
FHYSICAI RKVIE% A VOLUME 23, NUMBER 1 JANUARY 1981

Cusp conditions for eigenfunctions of n-electron systems
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Cusp conditions are derived for eigenfunctions of many-electron systems for the coalescence of more than two

particles.

x,. cS', s,. = /x,. /Vt,

We consider an n-electron system described by
the Hamiltonian in the infinite nuclear mass ap-
proximation:

n n

H= —— 6; —Z r + x; —x,
i=& i=1

Further, we introduce y= (xs„, . . . , x„). For no-
tational simplicity, the index k in R, (d, and y is
suppressed. By D„we denote the set of all yc@"" ' for which x. cx. for k+ 1 ~ j,j yg, and x.
10 for k+1 &i (n. Let S' ' denote the unit sphere
in 6P' with the surface o'», = 2n'~'/1'(3k/2).
averaged over the angular part of (x„.. . , x,) is
defined by

where Z denotes the nuclear charge. Let
g(x„... , x„) denote a (real) solution of the Schro-
dinger equation

g„(R,y) = o, ', , q(R(o, y)d~.
S3k-1

(4)

(II- E)y=0, (2)

with E its corresponding eigenvalue. Spin enters
only via permutation symmetry.

It is well known that such an eigenfunction is a
C" function on S'"~M, M denoting the set of points
where the potential becomes singular. "At singu-
larities x, =0~ x;&0 &i&1 and xy=x20 xi~xj~ xi
0 x„x,~, j & 2 the eigenfunctions obey Kato's
cusp conditions' and similar results hold for
particle densities. ' ' To our knowledge, there are
almost no results on the behavior of eigenfunctions
at coalescence points of more than two particles:
For the simplest case, the two-electron atom,
attempts have been made to expand the ground state
g(x„x,) in the neighborhood of R= ( ,' x+'x)' n0 in
powers of R and lnR."

In the following we shall derive cusp conditions
for eigenfunctions at such points where more than
two particles coalesce. The procedure is related
to the derivation of the cusp condition for the one-
electron density in Ref. 6.

We first fix the notation

g obeys the following cusp condition.

Theorem 2.
For y(=D,

s p;(R, y) k(k —1)

r (sk/2)
(&k —1)vent 1((3k —1)/2)

'

Proof. We rewrite (2) as

8 P 3k —1 std
sR' R sR

'
where

W=R I.'„- ~,. +2 V„Z,

with R I-3J, denoting the angular part of —+~, , b, ,
Multiplying (6) by R and introducing

u=R"

we obtain

(7)

V,(x„.. . , x„)=—Zgx, '+ Q ~x,. —x,.
~

' (l-k-n).
i=i i&j

(3)

~'u 3k —1(3s 1)@+1
&R2 2 2

(9)

We shall use 3k-dimensional spherical coordinates
and write (x„.. . , x,)=RE, where R'= Z', , x',. and
&a is the angular part (See, for instance, Ref. 7).

Now we integrate (9) over [0,R],6) 0. By partial
integration of the first term we arrive, for 6-0,
at
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—(3k —2)[g(R (o, y) —P(0, y)] —RSg(R(o, y)

+ R'W dR '=0.
0

(10)

Next we average (10) over the angular part, divide
by R, and take the limit R -0. This leads to

B
=[(kk —1)x„,) ' limB ' R' Wdr&rxdR'=[(3k —1)ir„,] ' lim f RWddrx.

]g-0 Q 0 () S3k-1 R 0 S

For y e D~ it is easily seen that

limR — Q dr+3() „-)x —R))ddrx=0.
B~O S3 1 j=k'+1

For the evaluation of the integral we need

3~~I 1
&I ~~

~I~

3~
2

~

~ ~
)I~

~ I( I( t
4 (3k-1)fd„(1 k - ),

Further, since L» is an essentially self-adjoint
operator on C "(S"') (Ref. 9), f (3)3-3&&2

R~/x, —x,
~/

'drx= (33 (}
(3-k-x). (16)

g3)3-1

J 1 L~»gd(o=0 for all R.
S34-1

(13)
We indicate the calculation of (15): Noting that

Combining (ll}-(13}and recognizing that g(0, y}
does not depend on e, we obtain r„~x,

~

'6 gx, '-R'}dx, . . .dx,
R3 j=1

st)331(R1 y) —[(3k 1) ]
-1

~p

x R V,(R(o)d(o (t)(0, y) (y e Dk) .
S34-1

(14) we have

3 3)3"3
i i

1 (17)
S3k

r R)x,
~

'drx R""rr f=(R'-x )'"""'~x,
)

'dx,
S34-1 "1

= 2 &(cr» 4B(1,3(k —1)/2) = 47[(3k 1&~'/I'((3k —1)/2), (16)

where B denotes the beta function. Equation (16)
is obtained analogously. Combining (14), (15), and

(16), (5) follows.
Remarks:
(1) For convenience we considered x, = ~ ~ =xk

=0; analogous results hold, of course, for x,.~l
~ ~ = x. = 0 (1 &i . & n).

(2) For k= 1 we have C= 1, and (5) is identical
with Kato's result. '

(3) If P(x„.. . , x„) is a mathematical ground
state (i.e. , no symmetry restrictions) of a Cou-
lombic system, then g)0 for z,. &~ (1 &i & n)."'"
Therefore, Theorem 1 implies

(4) We note that the series expansion for the
two-electron ground state in powers of R and

lnR,"'which was mentioned before, has the correct
cusp behavior [see (5)] for R=0. We now give the
cusp condition for coalescence points xl = = x&
= x (k o 2), x 36 0. Let

g„(R;X,y) = (&,', , $(R(o+ X, y)d(o, Xe@"
S30-].

(2o)

the mean value of P taken over the surface of the
ball B»(X,R). For X= (x, . . . , x), x e @', R'
=g, , (x,. —x)' and we have the following theorem.

slav(Rky) &0 (y ~D )
BR R=O

(19) Theorem 1'.
For yeD„k «2, xw0

for neutral systems, positive ions, and negative
ions up to charge -2 (provided Z ~ 1). Particularly
for the two-electronic case the physical and math-
ematical ground state coincide, so we have
8$„(0)/sR &0 for k = 1,2.

8 pkx(R; X, y) Ck(k —1)
~( ) (21)sR 2' 2

with C given in (5). The proof of (21) is essentially
the same as for (5). This is easily seen by using
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94,.(R, y)
a=o

s(,„(R;X, y)
~R R=o

=0, for yeD„(k&2).
Of course, it is straightforward to extend the re-

sults above to molecules with fixed nuclei. For
instance, let us consider for simplicity a system
with two nuclei and two electrons described by

.2 2

i=&

1

1x, —x, l

'

Then we obtain in an analogous manner

sgagR; ( Y„Y,))
&R

(23)

~

—2Z,. + )g(Y„ I',.) (i=1,2), (24

the transformation x, =x, —x (1 ~i ~k) and refor-
mulate the Schrodinger equation in the coordinates
X] y ~ ~ ~ y XQy XQ j P ~ ~ ~ y Xf1

Remarks:
(5) For k=2, the constant occurring on the

right-hand side of (21) equals 32/(15&2m). This
cusp condition differs from Kato's'

sp(~x, —x, ~, x, +x,) , /x, +x, x, +x,
x2

(22)

due to the different way of averaging g: g means
the average of g taken over the sphere ~x, -x,

~

= const, with fixed x, +x,.
(6) Due to the Pauli principle, a wave function

g of an n-electron system vanishes at coalescence
points of more than two electrons. Therefore by
Theorem 1 and 1'

and

s y.,(R; (Y„Y,)
(Z, +Z,)y(Y„Y,),

o 7T

(25)

sy.&R; (x, «))
aR

32 1
P(x, x), xx Y„Y, (26)

R=o v 2

with P,„(R;X)always defined according to (20).
Furthermore, our procedure should also extend

to general Coulombic many-particle systems; how-
ever, things become obscured by mass-weighted
coordinates. Finally, it is straightforward to
show that analogous results to (5) and (21), re-
spectively, hold for the many-particle densities
of bound states

v;(x„.. . , x,)=f,( „~go:„... , ,„~'

namely,

xg~,„, dx„, ko 1 (27)

dP~(R; X) = 2C (—Zk 5
k(k —1)

~ o 2~ pa ~ ~ ~ ~ ~

(28)

with C given in (5), 5„,denoting the Kronecker
delta, and p, denoting the mean value of p, an-
alogously defined as in (20). For k = 1, (28) re-
duces to the well known result for p, .
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