The
only noticeable deviation between upper and lower
bounds is the term f(r»)/f(r, +r,), which may,
using the properties of f described in Remark
4.5, be approximated as

/(r )/y(r +r ) e-(rz+Y2 t)2)/ (rg+r2) Z/2

if r, +r, r„«-r, +r, (4.47)

f(r»)/f(r, +r,) =e "')'"&, if r»«r, +r, (4.48)

provided r, +r, is large. If r»=r, +r, (i.e., if
r,/ r» 1 or if the electrons are on opposite sides
of the nucleus: x,/r, =-xJr,), then f(r»)/f(r, +r,)
=1, see (4.4V). f(r„)/f(r, +r,) decays as e ~)~2 if
r„=0 and r, =r,—~, see (4.48), and the lower
bound to g(x„x,) shows a correspondingly faster
decay than the upper bound in these regions of
configuration space.

Remark 4.7. As is seen from the derivation of
the above Theorems (4.1-4.3), the multiplicative
constants are not evaluated explicitly. At the
moment the possibility of overcoming this defi-
ciency seems small. The only explicit lower
bound for v'p~ is given in the recent book by
Thirring'0 where a lower bound to the one-elec-
tron density of the ground state of two-electron
atoms at the nucleus is derived.

V. DISCUSSION

Let us finally discuss the quality of our results.
We consider the asymptotics of the upper bounds
to the one-electron density to be optimal. This
opinion is very strongly supported by the lower
bound (Theorem 4.1) to the one-electron density
of the ground state of two-electron atoms. How-
ever, our techniques for lower bounds are still
restricted to positive ground states and it seems
in the moment difficult to overcome this restric-
tion.

Recently it has been demonstrated by Carlton"
that a knowledge of the asymptotic behavior of p,
is also very useful from a numerical point of
view. He used (4.2) to test the reliability of
accurately computed one-electron densities far
from the nucleus; he also observed that the be-
havior described by (4.2) extends to regions near
the nucleus. But inequality (4.2) also prompts us

lim u(x, )[p, (x,)] '~'=1. (5.2)

The following argument provides support for (5.1).
If we let r, approach infinity in g(x„x,), the re-
mainder should behave as (f) (x,), the ground state
of the ionized system, the Vp, in the denominator
simply assures normalization. A proof of this
conjecture seems to be rather difficult since
problems arise in keeping track of quotients. Re-
lations analogous to (5.1) and (5.2) should hold in
many-electron systems, but due to the lack of
positivity of t/i, the situation would be even more
complicated.

As a last remark concerning the bounds to the
one-electron densities, we consider the case of
atomic anions with charge -1. The pre-exponen-
tial in (4.2) is then independent of z, and Z, a
situation which appears to be typical for short-
range potentials. '" Indeed, in such a system an
electron far from the nucleus "sees" a neutral
atom and "feels" an effective short-range poten-
tial;

Let us now consider the upper bounds for the
many-electron densities. The condition (1.6)
&, ~ E, is not necessary in order to obtain the up;
per bounds (3.2). But, if g~&z~, for example, it
is easily seen that our bounds are rather weak.
Although, (1.6) is invariably observed experimen-
tally, it is unfortunate that its proof is still mis-
sing. Morgan, Lieb, and Simon" demonstrated the
delicate nature of this problem by constructing
several model Hamiltonians closely related to
atomic Hamiltonians where &y+ &2.

At the first glance (3.2) seems to be quite satis-
factory. However, 'Theorem 3.2 shows that the
screening effects in the pre-exponential factors
are more complicated than was earlier suspected
(II). The situation is also obscured by the lack
of a simple picture which explains many particle
screening effects.

Note added in Proof. Since the submission of
our paper the following relevant unpublished work
and papers have come to our attention: Upper
bounds: 8. Agmon, Proc. A. Pleijel Conference,
Uppsala 1979; unpublished. Lower bounds:
H. Carmona and B. Simon, unpublished. Results
in relation with (5.1) and (5.2): E. H. Lich and
B. Simon, Adv. Appl. Ma.th. 1, 324 (1980), J. M.
Combes, M. Hoffmann-Qstenhof, and T. Hoffmann-
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Qstenhof, J. Math. Phys. , in press, J. Katriel
and E. R. Davidson, Proc. Natl. Acad. Sci. USA
77, 4403 (1980).
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APPENDIX A: PROOF OF THEOREM 3.2

By Lemma 3.1 we have

p(p —1) p v2e2 —Z+n —2
2 +2r 1 r]

n(n -1) 1
2r r. '

B(1,2) =F(r„r,)/v,
(A6)

+A(2, 1)
~

1
' rj2 )

-[p4~, -Z+n-2-5, )~ ' „5(A)9
1 2

[A(1, 2),A(2, 1) is shorthand notation for A(r„r,),
A(r„r, ), analogously for B]. Clearly,

B(1,2) ~ 0, B(2, 1)~ 0, B(1,2)+B(2, 1)=1. (A7)

Without loss of generality we consider the case
r, & r,. Then with r, ', & (r, +r,) ', and the definition
of p it is easily seen that

+A(1, 2)i ~ p V2&2-Z+n —2 ——,
' —5, &0, (A8)

~ 1

L[ p (x„x,)]'~ & 0 for (x„x ) c 0,
where

Z-n+2
+&;)I+

(A1) with 5„6„5,arbitrarily small.
Let 1 &r,/r, &1+m (m&0), then (A9) implies

~ (p))'2a, —Z+n —2 —5,)
1

with 0+0 a constant and

0 =((x„x,) e(R:r„r a), .

with a sufficiently large. Let

E(r„r2)=Cr2, 'r, 'e &'arx ~xr2,

v(x„x,) = F (r„r2)+F(r„r,),
(A3)

with n, p defined according to (3.19). Suppose we
have shown that

Lv~ 0 in O. (A4)

Then since Vp2 &v on &0 (this follows analogously
as in Theorem 3.1 via Lemma 3.2}, Theorem 2.1
implies that (3.19) holds in A. In (R'LQ (3.19)
results again by Lemma 3.2 and the boundedness
Of p2.

We shall now sketch the proof of (A4): By a
straightforward calculation we have

Nl + 1
Pl +2 (A10)

(A11)

I v & 0 for 1 & r,/r, & 1+m, (A12)

results.
(ii) For 1+m, &r,/r, we conclude from (A9)

that

r,
)

r A (2, 1)) -- () + I!,) .(1
& rx2

(A13}

Hence by (A8) and (A13} it remains to show that

The rhs of this inequality is continuous and mono-
tonically nonincreasing for m ~ 0, and is positive
for m =O. Therefore an m, &0 exists such that

+A(2, 1) i
)0.

j
Combining (A5), (A7), (A10), and (A]1}

where

= A(1/2)+ ~B(1,2)
ra2&

+
~

A(2, 1)+ )B(2,1),
1 )

rx2&

B(1,2)d, -B(2, 1)d, 0 (d„d,»).
But this follows easily by writing

r, = (1+m, )r, +y (y ~ 0) .

Finally by (i) and (ii), (A4) results.

(A14)

(A15)
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APPENDIX 8: PROOF OF INEQUALITY (4.45)

It is obviously sufficient to consider the case
At r~ =r2 v'has discontinuous derivatives,

but (-&, —&,)v=-~ at these points. Now we con-
sider

(81)

and shall show that

and

0(- ...) 0( ...) (() 0), (82)

,~ + —,—,„—~K, with some K&0, (83)

for r„r, sufficiently large. For 0&7 & 6 this
implies (4.45). Let us first verify (82): A some-
what tedious analysis yields

F '(If -Z-)P=-2 ( ' ' + — ( '
f(r, +r,) f(r, +r, )

' f(r, +r,)

+ " (/I+B) v2c, + ' '
i

+ (Z- v'2(.',)8-&—

where

n(a+I) f'(r, +r~) I+a
2r', f(r, +r,) r, r, r, (84)

A = (r,', +r,' —r,')/(2r„r, ),
8 = (r '„+r,' - r,')/(2r„r, ) .

In the derivation of (84) we have used E = -Z /2 —e„ the differential equation (4.34), and the definition

(4.31) of o.'. Inserting the (easily proven) bounds

(85)

(85)

2r j.2

rg+r2
(BV)

8» for r ~r12
+r 1 2f

1 2

and using (4.38) with I, =r» ~ (r, +r, ) =u„we obtain

f(r, +r,) f(r, +r,) r, $2g, r & r,
Finally the differential equation (4.34) for f together with the asymptotic property (4.37) off /f yields

(82).
We now show (83): By a straightforward calculation we have

(BS)

(89)

(1+ar,")r"," 2r, r, ' f(r+r) ) (1+ar,")r"," 2r, f(r+r) )

Using (4.38). as before we obtain

f (r„) (r, r,)[(r,+r,-)' r,',] &-

(810)

(811)

For r, ~ r, (811) now implies (83) using again (4.38).
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